LOW

HIGH

MEDIUM

1

2

3

CO₃

CO4

CO5

Maxwell's equations

characterizing parameters

AALIM MUHAMMED SALEGH COLLEGE OF ENGINEERING

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

MA8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 **PO2 PO1** PSO₂ 2 **CO1** 3 2 1 3 1 1 1 2 1 2 **CO2** 1 1 3 3 3 2 2 **CO3** 1 1 1 1 1 3 **CO4** 3 2 1 2 1 1 1 1 3 2 2 3 2 1 2 1 1 1 2 3 **CO5** 1.4 1.25 2.7 AVG 2.8 1.8 1.6 2.81 1 Understand how to solve the given standard partial differential **CORRELATION CO1** equations Solve differential equations using Fourier series analysis which plays a NA 0 CO₂ vital role in engineering Appreciate the physical significance of Fourier series techniques in LOW **CO3** solving one and two applications dimensional heat flow problems and 1 one dimensional wave equations. Understand the mathematical principles on transforms and partial 2 **MEDIUM CO4** differential equations would provide them the ability to formulate and solve some of the physical problems of engineering. Use the effective mathematical tools for the solutions of partial **CO5** differential equations by using Z transform techniques for discrete 3 HIGH time systems. EE8391 ELECTROMAGNETIC THEORY **PO1 PO4** PO5 PO6 PO7 PO8 PO9 PO10 PO11 **PO2** PO3 **PO12** PSO1 PSO₂ **CO1** 2 2 3 2 3 2 2 3 2 2 2 2 1 2 2 1 3 3 **CO2 CO3** 3 3 3 3 3 2 2 3 2 3 3 2 2 3 1 2 3 3 **CO4** 3 2 2 2 3 1 2 3 2 **CO5** 2.8 2.4 2 2.2 2.8 1.6 1.8 2.4 AVG Ability to understand the basic concepts about electrostatic fields, **CORRELATION CO1** electrical potential, energy density and their applications. Ability to acquire the knowledge in magneto static fields, magnetic NA 0 CO₂ flux density, vector potential and its applications.

Ability to understand the different methods of emf generation and

Ability to understand the basic concepts electromagnetic waves and

Ability to understand and compute Electromagnetic fields and apply

them for design and analysis of electrical equipment and systems

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8351						DIGI	TAL I	LOGI	C CIF	RCUIT	S				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	2	2						2	3	3	
CO2	3	3	3	2	3	3						2	3	3	
CO3	3	3	3	3	3	3	2					3	3	3	
CO4	3	2	3	2	3	3						3	3	3	
CO5	2	2	2	2											
AVG	2.8	2.6	2.8	2.4	4 2.8 2.6 2 2.6 3 3										
CORRI	ELAT														
0	NA			CO2	Abilit	y to de	esign c	ombir	nationa	al and s	equenti	al Circu	its.		
1	LOW	7		CO3	Abilit	y to de	esign v	various	s syncl	hronous	and as	ynchror	ious circ	cuits.	
2	MED	IUM		CO4	Abilit	y to in	troduc	e asyr	nchron	ious seq	uential	circuits	and PL	Ds	
3	HIGH	ł		CO5	Abilit orient			•	tal sin	nulation	for dev	velopme	ent of ap	plication	

EE8301		3 3 3 3 2 1 2 3 3 3 3 3 2 1 2 3 3 3 3 3 2 1 2 3 3 3 3 3 2 1 2 3 3 3 3 3 2 1 2 3 3 3 3 3 2 1 2 3 3 3 3 3 2 1 2 3 3 3 3 3 2 1 2 3 3 3 3 3 2 1 2 3 3 3 3 3 2 1 2 3 3 LOW CO1 Ability to acquire the knowledge in constructional details of transformers. CO3 Ability to acquire the knowledge in working principles of DC Ability to acquire the knowledge in working principles of DC Ability to acquire the knowledge in working principles of DC														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	3	3	3		2						2	3	3		
CO2	3	3	3	3		2						2	3	3		
CO3	3	3	3	3		2						2	3	3		
CO4	3	3	3	3								2	3	3		
CO5	3	3	3	3		2						2	3	3		
AVG	3	3	3	3	2 2 3 3											
CORR	ELAT															
0	NA			CO2		-	-	the kn	owled	ge in co	onstruct	ional de	etails of			
1	LOW	7		CO3			ndersta	and the	e conc	epts of	electror	nechani	ical ener	gy		
2	MED	IUM		CO4	Ability Gener		quire	the kn	owled	ge in w	orking	principl	es of DC			
3	HIGI	ł		CO5	Abilit	y to ac	quire	the kn	owled	ge in w	orking	principl	es of DC	C Motor		

