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5.3 Natural Coordinates and Coordinate 'D'ansformati(,n ~
We will designate the natural coordinate used for nncfdimcr?sionul cage by ¢. COnsider a
line shown in Figure 5.8 with two end points defined by their coordinates A(xy) and Bl )ch"d
2).
i P

‘4\1‘){

Xy) (1=12)

—~

0’ P
*— } o—>

A’ 5
(& = -1) (¢=1 o

Fig. 5.8 Natural coordinates in 1-d.

parent .!inc fndicating ¢ varying from A’(-1) to B'(+1) is also shown in the figy,
appropriate linear transformation between x and ¢ is given by i

x(¢) = (&—x‘ u sz + (u)s”

2 Z
Bk
(55 ()
et - (5.24
= NMx + N,x,

) . :
hem sub-parametric elements. If, on the other hand, the sha

e : )
ansformation are of g higher degree than those for the unk

them Superparametric ¢ 1R nown field Variable, then we call

P _S8h
rtng the above equation in our standard notatjon

x = [N, Nz]{xl}

X

We may write

) 5.2
For a point p’ ¢ =08 correspondingly, "

i_,‘ ;mx,- + 3x2

"l,’vz 4:

tsine 1}

which is the point 2.
For a point Q,

VT

x=x1+ﬁ7+ﬁ

correspondingly, & = —0.5 which is the point™(Q"
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o = i U

) —e ik
- g
A (&=0) ( 4

s--1)

=

e

l
—Px
B

(x= Iﬂ

:l’

U

(X X ) (.I

Fig. 5.9 Quadratic transformation between x and é

fit a quadratic transfo i
[n order 10 rmation between x and & w
sl 2 , » We need one mo [
s shown i1 Figure 5.9. The corresponding parent line (4’ ¢’ B’) is also shown in rtehept(zmt .
A observe that C" ?s always lo?ated at &= 0 while the corresponding point C can be | lgu:;
St a0y desired position on the line AB in the Cartesian frame o
‘We can write the transformation as

x(&) = L Nix; = Nyx; + Naxy + Naxs (5.26)

we will now discuss different ways of deriving the shape functions N; in natural
coordinates.

53.1 Alternate Methods of Deriving Shape Functions
Serendipity approach

An easy way of writing down the necessary shape or interpolation functions by inspection is
as follows: If we observe the characteristic of shape functions (e.g. ref. Eq. (5.24)), we see
that each N; takes a value of unity at the point i and goes to zero at all other points j # i. This
has to be so in order to satisfy the relation.x = E',IN,xg, .... We can use this fact to write down
the shape functions very easily. For efample, we can now write the shape function N; in
Eq. (5.26) based on the above observation that N, should be unity at point 1 and zero at points
2 and 3. Since the coordinates of points 2 and 3 are £ =1 and 0, respectively, the functions
which become zero at the points 2 and 3 are simply (& - 0) and (§ — 1). Thus we can write
the required shape function as: &

S\ W)= (SPXE - 0XE=D) (5.27)

where the scale factor (SE).is dete ined from the requirement that N, be. unig at point 1, i.e.
(€ = —1). We readily find that SF = 0.5. Thus the required shape function 1s

Ny =05(-0(-D (5.28)
On similar lines, we can directly write the other two shape functions as

N, =05(-0)($+ D) (5.29)

Ny=-(+DEG-1 (5.30)

In this way, we can also write down very easily the shape functions for any canp]ex
firiite clomend Considering the example of quadratic coordinate transformation once again, we
get, using Eas- (5_23)—(5.30) in Eq. (5.26), the required transformation

(&) = Ny + Naxz + Naxa = 0.5(£)(& — Dx +05(5)(E + Dxy = (§+ D= Dx3  (3.31)

If point 3 in the physical space x-y were at the middle of the line, i.e. x3=1(0.5)
(x; + Xxy), then W€ observe from the above equation that the quadratic transformation just
1 2)
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158 Two-dimensional Finite Element Analysis

obtained reduces to the simple linear transformation obtained carlier. However, i POiny 4
located away from the mid-point, say for example, xy = xy + (0.25)0r; = xy), then y, m,,”"'
that a quarter point in the real Cartesian plane be transformed to the mid-point in the '.'4
e

This cannot be achieved through a linear transformation and Fq. (5.31) becomes (for SiMmplie,
let X, = 0‘ Xy = 4., Xy = I). )

X(&E) = 0.5(H(E — D) + 0.5(5)(8 + 1)) ~ (& + )&~ 1)1)

= (1 + &) 53

) . gl }

Thus we can fit a nonlinear transformation between x and £ Such a trdmfmmm,"m -

be used to formulate finite elements which possess curved edges 50 that we can modg Clitvey

structural geometry.

Lagrange’s interpolation

If we observe our process of interpolation of either the coordinates or the field varizble from
the nodal values, we notice that it is simply to find a polynomial curve fit passing through
prescribed function values at specified points (nodes). It is possible to achieve this through ¢,
classical Lagrange’s interpolation formula. If we are given, in general, a set of data poing;
X1, X3, ..., X, and the corresponding function values at these data points as f;, f,, ... £, we
can then write

fx) = L]fl + L2f2 Ll Lnf;l (533)

where L; are the Lagrange polynomials given by

(g — )(x; = X) = (x_ - XNXiyy = X) - (x, — 3

(q = x)("="x) % (x,_, - X)Xy — %) - (x, = x)

L = (534

We observe that the L; given above are simply the required shape functions N;. Thus we
can write the shape functions for the quadratic coordinate transformation above as follows
Given the data points (& ==1), (&= 1) and (& = 0) and the corresponding function values
X1, X3, and x3, we can write the required Lagrange interpolation polynomials as

N2 GO - _a-H0-& _ & -1 5
& - HE-&) 7 Qg+ DOo+D 2
Ny = G ZG - C1-HO0-8 _ fa+d (536
& - &ENE - &) (=1 - DO - 1) 2
G -H6 -6  =1-8a- 9
N, = 2 = =1~ £2 5.37)
C (& - S . (=1(1) g (

We. observe that, in general, the shape functions derived following either ,
Serendipity or Lagrange’s, will be different. Since the shape function is the most fundamen™
property of the finite elements, elements formulated based on these shape functions also exhib!
different characteristics. Elements formulated based on Serendipity (Lagrange) shape functio
are popularly known as Serendipity (Lagrange) elements. In general, Lagrange elements tend

have more internal nodes and admit more, higher degree terms into the polynomial shape functio®
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N ptural € ‘oordinates—Quad

ww‘ll oking for transformation between
i ;‘ i Figure 5. 10. The parel
0 shown in the figure. If the el

i als

Ql‘s l.ﬂ

Lis easy to see that tk
b

it

»
For a general qu

This transformati
of the nodal cox
Written as

\Vhere = 1)‘
Consnden '

csignate the natural coordinates m.ﬂ for ¢

Scanned by CamScanner



160 Two-dimensional Finite Element Analysis

where the scale factor (SF) is to be chosen such that N is unity at node 1 a he |
of equation of lines 23 and 3-4 has been taken to ensure that Nj is zero

e
and 4.
At node 1, & = n = —1 and, therefore, SF = 0.25. Thus our shape fi

1
Ny = (—J(l -¢)d = m
4
On similar lines, we can obtain the other shape functions as

A .
La+oa-n &

N, =
(4 )
(1) | |
Ny =|—|d+&A+m
4 ) v

(i

While we have derived the shape functions

advised to obtain the same using Lagrange’s appro
functions.
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/ _— : | ordinate Transformation  16]

Using this coordinate transformation, we will be able to Map a parent square element in

(EN gpace into & gﬁn(cl:iijgll{atd‘n'llat'ehral clgcht in physical (x-y) coordinate space. Consider, for
oxample: thi gencral q ateral shown in Figure 5.12. Using the nodal coordinate data given,
L can write
% = L N sl 15 (547)
y = p 1 Niyl = —5N2 + 5N4 (5,48)
Thus we have
|
x = Z[(l + S+ m -1 =801 - n) (5.49)
5
y = Z[(l -5+ -+ 5H0-m) (5.50)

Using this transformation relation, we can make certain interesting obsc'rvat’ims. If we
consider the line & = 0 in the (&) space, its mapping onto the (x-y) space is given by

x=12)n y=0627 (5.51)

i ine i - is y =§F.
Therefore, the equation of the line in the (x-y) space is y = - _ 4,
If we consider the line 77 = 0 in the (&-1) space, its mapping onto the (x-y) space is given

k x=WDE y=-62¢ (5.52)
space is y = — lines are indicated in

Thus the equation of the line in the (x-y) space 1§ y = 5x. 'I'hesen tt;vt%ellx:hcyﬁca] g
Figure 5.12. We observe that the &7 axis li;] . hcn; transfc;mledines ;:eed e

- be axes. The transformed .

pee(}i\ aot 28 p:;alget;)eittﬁafear ; %:‘ + our nodal d.of. (such as displacements) are along
in the x-y space. N
real, physical x-y axes, and nﬁta{g 3 "7.
'S

v 4 (0,5

\ N

£ =0 line (y = 5%)

\ 3 (1,0 ¥

-1,0 1

n= 0 line (y = -5x)

2 (0, -5)

2

Fig, 5-1
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For the four-noded element, with the above linear shape functlon's, we have beg, i
transform a parent square element in (g-77) space into a general quadrllatera_l child elemeeFO
the physical (x-v) space. If we need general Cl‘ll‘vcd edge element, we require a highero M
ransformation and we will now discuss the eight-noded clgmcnt for th|§ purpose,

general quadrilateral element shown in Figure 5.13 with eight nodeg.