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EC8353	ELECTRON DEVICES AND CIRCUITS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 2 3 2 2 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3 2 3 3 2 3 3 2 3 2 3 3 3 2 2 3 3 3													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	2		2						2	3	3
CO2	3	3	3	2		2						2	3	3
CO3	3	3	3	3		2						2	3	3
CO4	3	2	3	2								2	3	3
CO5	2	2	2	2		2						2	3	3
AVG	2.8	Able to explain the structure and working operation of basic electronic												
CORR	ELAT	2.8 2.4 2.8 2.2 2 2 3 3 CATION CO1 Able to explain the structure and working operation of basic election devices. 3 3											electronic	
0	NA			CO2	Identi	fy and	differ	entiate	e both	active a	and pass	sive ele	ments	
1	LOW	,		CO3	•				ics of	differen	t electr	onic de	vices su	ch as
2	MED	IUM		CO4			adapt	the re	quired	compo	nents to	o constr	uct an a	mplifier
3	HIGH	I		CO5	Emplo	by the	acquir	ed kno	owledg	ge in de	sign an	d analy	sis of os	cillators

ME8792					PO	OWE	R PLA	NT E	NGIN	NEERI	NG			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2		2	2					2	2	
CO2	3	2	2	2		2	2					2	2	
CO3	3	3	3	2		2	2					2	2	
CO4	3	3	3	2		2	2					2	2	
CO5	3	3	3	3	2	2	2					2	2	
AVG	3	2.6	2.6	2.2	2	2	2					2	2	
CORR	ELAT	inside a thermal power plant.												
0	NA	COI inside a thermal power plant. Acquire the layout construction and working of the components inside												
1	LOW	7		CO3		-		-		structio wer plai		working	of the	
2	MED	IUM		CO4	Identii Renev	•	•				vorking	of the	compon	ents inside
3	HIGI	ł		CO5	power	plant	econo	mics a	and en	-			heir kno nd estin	wledge to nate the

AALIM MUHAMMED SALEGH COLLEGE OF ENGINEERING Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

MA8491		2 2 2 1 1 2 3 2 2 1 1 1 2 3 3 3 2 2 1 2 3												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	1							2	3	
CO2	2	2	1	1	1							2	3	3
CO3	3	2	2	1	2							1	3	
CO4	3	2	2	2	1							1	3	2
CO5	3	2	1	1	1							1	2	3
AVG	2.6	2	1.6	1.2	1.2							1.4	2.8	2.7
CORR	ELAT	TTON COI transcendental equations												
0	NA			CO2	Appre approz	ciate t ximati	he nui ons in	merica variou	ıl techi us inte	niques o rvals in	of interp real lif	polation e situat	and err	or
1	LOW	7		CO3					hnique	es of dif	ferentia	ation an	d integra	ation for
2	MED	IUM		CO4					•			-	l methoo quations	
3	HIGI	ł		CO5		ary co	nditio		•		-		with init 1 engine	

EE8401					E	LEC	FRIC	AL M	ACH	NES –	II			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3		2						2	3	3
CO2	3	3	3	3		2						2	3	3
CO3	3	3	3	3		2						2	3	3
CO4	3	3	3	3								2	3	3
CO5	3	3	3	3		2						2	3	3
AVG	3	3 3 3 2 2 3 3												
CORR	ELAT											of		
0	NA			CO2	Abilit	y to ac	quire	knowl	edge o	on Sync	hronou	s motor	•	
1	LOW	7		CO2	Ability phase				e const	truction	and wo	orking p	principle	of Three
2	MED	IUM		('())	Ability Specia			and the	e const	truction	and wo	orking p	orinciple	of
3	HIGI	I		(()))	Ability Synch	-			the per	rforman	ce char	acterist	ics of	