Consider the Iso | h in the fi T
. " t .pace has also been shown in the fi } :
parent eight-noded element in (g-7]) space has also been gure. The attenti,

of
Y ‘r
n . 3 (3, y3)
7. 1) (x7, y7)
-1, D 4 3, D
( (g, vy) 4 6 (x4 9
U (MJF J{G“-"k £ (x5, v5) 8 2 (3
5 (xs’ yS)
(-1, =1) ll + Lz i, ~1) I (e, Y1)
5 (0, =1)
(0 — X

Fig. 5.13 A general eight-noded quadrilateral child element with its parent.

the reader is drawn to the convention followed in numbering the nodes. The shape functions
N; can be obtained as
Ns = (SF)(Eq. of line 2—6-3)(Eq. of line 3-7-4)(Eq. of line 4-8-1)
= (SF(1 - )1 (1 + &)

where the scale factor (SF) is to be chosen such that Ns is unity at node 5 and the product
of equation of lines 2—6—3, 3—7—4 and 4—8-1 has been taken to ensure that Ns is zero at al

(559 |

other nodes. A
At node 5, £ = —1 and 77 = 0 and, therefore, SF = 0.5. Thus our shape function is giVe?

by

2

On similar lines, we can obtain the other shape functions as

Ny = (%)(l + g’)(l - 772) (559

Ny = (1)(1 - &)t - ) 559

e
Ny = [%)(l b f)(l = 772) (5.57)
"I.ﬁ_
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Natral Coordinates and Coordinate I vanyformation 16

dserve, to example, that Ng s quadratie in & but linear in 1. Stmilarly, Ny in quadratic

W L :
ar m o

’.\w \l\\ . ' Ny : :
’ Referting 1© the plot ot Ny tor the four-noded element (Fig, 5.11(a)), we can Infer that

readihy modity that shape tunction to obtain the shape funetion Nj for the present elght-
we o lement by makig 1t vanish at nodes 5 and 8 also, Thus,

soded ¢6
Nk ioie Niliod™ ‘;'Ns - %Na
cla-da-m-qa-da-marien 5w
== Hu-me-1=¢=n)
Oa similar lines we can obtain the shape functions for other nodes as

1

1
Naly st Nllmod-' .5 EN"

" (5.59)
= 20+ HA - =1+ &=

(m S’* n)(—l + &+ m (5.60)

N4lem

w¢;%a-au+w4-f+m (5.61)

Fig. 5.14 N, function of Quad-8 element.
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As an illustration, shape function N, is plotted in Figure 5.14. Using thesem

it is possible to map a straight line in the (£-7) space to a curve in the physica] (x‘y;iﬂior,“
Consider edge 1-5-2 (77 = -1). On this edge, we have N3 = Ny = Ng = N7 = Ng = 0. Th‘p‘%.
have, for this edge, the relations “w |

X = lel + N:xg Oy N5x5

(562)
y = Niy; + Nayz + Nsys "
Thus, )
=1 - O s+ &) { i
X = ———-—2 x + 7 X +( &% )x (5-64)
_=e(h =g _{Q*‘_Q g2
y = =L AR a - &ys 5

For the general values of nodal coordinates (xj, ¥1), (x2, ¥2) and (xs, ys), this
represent a nonlinear transformation. For example, if the nodal coordinates are gjyenb’
(0, 0), (3, 9) and (2, 4), then we have

3 1 2

= E(l + f) -+ 5(1 ""f ) (5“)
9 1

el &) - 7N &% (567

Therefore, the equation representing the edge 1-5-2 in the Cartesian space is (eliminating ;
from Egs. (5.66)—(5.67))

2+ 2y + 42x — 30y = 0 (549

Thus it is possible, in general, to map a straight line in the (£~7) space to a curve in the physicd
(x-y) space, and we can thus develop elements with curved edges so as to be able to modd
curved domains. In the special case, when node 5 is located at the mid-point of edge 12

the physical space, i.e., if .
X p Xy )
Ne (= =28 (2:07
] 2 IE-) :Fs
+ r"‘il"
s D M

2
then the transformation (as given in Eq. (5.64))(5.65) and reduces to the simg
mapping a straight edge 1-5-2 in the (&-7) space to another straight edge in
(x—y) space. Thus, by making the nodes 5, 6, 7 or 8 move away from the mid
in the physical (x-y) space, we can achieve curved edge elements. It is
irrespective of their locations in the physical (x—y) space, nodes, 5, 6, 7, 8 are at the
of their edges in the &7 frame. il i

5.3.3 Natural Coordinates—'h-iangular Elements

The natural coordinates for triangular elements are conveniently defined as
Figure 5.15. The three natural coordinates are defined by the following expr

g™ A _ Areaof AP23

A Area of Al23
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165
3
2
P (Ll'v l’b LB)
1 \
Fig. 5.15 Natural coordinates for tﬂinguhr
(5.72)
(5.73)
0 ;hc natm:al s varies
‘ (5.74)
(573

f of sl {112) ynsl e
N_&m{[ b gooere v (5E96)

I‘.,|f\s"'

* 8.

D ',a}q it

(5.77)
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where the shape functions are simply obtained as \

Ny =L, Ny=L, N;=1L3

Comparing with the shape functions obtained for the three-noded triangyjg, '(‘5’]!
section 5.2.1, it is observed that we can very easily write down the required |
in terms of the natural coordinates just described. If we require a higher order trance. U
for example, to model curved domains, we can then use a six-noded triangular op.
shown in Figure 5.16. The natural coordinates of the nodes are indicated i‘ﬁ
Following our earlier procedure, the shape functions can be obtained as | h

=48

N, = (SF) (Equation of line 2-5-3) (Equation of line 4-6)
= (SPH (L) 2L, - 1)

: 4 ci!!_:ﬂ, =~ sy el
b, AT Y &’lﬂ,w]rﬁﬂ el

.

o ¥
—
_J'l

i
I lr I?P
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ese shape functions, we can write ructural Mechanics 167

ysing th

N, 0
H=[l N, 0 N, 0 N, 0 Ny 0 Ng 0|}y,

0 N, O N, Op-New 0 N, 0 N3 0 L4 (5.82)
Ya

y

X5

Ys

X

[ Ve )

&
eadily observe that the natural

our discussion in section 5.2.3, We T
] ordinates significantly simplify the derivation

coordinates as defined here for the triangular c00
of shape functions. We will now discuss the éor;nulation of the element level equations for these
' six-nociéd triangles, four- and eight-noded quadrilaterals, etc. for both

elements, viz., three- and A
| guid flow problems.

Comparing Wwith

structural mechanics problgms>ﬁ’and

54 2-d Elements for Structural Mechanics

54.1 Generic Relations
h will be useful for all the 2-d finite

i mmarise certain generic relations whic :
pre sl no S | structural problem, each point on

i dimensiona
e ctural mechanics. For a two- : .
e may b ndent ‘fi’sbla"é’"e“ts» viz., u and v, along the two Cartesian

two indepe ( : _
zt(::)l:ctllilrrlzt;la )}(’ ::;eY, respectively. The strain-displacement relations are given by

‘ £ = Lid (5.83)

0x

dv
aH'w =i 5.84
YT o (5.84)

ou ov

g — + 3~ 5.85
Ve dy ox (5.83)
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476 A 10 Isoparametric Formulation

pted this formulation for their various |jt e

(as described in Chapter 1) have ada

of elements. .
We first illustrate the isoparametric formulation to develop the simple b._l.

ment stiffness matrix. Use of the bar clement makes it relatively easy to underst

the method because simple expressions result.
We then consider the development of the wnpurumctnc formulation of the :

ple quadrilateral clement stiffness matrix.
Next. we will introduce numerical integration methods for cvalugnn' the quad

lateral clement stiffness matrix and illustrate the adaptability of the isoparametric for.
mulation to common numerical integration methods.

Finally, we will consider some higher-order elements and their associated shape
A 10.1 Isoparametric Formulation

functions.
of the Bar Element Stiffness Matrix

The term isoparametric is derived from the use shaqunncﬁou (or inter-

polation functions) [N] to define the element’s ge trm shape as are used to define

the displacements within the element. Thus when the shape f 1is u=a, +a

for the displacement, we use x = a; + aas fi e description of the noﬂ coordinate

of a point on the bar element and, hence, the ph.ysmal Shm of M em
Isoparametric element equati *

dinate system s that is defined

oriented in space. T
natural coordina
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x>, we obtain

1
or, in matrix form, we can

TR 2

where the shape fi ns in

The linear shape fu
element to the x ¢

stitute s = —1 into
shown in Fi \t’
defined for the ii
shape of the coo
X2 =0, and N> 1
ment for x, = 1.

The dlSpla cen
Egs. (10.1.5),
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478 A 10 Isoparametric Formulation

AN,
——————— 1

1] ¥ 1
5
s=—1 s=0 =] _ e
() \I " i

Figure 10-2 Shape function variations with natural coordinates: (a) shapefumnm
N, (b) shape function N,, and (c) linear displac '

of freedom u; and u, as sho
same sha,pe functmns. e same
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10.1 Isoparametric Formulations of the Bar Element Stif

Using Eq. (10.1.6) for u, we obtain
cadm :
niIR®
and using Eq. (10.1.3) for x, we
' ﬂl!

N

because X2 — X = L. '
Using Egs. (10 f 9@), A m

ol
RRCE.

Since {¢} = [B]{dfhlm
o ru i
el

We recall that use of line
in a constant strail
bar with three n

Step 4 Derive the El
)
The stiffness matri

However, ;g
a function o
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10 Isoparametric Formulation L amieg pvh

element. (Section 10.2 further discusses the Jac pﬁa# s
(10.1.14) in Eq. (10.1.12), we obtain wm ‘

M=~L

where, for the one-dimensional case, we have use
in Eq. (10.1.15). Substituting Eq. (w.‘imﬂ)r
integration, we obtain -

integration in closed fq,
Even the s:mple -n« NgU
(Sectlon 10.2). However

Letting dV = A dx, we ha
‘.u'.p_,‘,pal_' f

Substituting
dx = (L/2)ds,
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Surface forves can be found wang Eq (310.200)
Y as

) = ]s] WiT{T)as

Assumung the Cross section is constant
2nd along the length dmm‘umi*mhm

U= EN'MM - (10.1.22)
where We now assume T, ‘5"* f force |

V. and N from Eq. (10.1.5) .& | mi sth.

a Ii ) i;d th. | N

4

. ol
l 3 .
— | R L
I -
W
) W =l
'

AhE e
L N :
.-":. H,? W A £ F S

‘ . . ﬂ N
Un integraung Eq. (10.1.23), we obtain
S e

.
R h
1

The physical interpretation
units. {75 }L is now the tot
squally distributed to the WO |
of x |or 5), then the a i‘.
A 102 \_“t .
2 lsoparametric Form
Quadrilatera ?-‘” ent St
Rﬁlﬂlthat he — o
10 define the element shs
Thus, when the shs
Ut X =a) + ars + 3t +
element. o .
m natu L iLtiit
elemenl orie 1tation 2
example, there is a tr:
¢ach element of a spec
formulation.

L Quadrilateral elemer

L
~ ganp
- =
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10 Isoparametric Formulation

- Edger = | i | )
\ V) 5§ =3
) : (x4, Va) \ 4 2 (J" yj)
(-1, 1)1 (D ; ' - :=%
- l_
4 3 P(x, -
1 Edge |——d--- (‘y)! e,
= ., Edges = |
> S R il = |
I L 2 (x5, )
] (xp, ¥y) / 2%
1 2 Edget = —1
(-1.—1) (1. -1) Tk
(a) (b)

Figure 10-3 (a) Linear square element in s-t coordinates and (b) square element
mapped into quadrilateral in x-y coordinates whose size and shape are determined by
the eight nodal coordinates x1,y1,...,Ys e '\‘

@ -
applied to more complicated (higher-order) elements such as a quadratic plane ele-
ment with three nodes along an edge, which can haye straight or quadratic curved
sides. Higher-order elements have additional nodes and use different shape functions
as compared to the linear element, but the steps in the development of the stiffness |
matrices are the same. We will briefly discuss these elements after examining the linear i
plane element formulation.

Step 1 Select Element Type

First, the natural s-¢ coordinates are attached to the element, with the origin at the
center of the element, as shown in Figure 10-3(a). The s and ¢ axes need not be
orthogonal, and neither has to be parallel to the x or y axis, The orientation of s-t
coordinates is such that the four corner nodes and the edges of the quadrilateral are
bounded by +1 or —L. This orientation will later allow us to take advantage more
fully of common numerical integration schemes.

We consider the quadrilateral to have eight degrees of freedom, U, D1y - -, U
and vy associated with the global x and y directions. The element then has straight
sides but is otherwise of arbitrary shape, as shown in Figure 10-3(b).

For the special case when the distorted element becomes a rectangular element
with sides parallel to the global x-y coordinates, the s-f coordinates can be related to
the global element coordinates x and y by

X=X+bs y=y.+ht : (1-.,2_'.1).\

where x, and y, are the global coordinates of the element centroid.
We begin by assuming global coordinates x and » are related to
AAY

ordinates s and ¢ as follows; Ny —

x=a,+a3s+a3t+a4.s¢ r'_?i ook
. a0 ML
Y =@s+aestapttagst
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10.2 Isoparametric Formulation of 4 Plane Quadrilatera| Element Stiffness Matrix 4 483

and solving for the 4’5 jp, terms of x| X3,

Y3, %4, 71, 92,3, and ys, we obtain

sider square |
(10.2.4) an

Similarly, we ¢
the square eler

€qual to zero a@
mellt Wlth 14 mu,

Unti
functions
Nhates in terms
assuming a
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84 A 10 lsoparametric Formulation

Figure 10-4 Variations of the shape functions over a 1inear Sq wr elemen
Byt | Jf'f-d-c wi) ‘Sﬂd‘ﬂ I‘_
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etric For i
10.2 Isoparam ormulation of the plape Quadrilateral Element stiffness Matrix

A 485

\fN}:lirtcignzr:'eU;:/Z: lir;lagoem?l,(t)s parallel to the global x and y coordinates, and the shape
unctid 4s. (10.2.5), The gisp| -y

(x,7) é;n the elgmeélt of(gigure 10-3(b) is dcicﬁli?deg;c:f::dmutei: (l)?fqp(zll':)t ; _;;)catod .

omparing Eqs. (6.6.6) and (10,2 7), we see similariti o the .ect.a
| , 5 ), similarities bet

e!emen; :vnth lS}ldzes of lengths 25 and 24 (Figure 6-20) and the ‘:qe::r::h:];mcnl:g;uig
sides of length 2. If weleth=1and y = I, the two sets of shape functio

(6.6.5) and (10.2.5), are identical. e tous, Egs.

Step 3 Define the Strain-Displacement and Stress—Strain Relationships

We now want to formulate element matrix [B i
becomes tedious and difficult (if not impossiblL) E&;ﬁﬁiﬁ; Sy m;
the x and y coordinates, as seen in Chapter 8, we will carry out the f tion in terms
of the isoparametric coordinates s and ¢. This may appear tedious; but it is easi
the s- and 7~coordinate expressions than to attempt to use the x- a S
sions. This approach also leads to a simple computer pr. formulatio

To construct an element stiffness matrix, we O?Nne he strains, which
are defined in terms of the derivatives of the disp ts with respect to the x and
y coordinates. The displacements, however, are now ions of the s and ¢ coordi-
nates, as given by Eq. (10.2.7), with the shape functions given by Egs. (10.2.5).
Before, we could determine (9f/0x) and (df /dy), where, in general, fis a function
representing the displacement functions % or v. wever, u and v are now expressed
in terms of s and 7. Therefore, we need to-apply the chain rule of differentiatio
cause it will not be possible to expres

using Eqs. (10.2.
then be found; for
(2f /6x) and (
(Appendix B),

Scanned by CamScanner



486

10 Isoparametric Formulation

where the determinant in the denominator is the determinant of the Jacobian matrix
[7]. Hence, the Jacobian matrix is given by

dx dy

ds s
/] =

ox dy
ot ot
We now want to express the element strains as

e} = [B{d) (102.11)

pressed as a function of s and t. We start with the usuaj
s and displacements given in matrix form as

(10.2.10)

where [B] must now be ex
relationship between strain

a()

0x ¢ -
¥ 60 | fay,
& t=1]0 W~{v} | (10.2.12)
Vxy A

A) N

| Oy ox. |

where the rectangular matrix on the right side of Eq. (10.2.12) is an operator matrix;
that is, ( )/6x and 0( )/dy represent the partial derivatives of any variable we put in-
side the parentheses. I

Using Eqs. (10.2.9) and evaluating the determinant in the numerators, we have

) 1 [Byé‘() ay@]

—_————_—

oxvud|l7]| |0t 8s ~ Bs o

(10.2.13)
@__1_[‘3_"@_3’_‘@ |
ay | los &t  or 6.5']

where |[J]] is the determinant of [7] given by Eq. (10.2.10). Using Eq. (10.2.13) in Eq.
(10.2.12) we obtain the strains expressed in terms of the natura] coordinates (s-f) as

O] SRR, b

ot 0s ds ot
€x

1 0x 0() oxa() {u}

& =T _——— 7 10.2.14)
yy ]| A ds ot ar os | v (
xy

0x30) _9x3() aya() _aya()

L 0s 0t Ot Ps . Bt Bs s ot

Using Eq. (10.2.7), we can express Eq. (10.2.14) in terms of the shape functions
and global coordinates in compact matrix form as

{e} = [D'|[N]{a} (102.15)

.

a3
}1 .
.ﬂ
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where [D ] ISan operator matriy m've,n by
;
o) o o "
R 1 0
, 1
(D] = 0 ox o)
) dx ()
Vi i i < (10.2.16)
2B
Qm_a_“:a_(l o) ay o
L O Onsl 9 fon a3 "3 ar ‘
and (V7 is the 2 x 8 shape funetion matrix o ' |
N, S ; | '\ BIven as the first matrix on the ri
Eq. (10.2.7) and {d} is the cOlumn matsix mr e o I8 1X on the right side of
Defining [EAE8 g iau:mt on the right side of Eq. (10.2.7).
‘ . ! ¥ A
B =
Bx8) @3 (10.2.17)
> have |B| expressed ' 3 e
i, |B] expressed as 3 funofi n terms of s

and 1. Here [B] is of order 3 ‘ “
The explicit form of“[g can
and Egs. (10.2.5) for the shape functions

tions yield 8L qin
ol

qu,‘

where the submatrices of

Here i is a dummvevafi
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quadrilateral element. However, using Eq. (10.2.10) for (/] and Egs. (10.2.3) for x and y,
we can evaluate |[J]| as

0 1 —¢ t—s s—1

1 rlt—1 0 s+1 —s—1 Y :
HJH=§{XC} bp gt 13 2ot {Y:} (10.2.22)
l—s s+t -—-t-1 0

where X} =[x x2 x3 x4 (10.2.23)

y "
l ?‘\

ang {T = ﬁ 7N N (10229

Y4 J;

X1, X2, ...,ys. Hence, [B] is a function of s and ¢ i %@th the numerator and the de-

nominator [because of |[J]| given by Eq. (10.2.22) aniﬁgf the known global coordi-
nates x; through yj,.

The stress—strain relationship is again {¢} = [D][B]{d}, where because the [B]
matrix is a function of s and ¢, so also is the stress matrix {o}.

We observe that |[/]| is a function of s and ¢ a? the kﬁQ{VD global coordinates

Step 4 Derive the Element Stiffness Matrix and Equations

We now want to express the stiffness matrix in terms of s-¢ coordinates. For an ele-
ment with a constant thickness /4, we have

i = ” (87 (D)[BJh dx dy (10.2.25)

A
However, [B] is now a function of s and ¢, as seen by Egs. (10.2.18) through (10.2.20),
and so we m

ust integrate with respect to s and ¢. Once again, to transform the varia-
bles and the region from x and y to s and t, we must have a standard procedure that
involves the determinant of [J]. This general type of transformation [4, 5] is given by

” f(x’y)d"dy=“ S (s, 0)|[J]| ds dt (10.2.26)
A

A

where the inclusion of |[J]| in the integrand on the right side of Eq. (10.2.26) results from
a theorem of integral calculus (see Reference [5] for the complete proof of this theorem).
We also observe that the Jacobian (the determinant of the J acobian matrix) relates an el-
ement area (dx dy) in the global coordinate system to an clemental area (ds dr) in the
natural coordinate system. For rectangles and parallelograms, J is the constant value

J = A/4, where A represents the physical surface area of the element. U: ing Eq.
(10.2.26) in Eq. (10.2.25), we obtain qaanlie

L pl .