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution

"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055. DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EE8402		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	2	1					2	3	3
CO2	3	2	3	3	3	2	2					2	3	3
CO3	2	2	2	2	2	2	2					2	3	3
CO4	3	3	3	3	3		3					2	3	3
CO5	3	3	3	3	3							2	3	3
AVG	2.6	2.4	2.6	2.6	2.6	2	2					2	3	3
CORR	ELAT	ION		CO1 To understand the importance and the functioning of transmission line parameters.										
0	NA			CO2	Transi	missio	n and	Distri					•	
1	LOW	r		CO3	To acc	quire l	nowle	edge o	n the p	perform	ance of	Transn	nission l	ines.
2	MED	IUM		CO4	To acc	quire l	knowle	edge o	n Und	ergroun	d Cable	es		
3	HIGI	ł		CO5	To un power			impoi	rtance	of distr	ibution	of the e	electric p	oower in

EE8403				ME	ASUR	REME	NTS .	AND]	INSTI	RUME	NTATI	ION				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	2	2	1	2	3	2					1	2	2		
CO2	3	2	2	2	2	2	2					1	3	3		
CO3	3	2	3	1	2	2	2					1	3	3		
CO4	3	3	3	3	3	3	3					2	3	3		
CO5	3	3	3	3	3	2	2					2	2	2		
AVG	2.8	2.4	2.6	2	2.4 2.4 2.2 1.4 2.6 2.6											
CORR	ELAT	ION		CO1	22.42.42.21.42.62.6CO1To acquire knowledge on Basic functional elements of instrumentation											
0	NA			CO2	To un electro				pts of	Fundar	nentals	of elect	trical and	1		
1	LOW	,		CO3	Abilit	y to co	ompare	e betw	een va	rious n	neasure	ment teo	chniques			
2	MED	IUM		CO4	To ace	quire l	cnowle	edge o	n Vari	ous sto	rage an	d displa	y device	s		
3	HIGI	ł		CO5	To un acquis				pts Va	arious ti	ransduc	ers and	the data			

AALIM MUHAMMED SALEGH COLLEGE OF ENGINEERING Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8451			LI	NEAR	INTE	GRA	FED (CIRC	UITS	AND A	PPLIC	CATIO	NS		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	2	2	1						2	3	2	
CO2	2	2	2	2	2	1						1	3	2	
CO3	3	3	3	3	3	1						2	3	2	
CO4	3	2	3	2	3	1						2	3	2	
CO5	3	2	3	2	3	1						2	3	2	
AVG	2.6	2.2	2.6	2.2											
CORR	ELAT	LATION CO1 Ability to acquire knowledge in IC fabrication procedure													
0	NA			CO2	Abilit	y to ar	nalyze	the ch	aracte	ristics of	of Op-A	mp			
1	LOW	7		CO3	To un	dersta	nd and	l acqui	ire kno	owledge	e on the	Applic	ations o	f Op-amp	
2	MED	IUM		CO4	Functi circuit					lication	s of spe	cial ICs	s like Tiı	ners, PLL	
3	HIGH	ł		CO5	Abilit Fabric					yse, lin	ear inte	grated o	circuits t	heir	

IC8451						С	ONTE	ROL S	YSTE	EMS					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	2		2	2					2	3	2	
CO2	2	2	2	2		2						2	3	2	
CO3	3	3	3	3	2	2						2	3	2	
CO4	3	3	3	3		2	2					2	3	2	
CO5	3	3	3	3		2	2					2	3	2	
AVG	2.6	2.6	2.6	2.6	2 2 2 3 2 A bility to dayalan various representations of system based on the										
CORR	2.6 2.6 2.6 2 2 2 3 2 ELATION CO1 Ability to develop various representations of system based on the knowledge of Mathematics, Science and Engineering fundamentals. Ability to do time domain and frequency domain analysis of various														
0	NA			CO2	Abilit model	•				frequer	ncy don	nain ana	lysis of	various	
1	LOW	,		CO3	Abilit mathe				acteris	tics of t	he syste	em to de	evelop		
2	MED	IUM		CO4	Abilit	y to de	esign a	pprop	riate c	ompens	sator for	r the giv	ven spec	ifications.	
3	HIGH	ł		CO5	Abilit	y to co	ome ou	ut with	soluti	on for o	complex	x contro	ol proble	m.	