-l Ve
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T
P
(—‘I, 1) Ps _'—_’_—.'E (l' I)
4 3
o
1 2
(’1‘_]) (15_1)

Figure 10-5 Surface traction: Ps and p, ;ding atedge t = 1 \

(,- Q av YoSal
CSS10T

ermine the e t S S matrix is

The [[J]| and [B] are such as to result in complicated e:

gral of Eq. (10.2.27), and so the integration to determine tt

usually done numerically. A method fo i

in Section 10.3. The stiffness matrix in Eq. (
2 conolinglgat

Body Forces 6

The element body-force matnx vil] b

(83 "

Like the stiffness matrix, the b
numerical integration. @ P

-

Surface Forces B S

The surface-fo w’ |

or
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Example 10.1

SOLUTION:

For the four-noded lincar plane quadrilateral element shown in Figure 10-¢
uniform surface traction along side 23, evaluate the force matrix by usi
equivalent nodal forces obtained from the integral similar to Eq. (10.2
thickness of the element be & = 0.1 in.

}_\'(cm) 1 i
(0, 10) - .
(12.5, 10) ot gy
T, = 14 MPa uniform ‘
g \
1 28\ AR g b s_x:( ! LR
(20, 0) e A ylhkeoi

_ 2 o aiom sevafisg o
Figure 10-6 Element subjected to uniform surface tr

Using Eq. (10229), wehave
%z
v
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substituting Eq. (10.2.33) for £ anq

the thickness & = 2.5 mm into Eq (]0 2 ;2 %v e6g l;‘g; ‘{hc surface traction matrix and |
0] 2

1
S A Th—dz:J 0 N[ faay oy .
{.ff}',[ 1[ 1T 2 —1 ['NV3* P g ><10~|><(2;.,5><10‘3)><(125X10 )dt
0 N3 H [ my \ 2

Elat it O 4l

eval ated =7 ‘
simplifying Eq. (10.2.37), we obtam % P alongs Ot ou gl
14N, MG o
"1 oo 1 |
= 156.25 =
{3 L 14Ni3‘_idt—2.187x 10° (10.2.38) |

'Sealn] s

R

TONE oM o) sdl sdinossh s

ituti L AiEmgaten aiiailsh Yo =
Substituting the shape fun;;tlons, from rEﬂ: Q’@ %é'mm.lhﬂ 7

¥ JU? ”h\. lwq‘a -J v;[ 5 ST ;';L y g_ ."":. ” .
g Ryl %‘1 z } VQ B T
{ﬁ,}=ﬂf_l-87\'ﬁ< Ifof”"lb Ay Wi AN ol 4 a@mm

| por mmmvai b e 0c
R LR A T L AR “:y min,, n

| n*f:.n'-afﬁml'

Upon substituting s = 1 into the nte
ntegration in Eq. (10.2.40), we ¢

Evaluatlng the
pression for the

£} =2.187 x 103

Orin explicit form th > surf
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10.3 Newton-Cotes and Gaussian Quadrature ﬁ

In this section, we will describe two methods for numerical evaluation of definite ;
grals, because it has proven most useful for finite element work. nte.

We begin with the simpler more common integration method of NCWO“'C%
The Newton-Cotes methods for one and two intervals of integration are the
known trapezoid and Simpson’s one-third rule, respectively. We will thep descri
Gauss' method for numerical evaluation of definite integrals. After describing
methods, we will then understand why the Gaussian quadrature method is used in f.
nite element work.

Newton-Cotes Numerical Integration

We first describe the common numerical integration method called the Nm
method for evaluation of definite integrals. However, the method does not yield z
accurate of results as the Gaussian quadrature method a '
in finite element method evaluations, such as to evalug

To evaluate the integral |
1
= J y \
1

we assume the sampling points of y(x) are spaced at equal intervals. Since the limits of
integration are from —1 to 1 using the isoparametric formulation, the Newton-Cotes
formula is given by | 1.¥.

LA

1 g uoee' J

I=J lde=hZCiyi 1 Coyot Ciy1 + Coya + Caps + ...+ Cup)  (1031)
e i=0 | . 29SS |
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/

Yo

e

Pl - o RS R e

Figure 10-7  Approximation of numerical int
egra
usmg i =1 interval, n 2 sampling poin gration (approximate area under curve)

ts (trapezoid rule), fobi | .
< [ oS i ?\
: M 250 T 83 v A"’

well-known Simpson one-third rule Itr is shown 9] that he formulas for i = 3 and

i = 5 have the same accuracy as the formulas for i = 2 and i — 4. re:

fore, it is recommended that the even formulas with i nd i =4

tice. To obtain greater accuracy eﬁe can then use a smaller interva

evaluations of the function to be

higher-order Newton-Cotes formula,
It is shown [9] that we need t

we will show that we use
polynomial of order at mo
with n = 2 sampling points,
a linear one. However, usli
mial exactly. Gaussian quz
than Newton-Cotes quadra
mizing the position
Newton-Cotes 1

Table 10- . abl

J; y(x)dx = n Wiy

=]

Number
of Points

1
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10 Isoparametric Formulation

at the sampling points, the corresponding weights are
A is illustrated in Example 10.3.

the Newton-Cotes method and compare itg
method subsequently described.

After the function is evaluated
multiplied by these evaluated functions

Example 10.2 is used to illustrate
accuracy to that of the Gaussian quadrature

Example 10.2

Using the Newton-Cotes method with 7 = 2 intervals (n = [3 sampling points), ﬂ@bﬂ-
2 4 cos(x/2)]dx and (b) I = [7, (3" = x)dx.

ate the integrals (a) [ = .['I | Loe

9 ‘.u

SOLUTION:
Using Table 10-1 with three sampling points means we evaluate the function

the integrand at x = —1, x =0, and x = 1, and multiply each function
the respective Newton-Cotes numbers, 1/6, 4/6, and 1/6. We th |
products together and finally multiply this sum by the i of inte;

as follows: : ks s 40 Wl B A R PP ATl ™

yreriod ‘J‘!| ¥ “_‘)ni J 285

i ,f!n'fr "I"Il“’fiﬂi“k}';‘ﬁ:f&" l |
wilsine & %o astli L8 3§ 235’ i

e B Ll . - :
4 -‘ .w“ i "'(;!_‘_., ‘!" . : »A .
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Substituting vy — ¥, into Eq. (10.3 2) we obtain J
: as

r=afl () +g(1)+§(2)] = 2444

The error is 2.444 — 2.427 = (0,017, Th;s fivot Lat ' .
quadrature (see Example 10.3 (b)), '8 farger than that found using Gaussian

Gaussian Quadrature

To evaluate the integral

where y = y(x), we mlght choosef(mlérdt evaluate
and multiply by the length of the inte;
[ = 2y,. a result that is exact 'ﬁf'ﬁﬁ

3 i 5 sk 171 4
' 1 00 DI04 el \ ‘
Iﬁ"J ydx f e (10.3.4)

example of what is called t Gaussian quadrature e m
pomtwasused.Thereferé'*lm 'AH Ryt b
18 l"l""(n ] ' L
FIET: 1Y dil ;ﬂ 5)
s colerigaly '.{'“

which is the familiar midpoin

eads to I “t? 1,:.!.

That is, to ‘g‘i
points n, multiply each va
Gauss’s method chooses th
the best possible accu
with respect to the cent
same weight W;. Tabl

Litirg

Y
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496 A 10 Isoparametric Formulation

IR

l r| - +05773 v )

| '] - "0.5773,. . .
| V2 Vi

| | iy

- ! L L — X »
| \ X\ | 5 :
Ra
Figure 10-9 Gaussian quadrature using two sampling points e

Reference [2] for more complete tables). For example, using t
we simply have 7 = y| + y2 because W, = W, = 1.000
3 = f(x) is a polynomial containing terms up to and inclt
quadrature using n points (Gauss points) is exact i
degree 2n — 1 or less. In using n points, we
y = f(x) by a polynomial of degree 2n —1;Th ( ] ]
depends on how well the polynomial fits the given CUgVes . 1o slamses

If the function f(x) is not a polynomial, Gaussian quad ature is inexact

becomes more accurate as more Gauss poivare used. Also, it is impc
omials is, in general, not a polyn

coefficients for the first three orders—that is, one, two, or three sampling points (se
ints (Figure 10-9;

o rnifowegnly
b 1 ].'“',lt.'i 5‘" ‘.:

To illustrate the de;

o-point (n = 2) Gauss formula |
we have { == ) : |

u : I‘_.

(yéx = Wiyt Haraiss it

. (o AisY 8

There known parameters to def er
assume a cubic function for y as follows:

1 o

In general, with four parameters in the t
formula to exactly predict theam?t 1

B |1 F
Pl
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where y(—a) and y(a) are evaluated ysip

vanish for any Co and C;, we must ha 8 Eq. (10.3.8). If the error, e = 4 — Ag, is to

expression, Ve, using Eqs, (10.3.9) and (10.3.10) in the error
de -,
G N M2=2W | o | Wi (10.3.11)
e 2
and — ) 2 1
3C; AR R LT \/;-_=0:s773... (10.3.12)

Now W =1and a=0.5773 ... are the W.’sh | ‘-’. b, ‘,_ : -
quadrature given in Table 10-2, :u&%?(:l- -.-af,f (fcﬁg) fqr W‘m‘t Gaussian

s

VP U fsida 9w sacieat e

—_—

SOLUTION:

WAL LITH T

Evaluate the integrals (_5 I = ("
three-point Gaussian quadrature.

(a) Using Table 10-2 for the
+0.77459..., % =0 00
: ?'.;T!ﬂljﬁﬂ y

significant fig A
I = [3(-07%45 .
= 0.66755 + 0

Compared ,_m)”.m ‘] 2 o
0.004,
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A

‘Equataon (10.3. 13) u ' R, 2

10 Isoparametric Formulation

= -05773...(i= ! §=05773...(i=2)
\\. }/
o) By ) 0513, (j=2)
2 | 4
| |
| u
' L -5
' |
! |
1
s Ll
E'—'})————is_l) | —r= 05173 .= 1)
11 |3
u

Figure 10-10 Four-point Gaussian quadrature in two dimgh ion el

In two dimensions, we obtain the quadrature form %
respect to one coordinate and then with respect to the other as™

L Jil Jilf(s, NS J:[ "

=2 % [Z Wi tf]
S et
In Eq. (10.3.13), we need not use the same
(that is, i does not have to.e ), but thi
four-point Gauss rule (often des ibe
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Read in four Gauss pomls and we;

5. 1;=40.5773 . Bht functions

‘VJ-:'I 1.

—

C()l'ﬂl:“-ltc I[J (’9 t)]lv [B(‘, t)]! [D]

1
Compute [k] = [B]T[D]lB]IUllh 7

[Ken = [k“’]+[kﬁ|w; |3 -..:‘-ru
13 A5Y0 “,1 Lk‘ﬂ

Figure 10-11 Flowchart to evaluate [k®)

(MO8

We have shownmSecM
uatedmtermsofalocalsgt I

in the element, and it
repeat Eq. (10.;.2
0. K
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500 A 10 Isoparametric Formulation

Example 10.4

Evaluate the stiffness matrix for the quadrilateral element shown in Figure 10-12
using the four-point Gaussian quadrature rule. Let £ = 30 x 10 psi and v = 0,5,
The global coordinates are shown in inches. Assume 4 = 1 in.

)/
v 3, 4) | G,
4| 3
A {
12 Figure 10-12  Quadrilateral element for
3.2 6.2 stiffness evaluation
" ., -
; .' ‘/ . it 2 ; 4 "" )
- e ! :
SOLUTION: ‘. ,

Using Eq. (10.4.3), we evaluate the [k] matrix. Using the
points are (also see Figure 10-10). -

pl
=1L #5) rarke

V4 \ » - "\ 3 ( |
2l 4 li X
. 1 PR RPN ,4
- Q‘HI 5 ‘l,r’il‘»'l.ﬂ"’ j "‘A v
_‘-; “01 Ll‘_'ﬂ" i “I r?; } -l\

4 F
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10.4 Evaluation of the Stiffnes Matrix and Stress Matrix by Gaussian Quadrature A 501

sjmilarly,
I7(=0.5773,0.5773Y]| = 1.000

|[7(0.5773, —0.5773)]| = 1.000 (10.4.4d)

117(0.5773,0.5773)]| = 1.000

Even though [[J]| = 1 in this example, in general, |[J]| # 1 and varies in space.

]Then, using Eqs. (10.2.18) and (10.2.19), we evaluate [B]. For instance, one part
of [B 18 '

[B(—0.5773, —0,5T5i]IE=

oA B 013 Y au
I[J(—0k5773,—0.5"773)]'|[[31] (B2] (B3] [Bd]]
where, by Eq. (10.2.19), 0

A & o)

D Wik !

BU= | opi® gt e
i LK = g l
and by Egs. (10.2.20) and (10.2.21), a,b,c,d, Ny .
instance, RLT R T L .
‘ s 1.
1
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502 A 10 Isoparametric Formulation

From Eq. (6.1.8), the matrix [D] is

1 v 0 1
E , g 32 8 0
D] = 1= H =18 32 0| x10°psi (10.4.4i)
0 0 1—v 0 0 12
L 2"

Finally, using Eq. (10.4.4b), the matrix [k] becomes

(1466 500 —866 —99 —733 —500
500 1466 99 133 —500 —733
—866 99 1466 —500 133
=99 133 -500 1466 99

4
KI=107) 555 500 133
—-500 —733 —5;)9t
133 —99 -733
L 99 —866

i (R |

(Vhb.04 VE»vaIuaﬁan of El 1

-

g LR
B
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S Matrix by Gau
ausslan Quadrature & 503

UTION:

L .
50 Using Egs. (10.2.18) throush (10 2 20

), We evaluate () aty = 0,1 =0,
T (B1] [B)] (By) (B4)) (10.2.18)

B(0,0)] = s
[ ( )] I[J(O,O)”[B'(O’O)] [82(0,0)] [B’(Ofo)] 134(090”(

By Eq.'(]0.2.22), I[/]] is

MO0 =43 5 5 3

l[J(O’O)]l =1 v

Notice that again |[J]| =
surface area for the rectan

By Eq. (10.2.19), we have

By Eq. (10.2.20); we obtai

Differentiating th
evaluating at s = (
Y
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T s Pe Functions
gample 10:0 \ ok

For the three-noded line ;
determine (a) the shape ti v, - 80Py

! fung lemen
matrix [B]. Assume the ¥ b A Fep Hhown.'h displacemen;
as im0y o £enery| axial ddlpl'leﬁ;x’v h'and ) Sase In Figure 1013,
. taken
L L 11
| 2 ) 2z 2
N A Pewetos mye
Se—— 2 strain bar crﬂhznm Y
L T
it i i s L feds
3 oun Ty DTSl et »
SOLUTION: | | |
(a) As we are formula’timg shape functions for an i " .
following axi . & S1ape functions for an isoparametricielen
g axial coordinate function for x as \

Substituting a; = x3 fr
Egs. (10.5.2), we o
i_! 5

X

{ i
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10 Isoparametric Formulation -

Recall that the function x can be expressed in terms of the shape fu
the axial coordinates, we have from Eq. (10.5.7)

{x}=[Ni N2 N3] ;; =Ks(s2 )) 6(‘”-1)“ (l

X3

LI R T = ‘
Therefore the shape functions are

-1 ss+1)
: .

)

(b) We now determine the strain—displacement matrix
From our basic definition of axial strain-
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10.
> Higher-Order Shape Functions & 507
As Eq. (10.5.14) Tepresents the axia) Strain, we
we have

{ex}— _[_2.5‘;1 LH_ ~4g
# Ly L. us} [Bl{uz} (10.5.15)

Therefore the gradient matrix [B] is given by
B] = [%‘;1 21 -4

L I e (10.5.16)

n

e

gxample 10.7 L2
For the three-noded bar elememt sh»own breviously i
ness matrix analytically. : NN
SOLUTION: -

From Example 10.6
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508 A 10 Isoparametric Formulation

Evaluating Eq. (10.5.20) at the limits 1 and —1, we have

i

F§—2+1 ‘3‘-1 *§+27 -—g—Z—l -§.+,“1

[k]=% %‘—l §+2+| —g—z - -f;—+1 -%...g'
_—§+2 —g—z ? || -g-+2 ';w‘;_
Simplifying Eq. (10.5.21), we obtain the final stiffness matrix as !

Example 10.8

‘We now
shown in

i Rl
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105 Higher-Order Shape Functions & 509
with weights given by

Wi =1, Wy

We then evaluate each term in the integrand of Eq. (10523
multiply each term by its weight (here each weight is 1) )
point evaluations together to obtain the final term for | (
triv. For two-point evaluation, there will be two te m:“h elemqnt of th:a l;lm :;;
clement of the stiffness matrix. We ey m —~ together to obtain tain ca
term as follows: 0 evaluate the stiffness matrix term by

The one-one element: - .
- N e Dy

W A0 TNy ¥ 3 YT T ThES
Sl e e G e Y 3#
‘_.JJI o

(10.5.25)

at each Gauss point and
. We then add those Gauss

Cod vl

S Wi -1 = ()
i=1

The one-two elma :

‘I‘.“qu-_‘r# J""%’.—..’(‘.ur“"“ 1\“ r \r. h U 4.000/
Fe ol AN S

A
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By symmetry, the two—one element equals the one-two element, etc. Thetefom’ &@
the evaluations of the terms above, the final stiffness matrix is T

g | 467 0667 -533 |
el = 53 | 0667 4:63 dusim5831vm sils ol
45,58 w5380 067y ‘,.1..,.,,

Equation (10.5.26) is identical to Eq. (10.5.22) obtained analyticz rec
integration of each term in the stiffness matrix. =~ ?flnh a
N AU{J'

R il

To further 1llustrate the concept of Mgher-oﬂdel

four additional midside nod
element. :

Ay

Scanned by CamScanner



105 Higher-oy
it is based on anp incomplete cqp - Functions & 19
3 blc, t it y’

bending. We are also
lation, diSplace-mem;eml Nded thyy use Wel::em,"@ltl in such cases as beam

U and ] .
Eq. (10.5.27), | U are of identical fopp, g an 1soparametric formu-
To describe the shape funcgions o5 and y, respectively, in
] 0 Oorms

and one for midside nodes, as given o K fIre Tequired
e

(i=1,2,3,4), erence (3), one for corner nodes

1 For the corner nodes
M=30-901-y

(~s~t-1y
1
Ny owe
2 4(l

A= gs—r-1y

! .
N; = Z(l + 9)(1 -': t)‘(g.','(“_' 1‘)““‘ J (10.5.28)
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10 Isoparametric Formulation

The displacement functions are given by

{u}_[Nl 0O N 0 Ny O Ns 0 Ns 0> Ng 0 N7 0 Ns 0]

v 0O Ny 0 N, 0 N3y 0 Ny O Ns 0 N¢ O N; 0O NS'
(u) ) -
vy ' !
u ‘ it
X S \ ‘ (10 y
\ Ug J
i} 3 LI cinade ‘“ -
and the strain matrix is now b | + Aders % LR
H o 3 : ‘ I" - - ; *II i
| i R
with ¢ (113 gl
We can develop the m:
with [N] now the 2 x 16
plicit form by Eq.

To evalung
isoparametric elem
a 3 x 3 rule). R
ces, and the 3 >

ment called a “Q
nodes. We then
Eq. (10.5.27) and t
shape func » ca
this subject co "‘

s=-0.7745—,

mrj_‘i
imr
1 g oS
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Section 7.4

Atnode I, N, = Higher Order Elements 223

Nz.._(l'f-f)(l— 1 ~ ¢ + )

(7.52)

N; = —m(l_tﬂ)(l o )

M=_(1 f)(l'l-n)(].‘.f_ﬁ)

Now, we define N  Ne, N;,

along edges ¢ = +1,5 = 41, g mndpomtaFa'N,,
= ~1. Conseqy
Ns = c(1 - &1 - w)(l t.» A

il ﬁMn
The constant c in Eq.7.53 is determined ﬁ' m the co
atf-On—-1Thus,c—,zmd e

b R

i YEE il

We have
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224 Chapter 7 Two-Dimensional Isoparametric Elements and Numerical Integratior,

2 9% ¥4

% N

(a)
FIGURE 7.8 Six-node triangular element.