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8501		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	2	2	2	2	2	2					2	3	3		
CO2	2	3	2	3	2	2	2					2	3	3		
CO3	3	3	3	3	3	1	3					2	3	3		
CO4	3	3	3	3	3	2	3					2	3	3		
CO5	3	3	3	3	3	2	3					2	3	3		
AVG	2.6	2.8	2.6	2.8	Ability to model the power system under steady state operating											
CORR	ELAT	ATION CO1 Ability to model the power system under steady state operating condition Ability to understand and apply iterative techniques for power flow														
0	NA			CO2		-	ndersta	and an	d appl	y iterati	ve tech	niques	for powe	er flow		
1	LOW	,		CO3	Abilit	y to m	odel a	nd car	ry out	short c	ircuit st	udies o	n power	system		
2	MED	IUM		CO4	Abilit	y to ac	quire	knowl	edge o	on Fault	analys	is.				
3	HIGI	ł		CO5	Abilit and ca	y to m trry ou	odel a it pow	nd und er flov	lerstar v, shoi	nd vario t circui	ous pow t and st	er syste ability s	em comp studies.	oonents		

EE8551			Ν	AICR	OPRO	CESS	SORS	AND	MICI	ROCO	NTRO	LLERS			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	3	2						3	3	1	
CO2	3	3	3	3	3	2						3	3	1	
CO3	3	3	3	3	3	2						3	3	1	
CO4	3	3	3	3	3	2						3	3	1	
CO5	3	3	3	3	3	2						3	3	1	
AVG	3	3	3	3	3 2 3 3 1										
CORR															
0	NA			CO2	Abilit 8085 d		-	knowl	edge i	n Addr	essing r	nodes &	k instruc	tion set of	
1	LOW	T		CO3	Abilit	y to ne	eed &	use of	Interr	upt stru	cture 8	085 & 8	3051.		
2	MED	IUM		CO4	Abilit	y to ui	ndersta	and the	e impo	ortance	of Inter	facing			
3	HIGI	ł			Abilit and M						e progra	amme,N	licropro	cessor	

AALIM MUHAMMED SALEGH COLLEGE OF ENGINEERING Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

					PO	WER	ELE(CTRO	NICS						
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
3	3	3	3		2						2	2	2		
3	3	3	3		2						2	2	2		
3	3	3	3		2						2	2	2		
3															
3	3	3	3												
3	3	3	3		2						2	2	2		
LAT	ION		CO1	Abilit	y to kr	now at	out th	e basi	c power	· semico	onducto	r device	s.		
NA			CO2	To Ac	quire	Know	ledge	about	the Pha	se Cont	rolled (Converte	ers.		
LOW			CO3	Abilit	y to an	alyse	the D	C-DC	Conver	ters.					
MED	IUM		CO4	Abilit	y to an	alyse	the D	C-AC	Conver	ters.					
HIGH	I		CO5	Abilit	y to an	alyse	the A	C-AC	Conver	ters.					
3 3 3 3 2 1 2 2 2 3 3 3 3 2 1 2 2 2 3 3 3 3 2 1 2 2 2 3 3 3 3 2 1 1 2 2 2 3 3 3 3 2 1 1 2 2 2 3 3 3 3 2 1 1 2 2 2 3 3 3 3 2 1 1 2 2 2 3 3 3 3 2 1 1 2 2 2 3 3 3 3 2 1 1 2 2 2 2 ELATION KO1 Ability to know about the basic power semiconductor devices. CO2 CO2 To Acquire Knowledge about the Phase Controlled Converters. MEDIUM CO3 Ability to analyse the DC-DC Converters. C															