The element stiffness, which has to be integrated nur

=, / Bi’r@ ; J

The Gausspomtsfora Tia
lier. The simplest is the o
¢ = = & = 3. Equation 7

where B and J are ev W" '
pomtsareglven' able 7.

i Three
Four
Five

LA Six
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.5 Finite Element Solution of 3 Plane Stress
O-
sroblem

To tllustrate the finite element method for

sorailed solution.

aphn_emmbhn,wenowplucnta

__..ple5—2 e
by -
£or a thin plate subjected to the surface ¢
the nodal dlbplacementsandthedﬂﬁ The
— 210 GPa, and v = 0.30. 'Aygrmm i
L, 20mm 4

oyl

Figure 6-16 “‘4

Discretization
To illustrate i;};lT

x

plate into

coarseness ¢

would a fir wr.r‘*“

Ing a longhan

IOS Of 31,;,. :
In Figh

verted to nod
As .'
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348 A

6 Development of the Plane Stress and Plane Strain Stiffness Equationg

14 kN

— 14 kN ,|M l

Ml ‘pl
Figure 6-17 Discretized plate - 1"1* ).r

In general, for higher-order elements, Eq. (6.3.7) should be used to convert d;
surface tractions to nodal forces. However, for the CST e :
Section 6.3 that a statically eqmvalent force i:eplamdmm
been done here. 4 boe onargasg
The governing global matrix equatxonhs (F =

{F} = [K|{d}

Expanding matrices in Eq. (6.5.1), we obtain

b‘“

where |
deleting
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or, in general, 4 can be obtained equi |

Eq. (6.29)- | valently by the
We will now evaluate [B], where B sl

and, from Egs. (6.2.10),

o ——

Therefore, substituting Egs. (0.-
&

\ )
R \
D = -

A

For plane stieSSE
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350 A 6 Development of the Plane Stress and Plane Strain Stiffness Equation
S

[ 0 0. =20]
0 20
20x 10 9210 x 10°) [ 10 I
Th B|T[p) = (20X 107%)(210 x 0
o (B[] (2x4x10 2)(0.91) 0 0 10]]03
=10 0 20 0
0 20 _10J

Simplifying Eq. (6.5.9) yields

091 | o o

“10 NG S
| w.. v

. 4 ‘ - I t\
lUsmg Egs. (6.5.10) and (6.5.6) in Eq (6.5.3&,( i
as % - i = w Y
ne - ‘, qv‘f ._‘,I -~ una I '.- “

L) = a3

(25)109

&)
et

rl '.fr
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m =3

@ Figure 619
discretizeq pl.;'.m.ﬂt 2 of the
i=1 e
j 3 N3 B -\k‘l ‘l
’1- LI
S I

In Figure 6-19 for element 2, we I
Xm = 400 mm, and Ym = 200 mm,
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Simplifying Eq. (6.5.16) yields

.m-

[ =] =3 0 - |
0 0 -35
B (52.5 = 107) 10 § 7
[B]"[D] 0.91 6 20 35 (6.5.17)
0 7
6 20 0. i ke

iy
E

-a

Finally, substituting Egs. (6.5.17) and (6.5.14) into Eq. (6.5.3), mm
matnix for element 2 as

) (525 % 10°)

kK = (2 =3y(0.
[k'“] = (20 x 107°)(0.04 091

Equation (6.5.18)
“#

i " ‘ 4
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degrees of freedom of the total (K]

Mmatry
we obtain AHX (where we have factored out 5 constant 5),
E|ement1
i) D) U U3 u
3 Uy
[ 28 0 _pg 4 o 4 ’:; 'g
—28, 13, 48l 28 oy s 0 0
/‘(I)J_5_2.5x—106 14 80 —26 8 12 4 0
[ 0.91 0 -12 20 1 20 0 o o N (6520
—14 0 14 2 0 »
0 0 0 0
L 2 U

Element 2

52.5 x 10°
2)7 . T
k2 =—59i
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354 A 6 Development of the Plane Stress and Plane Strain Stiffness Equations

we have
[k, | [ 48 0 -28 14 0 —-26 =20 12‘1 ‘row
R.. o 87 12 -80 =26 0 14 _g||,| \
Rs. g 12 48 26 =20 14 0 gl
J Rs, sa5x10°| 14 —80 —26 87 12 =7 0 gl]g}
a0 (= 09T | o —26 -20 12 48 0 28 EglE
0 2 0 14 -7 0 8 12 —_gp é‘
14 x 10° 20 14 0 0 -2 12 48 g}, 1|
| 0 | 12 77 S 14 80 -26 87|, |

Applying the support or boundary conditions by eliminating rows and col
sponding to displacement matrix rows and columns equal to zero [na;
columns 1-4 in Eq. (6.5.23)], we obtain

14 x 10° [ 48 0 "=28
0 _52.5><106 0 8 1

14x10° (091 —28 0 6|
0 14 —SOX
Premultiplying both sides of Eq. (6.5.24) by [K]™', we have

u3 48
3| 0.91
us [ 52.5x 108
U4 14
Solving for the disp. in Eq.
[ZK3 ) ’ .

U3

i B
'.ll'r‘;:.;' x _l‘
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6.5 Finite Element sojuy 'on of a Plane Stress Problem A 355

for a one-dimensional bar subjected to tensile force, Hence.

components of Eq. (6.5.27) for the tWo-dimeng; - lac ‘
rect, considering the coarseness of the mesh ':‘;3“ thl:hdtj.} &m to be feuombly cor-
model. (For more on this subject see Section 7.5 ecti stiffness bias of the
xpected to be downward at (je top (node. 3) grd 1w i” , |
ae rlf):su]t of the Poisson effect. However, (he !_ “ at the Mm Mﬂ
mesh accounts for this unexpected poor resuly s b
We now determine the stresses in each af

=2

i

Substituting numericazl:}:. ]
(6.5.8); and the appropria
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356 A 6 Development of the Plane Stress and Plane Strain Stiffness Equations

In general, for element 2, we have

B I | 0 I
»

(0} = 75 (34) 1 ol el

0 0 =4 n B

Substituting numerical values into Eq. (6.5.32), we obtain 2
ol e

: «wulg
(o} — (210 10°)(10°6) (1)3 (1)3 g I
0.91(4) ' N
0 0 035
s
"‘r‘l v!"‘:
20 i
x| 0 o0
0 -10

made by one of the prir
prlnClpal'.,.% >SS Q‘Q\-.

stresses for e \'“
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A2 Matrix Operations A 801

Numerical examples of special types of matrices are given by Egs. (A.1.3)
Tough (A.1.6). A rectangular matrix [a] is given by

ey la] =

w9

|
4 (A.1.3)
4

where [a] has three rows and two columns. In matrix [a] of Eq. (A.1.1),if m =1, a
row matrix results, such as

d=2 3 4 =i | (A.1.4)

A\ wis

If n =1 in Eq. (A.1.1), a column matrix results, such as

; CEEF SRS

If m = n in Eq. (A.1.1), a square matrix results, such as
1 (5 A3 T €

-

compact form and are
s o 4y Matox notation.ds alss
S ﬂm&% w Lo m 2ot 1o 1edin
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A

A Matrix Algebra

Addition of Matrices

Matrices of the same order can be added together by summing corresp()nding el

ments of the matrices. Subtraction is performed in a similar manner., Matrice e
unlike order cannot be added or subtracted. Matrices of the same order cap of
added (or subtracted) in any order (the commutative law for addition applies), That

[e] = [a] + [b] = [b] + [4]
or, in subscript (index) notation, we have
ley] = lay] + [by] = [by] + [ay] (A23)

As a numerical example, let

0=[27 o[t

The sum [a] + [b] = [c] is given by

SRR

=,

Again, remember that the matrices [a], [b], and [¢] must all be of the same order. For
instance, a 2 x 2 matrix cannot be added to a 3 x 3 matrix.

(A.2.2)

&

Multiplication of Matrices y

For two matrices [a] and [5] to be multiplied in the order shown in Eq. (A.2.4), the
number of columns in [a] must equal the number of rows in [b]. For example, consic

Yo ld=[alp)

. g RODEY i:)m
If [a] is an m x n matrix, then [5] must have n rows, Using st
write the product of matrices [a] and [b] as i A
Yk ~ k g

s Y c 2ol i 2
\ Y [ey] = Zﬂbbgf &%
L9 ¢=1'

where 7 is the total number of columns in [a] or of
2 x2and trix [5] of order 2 x 2, after mul iplyin two m:
[ey] = '[“llbw+gmbzm. anbiy +apby]
azlbu‘ +anby  a)byy + anby
. ‘ 3 .’:;‘-ﬂil'_l 4

: e 2 [i ;J Bl ‘?J,[;,a; ._;‘l .

The product [a][4] is then

e = [20)+1@ 2D +10)7 _ 14 =g
0)+2) 3-1)+20) = |7 23

For example, let
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A.2 Matrix Operations A

In general, matrix multiplication is not commutative; that is,
[a](b] # (b][a] (A.2.7)
The validity of the product of two matrices [a] and [b] is commonly illustrated by
@ B = _—
(ixe) (ex) (ix))
- where the product matrix [c] will be of order i x j; that is, it will have thc same num-
ber of rows as matrix [a] and the same number of columns as matrix [5].

Transpose of a Matrix AWOLANI 4 g
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A

A Matrix Algebra

Because [b]” and [a]” can be multiplied according to the rule for matrix multiplicy.
tion, we have

a7 =15 6, 4| =17 ) (A2

validity of Eq. (A.2.10). A simple proof of the general validity of Eq. (A.2.10) is Jeft
to your discretion. ‘

Hence, on comparing Egs. (A.2.12) and (A.2.13), we have shown (for this case) the 1

Symmetric Matrices |
If a square matrix is equal to its transpose, it is called a symmetric matrix; that is, if

o] = [a]”

then [a] is a symmetric matrix. As an example, \ _
S w Q
[@=1{1 4 o0 \ b (A2.14)

2 0

is a symmetric matrix because each element a; equals a;; for i # j. In Eq. (A.2.14),
note that the main diagonal running from the upper left corner to the lower right cor-
ner is the line of symmetry of the symmetric matrix [a]. Remember that only a squar
matrix can be symmetric. T g S

Unit Matrix
The unit (or identity)

1] is such that R :
B ewey i) bagoadoyeial W‘Oﬂ "
] 4 Iy -

N En=md=@ g

it matrix is

o won 2 o SRR

Inverse of a Mki}ﬁg‘ﬁ ? ;:1

LA ¥
The inverse of a matrix is
0
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A2 Matrix Operations A  BO5
Orthogonal Matrix

A matrix [T is an orthogonal matriy if

11 T) e 19(7) w p1 (A.217)
Hence, for an orthogonal matrix, we have

(7)™ = (1) (A.218)
r IA“ OI‘ll:logon'al matrix frequently used is the transformation or rotation matrix
l ] I two‘d'me]‘sw“al space, the transformation matrix relates components of a vec-
tor i one coordinate system to components in another system. For instance, the dis-
placement (and

force as well) vector components of d expressed in the x-y system are
related to those in the x'-)’ system (Figure A~ and Section 3.3) by

A =T Q
or ‘ ; : R

(A.2.19)

(A.2.20)
.\ ; Ax o
where [T is the squan;' atrix on the righ of Eq. (A220). -
Another use of an ortk: e from the local stiffness matrix
to a global stiffness matrix al

for an element, if tt

x-y plane.

0k LA}
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806 A A Matrix Algebra

and for Oy’ or d,,, we have U

{ty 1) = {-8inl cos ()

(A223
or unit vectors i and j can be represented in terms of unit vectors and ]( [also )
Section 3.3 for proof of Eq. (A.2.24)] as see

i’ =icos0+ jsinf
j = —isin@+ jcosd

pd

LRI T |
fitth=1 14 +t§z =1 :"' -

and since these vectors (i’ and ') are orthogonal, by the dot product

Ctii+ 12§« Kt + 12§ ‘;
or :

mm+mm~v

and hence

or we say [T is orthogonal and therefore [T ]
pose is its inverse. That is, i
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where U might repre
quadratic form. By

\
Y
Differentiating q

L .
0
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. : ill be symmetric if [4] is Symmetrijc
The triple product in Eq. (A.2.37) wi : : Ther
[X]"[A][X] is also called a quadratic form. For example, letting Oy

9 2 3 X|
[A=]2 8 0 [X] = § x

3 O 5 X3
btai
weE obtain 3 . "
(X A{X} =[x x2 x3]|2 8 0 x
3 0 5 X3

- 9le +4x1x2 + 6x1x3 + 8x§ + Sx§

which is in quadratic form.

A A3 Cofactor or Adjoint Method ﬁ
to Determine the Inverse of a Matrix '

$ -,
i LISY

We will now introduce a method for finding the inverse of a matrix. This Mmethod ;;
useful for longhand determination of the inverse of smaller-order Square matrice,
(preferably of order 4 x 4 or less). A matrix [a] must be square for us to determipe
its inverse.

We must first define the determinant of a matrix. This concept is necessary in

determining the inverse of a matrix by the cofactor method. 4 determinant is a square
array of elements expressed by 4

|[al| = |[ay] e (A1)
where the straight vertical bars, | |, on each side of the array denote the determinant
The resulting determinant of an array will be a single numerical value when the
array is evaluated. v k.

To evaluate the determinant of [a], we must first determine the ofact
The cofactors of [ay] ate given by vimy ok e

2 Cy = (~1)"/|a)

where the ‘mg@tix" [d], called the first minor of lay], is matrix [a] with row i : I
deleted. The inverse of matrix [a] is then given by

a‘l—ﬂr
=

where [C] is the cofactor matrix and
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Using EQ. (A.3.2), we find that the cofactors of matrix [a] are

-4 2
4 1

C|2==(°1)“22 2 =-2

0 2y @mh‘%mlﬁg' . (A.3.5)
e %Hﬂl: ;l‘f‘

Ch= (--l)“'l =-12

T &
ot 6 Vo basnd b e

' ~unmsdl it~

s e o8
yrotfnosg ¥

t sl o

o
i

‘_! --| |
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810 A A Matrix Algebra

We can then check that
I 0 0
ala) "~ fo 1 0
0O 0 ]
The transpose of the cofactor matnx s often defined as the adjoint matrix; thy,

adj [l l(‘]’

l‘)

Iherefore, an alternative equation for the inverse of [a| is
[U] | de [UJ (

An important property associated with the determinant of a matrix is that if the deter
minant of a matrix is zero— that is, |[a]| = 0—then the matrix is said to be A
singular matrix does not have an inverse. The stiffness matrices used in the finite .

ment method are singular until sufficient boundary conditions (support .
are applied. This characteristic of the stiffness matrix'is further discussed in the ‘m_}

A A4 Inverse of a Matrix by Row Reduction A

The inverse of a nonsingular square matrix [a] can be found by the method of roy
reduction (sometimes called the Gauss—Jordan method ) by performing idens;
simultaneous operations on the matrix [a] and the identity matrix (1] (of the same
order as [a]) such that the matrix [a] becomes an identity matrix and the original ideg.
tity matrix becomes the inverse of [a].

A numerical example will best illustrate the procedure. We begin by converting

L9

matrix [g] to an upper triangular form by setting all elements below the main diagonal

equal to zero, starting with the first column and continuing with succeeding columas
We then proceed froq; Qie last column to the first, setting all elements above the

maindiagonalﬁqwitbz‘;"o.
We will qu the following matrix by row reduction.
2)2f)
N dal =il 202 doo@
] fopss
To find [a]™', we need to find [¥] such that [a][x] = [I], where
xl; X12 X3
X = | X X2 x
B TR
: 7 28 100
: Thatls.,solve '2 r[xja‘o 1 0
} 1 177 0 0 1

Scanned by CamScanner



Mlnveueofamamxbym | & i

We begin by writing [q]

and (] side by side as

where the vertical dashed line separates [al
L. Divide the first row of Eq. (‘A§4.2) b;,z. )
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812 A a Matrix Algebra

7. Subtract the second row of Eq. (A.4.8) from the first row.

0O 1 ¢
TR R (Adg)
The replacement of [a] by the inverse Matrix is now complet The i ; :
the right side of Eq. (A.4.9); that s, picte. The inverse of @] is they,
1 -1 1 1
o735 | E 28k g (A4.10)
o
For additional information regarding matrix algebra, consult References [1]
and [2].
A A5 Properties of Stiffness Matrices A

Stiffness matrix [k] is defined in Chapter 2 as relating nodal forces to nodal displace.-
ments. The stiffness matrix is also seen (for instance) in the strain €nergy expressions
for springs, Eq. (2.6.20), for bars, Eq. (3.10.28b) and for beams, Eq. (4.7.21). The
matrix has the properties of being square and symmetric, as defined in Sections A |
and A.2, for nearly all applications in this textbook except for the mass transport
problem in Section 13.9,

In the strain energy expression, we see [k] in the quadratic form

U= %—{d}T[k]{d} (AS1)

For most structures, the stiffness matrix I8 a positive definite matrix. That means
if arbitrary displacement vectors are chosen, and we calculate U/ , the result is a posi-
tive value. The exception to this is the trivial case where the displacement vector {d)
is set to zero. Therefore, for any arbitrary displacements of a multi-degree-of-freedom
system from its undeformed configuration, the strain energy is positive. e

The exception to [k] being positive definite is when a system has ngld-bot:iy
degrees of freedom. Then the displacement is taken as a rigid-body mode. In r:
case, (k] is called a positive semidefinite matrix. The strain energy U then can b;'zlfcn
for rigid-body modes or greater than zero when we have deforma_ble modes. o
[k] is positive semidefinite, |[k]| = det([k]) = 0. Recall, from Section A.3, a ma ;
whose determinant is zero is called a singular matrix. To phyana_lly remove the Slllllg:
larity in a system in static equilibrium, sufficient boundary conditions must be applied-

is concept is further described in Chapter 2. it ‘
ey Clg or iﬁstance, consider a bar with no supports as shown in Figure A—?.m
bar is discretized into two elements and the 3 x 3 stiffness matrix of the bar ‘lsa.nt A
mined as described in Chapter 2 and as shown' by Eq. (A.5.2), the det«':rml'llll w1
this stiffness matrix, Eq. (A.5.3), is zero. Now if we fix one end of the bar,
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Problems A 813

F_"’“| F‘_*-
s F— 4,
M X
. 3 AE
Figure A

- Two‘*'ement bar

up =0, the reduce

d 2 x 2 g .
Problem A.12,) ness matrix has 4 nonzero determinant. (Also see

1 _] 0
k=4E|_
g I S (A.5.2)

Ll R
Now the determinant of [k] is \
1 p—— H . ; ) CW

Y References
e

=",
(1] Gere, J. M., Matrix
[2] Jennings, A, Matrix

= Problems 4
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814 A A Matrix Algebra

A3 Determine (D] ' by the cofactor method,
A4 Determine [C] ', |

A5 Determine [B] ' by row reduction. it pramie ow?  Colie
.