EE8591		3 2 3 2 3														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2	3	2	3	3	2					1	3	3		
CO2	3	3	3	3	3		2					2	3	3		
CO3	3	3	3	3	3							2	3	3		
CO4	3	2	3	2	3							1	3	3		
CO5	3	3	3	3	3	3						2	3	3		
AVG	3	2.6	3	2.6												
CORR	ELAT	ATION CO1 Ability to acquire knowledge on Signals and systems & their mathematical representation														
0	NA			CO2	Abilit	y to ur	ndersta	and an	d anal	yze the	discrete	e time s	ystems.			
1	LOW	r		CO3						ortance	of Four	ier trans	sform, di	gital		
2	MED	IUM		CO4	Abilit implei			and the	e types	s of filte	ers and t	their de	sign for	digital		
3	HIGI	ł		CO5	Abilit proces						rammat	oility di	gital sign	nal		

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

CS8392					OBJE	CT C	RIEN	ITED	PRO	GRAM	MING					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	2	2	1	2							1		2		
CO2	3	1	3	2	3							2		2		
CO3	2	2	2	2	2							2		2		
CO4	3	2	3	2	3							2		2		
CO5	2	2	2	1	1 2 3 1.6 2.4 1.8 2.2											
AVG	2.4	1.8	2.4 1.6 2.4 1.8 2.2													
CORR	ELAT															
0	NA			CO2	Create	e Java	progra	ams wi	ith the	concep	ots inher	ritance	and inter	faces		
1	LOW	7		CO3	Build	Java a	pplica	tions	using	exceptio	ons and	I/O stro	eams			
2	MED	IUM		CO4	Increa	se Jav	a appl	ication	ns witl	n thread	s and g	enerics	classes			
3	HIGH	I		CO5	Create	inter	active	Java p	orograi	ms usin	g swing	;S				

OMD551				BAS	ICS O	F BIC	OMED	ICAL	INS]	FRUM	ENTAT	TION		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1		2	2	3					2	2	2
CO2	3	2	2		2	2	2					2	2	2
CO3	3	2	2		2	2	3					2	3	2
CO4	3	1	2		2	2	3					2	2	2
CO5	3	2 2 2 2 3 2 2 2 1.6 1.8 2 2 2.8 2 2 2												
AVG	3	1.6 1.8 2 2 2.8 2 2 2												
CORR	ELAT	1.6 1.8 2 2 2.8 2 2.2 2 FION CO1 To Learn the different bio potential and its propagation												
0	NA			CO2	To get physic				ifferen	t electr	ode pla	cement	for vario	ous
1	LOW	7		CO3	Studer record		ll be al	ble de	sign bi	io ampl	ifier for	various	s physiol	ogical
2	MED	IUM		CO4	Studer physic					us tech	nique n	on elect	trical	
3	HIGH	H		CO5	Under	stand	the di	fferent	bioch	emical	measur	ements		

AALIM MUHAMMED SALEGH COLLEGE OF ENGINEERING Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8601						SO	LID S	STAT	E DR	IVES					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3		2						2	3	3	
CO2	3	3	3	3		2						2	3	3	
CO3	3	3	3	3		2						2	3	3	
CO4	3	3	3	3								2	3	3	
CO5	3	3	3	3		2						2	3	3	
AVG	3	3	3	3											
CORR	ELAT														
0	NA	3 3 3 2 2 3 CO1 Ability to select suitability drive for the given application.													
1	LOW	7		CO3	Abilit	y to ar	nalyze	the op	oeratio	n and p	erforma	nce of	AC mot	or drives.	
2	MED	IUM		CO4	Abilit motor			the op	eratio	n and p	erforma	ance of	synchro	nous	
3	HIGI	I								the curr tor driv		speed o	controlle	ers for a	

EE8602					PRO	DTEC	TION	AND	SWI	TCHG	EAR					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	2	2	2	2	2	1					2	3	3		
CO2	3	2	3	3	3	2	2					2	3	3		
CO3	2	2	2	2	2	2	2					2	3	3		
CO4	3	3	3	3	3		3					2	3	3		
CO5	3	3	3	3	3							2	3	3		
AVG	2.6	2.4	2.6	2.6	2.6 2 2 3 3 Ability to analyze the characteristics and functions of relays and											
CORR	ELAT	2.6 2.4 2.6 2.6 2 2 3 3 LATION CO1 Ability to analyze the characteristics and functions of relays and protection schemes.														
0	NA			CO2	Abilit	y to ui	ndersta	and an	d anal	yze Ele	ctromag	gnetic a	nd Static	Relays.		
1	LOW	,		CO3	Abilit appara				s of at	onormal	operat	ing con	ditions o	f the		
2	MED	IUM		CO4	Abilit relays		udy at	out th	e appa	aratus p	rotectio	n, static	e and nui	merical		
3	HIGH	I]	CO5	Abilit	y to ac	quire	knowl	edge o	on funct	tioning	of circu	it breake	er.		

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8691						EN	IBED	DED	SYST	EMS					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3	2	2					3	3	3	3	
CO2	3	3	3	3	3	2					3	3	3	3	
CO3	3	3	1	3	3	2					3	3	3	3	
CO4	3	3	2	3	3	3					3	3	3	3	
CO5	3	3	3	3	3	2					3	3	3	3	
AVG	3	3	2.4	3	2.8	2.2					3	3	3	3	
CORR	ELAT	ION		CO1	32.82.2333CO1Ability to understand and analyze Embedded systems.										
0	NA			CO2	Abilit	y to op	perate	variou	ıs Emt	bedded	Develop	pment S	Strategie	5	
1	LOW	,		CO3	Abilit	y to st	udy ab	out th	e bus	Commu	inicatio	n in pro	cessors		
2	MED	IUM								f Real ti					
3	HIGH	I		(()5)	Abilit algori		cquire	knowl	edge (on vario	ous proc	essor so	chedulin	g	

EE8002]	DESIC	GN OI	FELE	CTR	CAL	APPA	RATUS	5			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	3	2	3	3	2					1	3	3	
CO2	3	3	3	3	3		2					2	3	3	
CO3	3	3	3	3	3							2	3	3	
CO4	3	2	3	2	3							1	3	3	
CO5	3	3	3	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
AVG	3	2.6	3	2.6	3 3 2 1.6 3 3										
CORR	ELAT	ION		CO1	Abilit	y to de	esign o	of field	syste	m for it	s applic	ation			
0	NA			CO2	Abilit	y to de	esign s	ing an	d thre	e phase	transfo	rmer.			
1	LOW	r		CO3	Abilit	y to de	esign a	rmatu	re and	field o	f DC m	achines			
2	MED	IUM		CO4	Abilit	y to de	esign s	tator a	ind rot	tor of in	duction	motor			
3	HIGH	I		CO5	Abilit	y to de	esign a	nd ana	alyze s	synchro	nous m	achines			

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8005		3 3 3 3 2 1 2 3 2 3 3 3 3 2 1 2 3 2 3 3 3 3 2 1 2 3 2 3 3 3 2 1 2 3 2 3 3 3 2 1 2 3 2 3 3 3 2 1 2 3 2 3 3 3 2 1 2 3 2 3 3 3 2 1 2 3 2 3 3 3 2 1 2 3 2 LATION CO1 Ability to acquire the knowledge on construction and operation of stepper motor Ability to acquire the knowledge on construction and operation of stepper switched reluctance motors Ability to acquire the knowledge on construction and operation of stepper switched reluctance motors Ability to acquire the knowledge on construction and operation of stepper switched reluctance motors													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	3		2						2	3	2	
CO2	3	3	3	3		2						2	3	2	
CO3	3	3	3	3		2						2	3	2	
CO4	3	3	3	3								2	3	2	
CO5	3	3	3	3		2						2	3	2	
AVG	3	3	3	3		2						2	3	2	
CORR	ELAT	LATION CO1 Ability to acquire the knowledge on construction and operation of Ability to acquire the knowledge on construction and operation of													
0	NA			1 '1 Y 7			-			U C	onstruc	tion and	d operati	on of	
1	LOW	7										tion and	l operati	on of	
2	MED	IUM		CO4			-			-		tion and	l operati	on of	
3	HIGH	I		CO5	Abilit	y to se	elect a	specia	l Mac	hine for	r a parti	cular ap	oplicatio	n.	

EE8703					RE	NEW	ABLE	E ENE	RGY	SYSTI	EMS				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3					3	3					2		2	
CO2	2	2	3	3								2		2	
CO3	2	2	3	3	3	3	3					2		2	
CO4	2		3	3		3	3					2		2	
CO5	2		3	3		3	3					2		2	
AVG	2.2	2	3	3	3 3 3 3 2 2										
CORR	ELAT	LATION CO1 Create awareness about renewable Energy Sources and technologies.													
0	NA			CO2	Get ac Energ	-	e inpu	ts on a	a varie	ty of iss	sues in I	harness	ing renev	wable	
1	LOW	7		CO3	Recog source		current	and p	ossibl	e future	role of	renewa	able ener	ду	
2	MED	IUM		CO4	Explait their a	in the	variou tions.	is rene	wable	energy	resourc	ces and	technolo	ogies and	
3	HIGH	ł		CO5	Under	stand	basics	about	biom	ass ener	rgy and	Solar E	Energy.		

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

EE8701					HI	GH V	OLT	AGE I	ENGI	NEERI	NG					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	1	2	1	2	1	2					2	1	1		
CO2	3	2	3	2	2		2					2	2	2		
CO3	2	1	2	1	2	2	2					2	2	2		
CO4	3	2	3	2	2	2	2					2	1	2		
CO5	3	1	3	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
AVG	2.6	1.4	2.6	1.4	3 2 2 1 2.2 1.75 2 2 1.6											
CORR	ELAT	ION		CO1	Abilit	y to m	easure	over	voltag	es						
0	NA			CO2	Abilit	y to ur	ndersta	and Ge	enerati	on of h	igh volt	age.				
1	LOW	7		CO3	Abilit	y to ur	ndersta	and the	e meas	suremer	nt of hig	h volta	ge.			
2	MED	IUM		CO4	Abilit	y to ur	ndersta	and Hi	gh vol	ltage tes	sting.					
3	HIGH	I]	CO5	Abilit	y to te	st pow	ver app	oaratus	s and in	sulatior	1 coordi	nation.			

EE8702				POV	VER S	YSTE	EM OI	PERA	TION	AND	CONT	ROL				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	2	2	2	2	2	2					2	2	2		
CO2	2	3	2	3	2	2	2					2	3	2		
CO3	3	3	3	3	3	1	3					2	3	2		
CO4	3	3	3	3	3	2	3					2	3	3		
CO5	3	3	3	3	3 2 3 8 2.6 1.8 2.6 2.8											
AVG	2.6	2.8	2.6	5 2.8 2.6 1.8 2.6 2.8 2.4												
CORR	ELAT	3 3 3 3 1 3 2 3 2 3 3 3 3 1 3 2 3 2 3 3 3 3 2 3 2 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 2 3 2 3 3 2.6 2.8 2.6 1.8 2.6 2 2.8 2.4 LATION C01 Ability to understand the day-to-day operation of electric power system. C02 Ability to acquire knowledge on real power-frequency interaction.														
0	NA			CO2	Abilit	y to ac	quire	knowl	edge o	on real j	power-f	requent	ey intera	ction.		
1	LOW	r		CO3	Abilit	y to ur	ndersta	and the	e react	ive pow	ver-volt	age inte	raction.			
2	MED	IUM		CO4			•			actions variation		•		he system		
3	HIGH	I		CO5	Abilit	y to de	esign S	SCAD.	A and	its appl	ication	for real	l time op	peration.		

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

OCS752				I	NTRC	DUC	TION	TO O	C PRO)GRAN	AMIN(r J		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	2							1		2
CO2	3	1	3	2	3							2		2
CO3	2	2	2	2	2							2		2
CO4	3	2	3	2	3							2		2
CO5	2	2	2	1	2							2		3
AVG	2.4	1.8	2.4	1.6	2.4							1.8		2.2
CORRELATION				CO1	Develop simple applications using basic constructs									
0	NA			CO2	Develop applications using arrays									
1	LOW	τ		CO3	Develop applications using strings									
2	MED	IUM]	CO4	Develop applications using functions									
3	HIGH	I]	CO5	Develop applications using structures									

GE8071	DISASTER MANAGEMENT													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1		2		2	3	3				2		2
CO2	2	1		2		2	3	2				2		2
CO3	3	3		3	3	3	3	2				2		2
CO4	2	1		2		1	3					2		2
CO5	3	3		3	3	3	3					2		2
AVG	2.4	1.8		2.4	3	2.2	3	2.33				2		2
CORRELATION					Differentiate the types of disasters, causes and their impact on environment and society									
0	NA			(())	Assess vulnerability and various methods of risk reduction measures as well as mitigation.								easures	
1	LOW	7			Draw the hazard and vulnerability profile of India,Scenarious in the Indian context, Disaster damage assessment and management									
2	MED	IUM		CO4	Able to gain knowledge risk management systems in India									
3	HIGI	H		CO5	Able to create awareness about the disaster management with the case studies and field works									

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

4500	"Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055. DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING													
GE8077					TO	TAL (QUAI	JTY	MAN	AGEM	ENT			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1		2		2	3	3				2		2
CO2	2	1		2		2	3	2				2		2
CO3	3	3		3	3	3	3	2				2		2
CO4	2	1		2		1	3					2		2
CO5	3	3		3	3	3	3					2		2
AVG	2.4	1.8		2.4	3	2.2	3	2.33				2		2
CORR		CO1	Able to acquire knowledge about the basics of Total Quality Management.											
0	NA			CO2		Able to gain knowledge about the Total quality management principles.								
1	LOW	7		CO3		Able to learn about the tools and Techniques of Total quality nanagement.								
2	MED	IUM		CO4		Able to know about the perfomance measures of tools and techniques in Total quality management system;.								
3	HIGI	I		CO5	Able t	Able to gain knowledge about the quality management system.								
EE8015		ELECT	RIC	ENER	GY G	ENEF	ATI		TILIZ		N AND	CONS	ERVAT	ION
LLOUIC	PO1	PO2	PO3	PO4						PO10			PSO1	PSO2
CO1	2	2	2	2	2	2	2					2	1	1
CO2	2	3	2	3	2	2	2					2	2	2
CO3	3	3	3	3	3	1	3					2	2	2
CO4	3	3	3	3	3	2	3					2	1	2
CO5	3	3	3	3	3	2	3					2	2	1
AVG	2.6	2.8	2.6	2.8	2.6	1.8	2.6	main	ocnoct	ta of go	arotion	2	1.6	1.6
CORR	ELAT	ION		CO1	To understand the main aspects of generation, utilization and									
0				cor	Conservation. To identify an appropriate method of heating for any particular									
U	NA CO2 rolating an appropriate method of neutring for any particular industrial application.													
1	LOW	7		CO3		To evaluate domestic wiring connection and debug any faults occurred.								
2	MED	IUM		CO4	To con refrige	To construct an electric connection for any domestic appliance like refrigerator as well as to design a battery charging circuit for a specific household application								
	1		1		Design a battery charging circuit for a specific household application perfomance of traction unit									

Approved by All Inda Council for Technical Education - New Delhi Affilitated to Anna University, Chennai NACC Accredited Institution "Nizara Educational Campus", Muthapudupet, Avadi - IAF, Chennai - 600 055.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING **EE8019 SMART GRID PO1 PO2** PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PSO₂ 2 3 2 **CO1** 1 1 1 **CO2** 1 3 3 3 1 1 2 2 1 1 **CO3** 2 3 3 3 1 1 2 2 2 2 3 2 3 1 2 2 **CO4** 1 2 2 2 2 2 CO5 1 1 1 AVG 1.6 2.4 2.6 2.6 1.25 1 1 1.5 1.6 1.6 Learners will develop more understanding on the concepts of Smart **CORRELATION CO1** Grid and its present developments NA **CO2** Learners will study about different Smart Grid technologies 0 Learners will acquire knowledge about different smart meters and LOW **CO3** 1 advanced metering infrastructure Learners will have knowledge on power quality management in Smart 2 **MEDIUM CO4** Grids Learners will develop more understanding on LAN, WAN and Cloud 3 HIGH CO₅ Computing for Smart Grid applications