A6 Determine [D] ' by row reduction.
bR wemnitiend o S inaswhers

A.7 Show that ([A][B])T = [B)7[4)" by using (AL
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Dynamic Analysis Using
Finite Elements

4

6.1 Introduction

So far we have discussed situations where the external excitation as well as the responge of
the system were time invariant. However, in many practical situations, such “steady-stare”
conditions are reached after a period of time in which the external disturbances cayse the
System response to fluctuate with time (“transient” period). For example, when a ceajy
temperature boundary condition is suddenly prescribed, thermal transients are set up in the
system. The specific heat of the material is the property that resists variation of temperature
with time and needs to be accounted for. In a vibrating system, the acceleration ang
deceleration of the structural parts are resisted by the inertia of the system and certain
dissipative forces are also developed (such as viscous friction proportional to the velocity of

the moving parts).
When analysing such unsteady state or transient dynamic problems,, we are interested in

finding the response of the system (i.e., temperature, displacement, etc.) as a function of time
given the external disturbances. In this chapter we discuss the formulation and solution of such
problems using the finite element method. We will first discuss the vibration problems and then
transient heat transfer problems. We can develop the formulation using the govemning
differential equations (as in Chapter 2) or using certain energy principle (as in Chapter 3), and
we will show that the formulation follows on very similar lines. The additional terms in the
governing equations due to inertia, dissipation, specific heat, etc. lead to very interesting aqd
often complex behaviour of the system. We will analyse the solution of the equations If
considerable detail.

6.2 Vibration Problems

When a structure is excited by forces which vary with time, the response of the structure ¥
also time varying, and inertia/dissipation properties of the structure affect the response. AS g
will be discussing in this chapter, a complete dynamic response analysis is usually much mor:
complex than a static (time invariant) analysis. Thus it is useful to assess the need for

232
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analysls__when the excitation ffm'es
iY“aml uasi-static, and a static analysis ig

g1 jation 1 less than about one-third the o .\ If the hi ‘
v 6t’|‘1r 2 static analysis is usually assumed 1o M‘ W om
i This can be argued from the typical reg 'ﬂl A -u-

gitatio” (Figure (GHSIESY magmfi@mm m MF). (i.  /

onse is More than the static response), is
Vi) il
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234 Dynamic Analysis Using Finite Elements — \

We need to distinguish two types of dynamic anzﬁ:ilysis problems, called the
n Figure 6.3. In the wave propaga:ve
10

propagation and structural dynamics problems depicted-l g
problems, the excitation is usually an impact or blast force usually lasting for a fractiop, of
q

second or so. The entire structure does not instantaneously know l‘hal it has been hijt, The ¢
scales involved are comparable to the time taken for this informatn_on to traverse (i.e, the .

wave to propagate at the speed of sound in the medium) the entire structure. Crash ana| £
of a car shown in Figure 6.3(a) is a typical problem of this type. Impact analysis of , mis):';;s
on a target structure is another typical wave propagation problem. In the structural dynam;e
type of problems, the entire structure simultaneously participates in the response, and the y; P
scales involved are often several seconds. An automotive crank shaft vibration shown“;e
Figure 6.3(b) is a typical problem of this type. A typical earthquake excitation Comain:
frequencies up to, say 25 Hz, and is essentially a low frequency structural dynamic problem,

So also the problem of response of off-shore structures to-wave loading.

% ' (a) Automobile crash

U\

(b ﬂ %
e ) Crank shaf vibration o
6.3 Type i
Pes of dynamje Problems. §
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ﬂ» s P! ubjected to some in
_fJ" o ‘branon (1.e. reSp(m&e
e ; cigenvalue problems w

&
‘»46“‘ he structure. It is m

"“ 0 o5 (10 be isolated from op

ﬂ“emd \1brfmon problems |

0% cntlcal dampl :
jords, we can 1gno!

pclude damping
Finite eleme
satic equations d

weak form equatic
| 10 derive the fi
elements.

in this book will
oufd oblems: We will anal:f
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236 Dynamic Analysis Using Finite Elements | |
The Weighted-Residual (WR) statement can be written as

L d*u 5
Z - 4 pAoU |dx = 0
_|'o W(x)(AE ey )

L2

Integrating by parts, the weak form of the WR statement can be rewritten as

We observe that the first two terms are ider
term involving the mass density (inertia) effe

We will now develop the nece
element (Figure 6.4), we have two
interpolation functions are gi

= A Il‘ &0

(IT N, ESEE S
sl 10 ol 1
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Wc (" . )

We have designated the elem

Citel

We now designate the eler

SR

Y

We observ
of the element.
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238 Dynamic Analysis Using Finite Elements \

a4 azv -
El—% + PASH

suming harmonic vibration,
Using the technique of se paration of variables and as g

Voo = Ve

Substituting in Eq. (6.19), we obtain

4
El%—‘:— - pAw’V =0
X

The WR statement can be written as

j W(x)[mf;;‘i - pAw’V] dx = °

On integrating by parts, we obtain il 4 1
d*v dW
[W(x)EI—] I L [ Nbvw)

Once again performing integration by parts, w

. A
- J.o pAa)2 x)V(x

For a typical Euler-Be 1

R S - T et Iu“l 193

o ok mm W

b (PR

v n'h..-;l :
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240 Dynamic Analysis Using Finite Elements

; 2 3 3x2 2 3
¢ ¢ —x X _ 33X X
J-o PAW, (0)V(x)dx = J-() ——{,— + ?{JPA{(I 7 + -ZT]‘,;

\
_ PALT 130y — 3626 - 220V, + 42
= Eo_[ 13¢V, - 36%6, , +40%,]

(6.39)
matrifz;vriting the terms in matrix form, we obtain the Euler—Bernoulli beam elemen -
[ 156 Symmetric |
 par| 220 4¢°
" 54 13¢ 156 - (63
13 B2 22 42| Re

We observe that the coefficients of the mass matrix corresponding to translational do
-3 4

420
If we need to write the mass matrix for a plane frame element, we can
element and beam element mass matrices in just the same way as we combined
matrices in Section 4.6.
We have illustrated the formulation of finite element equations starting f

differential equations. We shall now illustrate an energy based approach t
equations of motion.

: Al :
(V]Z. P (156+54+54+156)) sum up to pA¢, the mass of the element. A

6.4 Equations of Motion Using Lagrange’s App i

The equations of motion [e.g. Eqs. (6.4) and (6.19)] for the axial moti
transverse motion of a beam, can be readily derived based on Newton’s Sec:
Magy a time it is convenient to use an energy based method and La
motion are commonly used. If T represents the kinetic energy of a systen

%
X

*Excellent discussions of the theo i 5 1 _ : L TR
ry behind Lagrange's le in
as Elements of Vibration Analysis grange s equations of motion are availss

A ) 2nd Cd,, by 1L, Meiro itch Rir Yi l'k. 19
Dynamics by D.A. Wells, Schaum Series, McGraw-Hill\,“Ifle;/h&o?lzav:;é!}.] O
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Dynamic Analysis Using Finite Elements
ituti ‘ i ired equati
Substituting from Eq. (6.35) in Eq. (6.32), we obtain the requ quations of Motigy E
mA, o+ Ay b Rylay = Xg) | )
mydy 4 Ay o ky xy) = W) (6'36)

or, in matrix form,

R AR A
[ A, (ky + k|22 0 my|l% I5(1) Jﬂl;::-h)

6.4.1 Formulation of Finite Element Equations C AN
Using our standard shape functions, for a typical finite element, the diw]mw
point can be written, in terms of the nodal d.o.f., as Srenor

{d} = [N|{ 8}
Differentiating with time, the velocity at the point is given by
(d) = [NI{9)*

where we have used the fact that the shape functions are only functions of spz
and are therefqre ime-invariant, and {0} represents nodal velocities.
For the simple truss element, | - il hl

) 4

e L 2N 2 i
' le ]. aw “.\ !|_
{d} =u=|| (4L
7ol

_x)=x
e )

i;;yﬁﬁﬁg _ };—1‘!1.*1 | , j"‘-"
33 . ‘““ 3 ‘
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For a two-dimensional elemen, each
:

point .
can have i and y displacements and, therefore,

r '
i,

V
< v '
{d) {v} = [N}{u, | (6.44)

: B A
, "f‘ f’lﬂi”"i (0 R e 16 14 1

For the whole ele : ui
follows:

Since nodal point
‘a0 be taken out of the

8

rchay
G
iy

T

NIV |
v

Where [m) = ( 7 ,
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244 Dynamic Analysis Using Finite Elements e

For the whole body (i.e. mesh of finite elements), we have

NOELEM

T = Z /i (6.51)

where “NOELEM” is the number of elements. ‘ .
The total potential energy of the system has already been obtained in Chapter § and jg

reproduced here from Eq. (5.105-5.100):

NOELEM

1 el e e e’ €
o, = 2 (5{5} [k1°{6)° - {0} {f }) (6.52)

1

Interpreting the summation over all the elements as per standard assembly of finite
elements, we can write

T - %{ﬂT[M]{& (653

AL %w[m{a} = {6V (F) (6:54)

where {J} and {§}contain the displacement and velocities for all the nodes of the entire

structure; [k] and [M] are the assembled global stiffness and mass matrices; and {F} is the
assembled global nodal force vector.

The required derivatives

oT aT oT
— =0, = [M] ) =
30) EE) {8}, (8{5}] [M1{0} (6.55)
can be employed for further use in Lagrange’s equations,
o
3 - K18 - (R (636)
Substituting in Lagrange’s equations of motion, we obtain
. [M){S} + (K1} - (F} = {0) L
MI{8} + [K)(S) = (F) (6.59)

where the global mass matrix, stiffness m
usual assembly of individual element level
already been dealt with in the previous ch

atrix and force vectors are obtained following the
matrices. The stiffness matrix and force vectors h"”

matrix, the mass matrix in Eq. (6.58) is a

: consistent mass matrix.
for a few elements are discussed in the The consistent mass

following section. |1‘I. -
t '; '
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Equations of Motion Using Lagrange's AEFLOE‘:_"._—————’

; 42 Consistent Mass Matrices for Various Elements

par element

p— |
¢ — e J g t e 8 g
' = [ANTINIESEERE " T[(“?IZ)]M
¢
(6.59)
_ pae|? ]
Rl ]

sl Salg.

This equation is the same as that given by Eq. (6.16) which was obtained u&itﬁw‘k :

v bo i eivnake - Aihd . .
Beam element PN — Q

where the shape functions /

After perfomu{ll% a

¥ -
which is the same ¢

e
Two-dimensional el
In general, it is te
using

For example, fo
Even if we
are performec
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\) g ) )
NTTIN] type of terms. The terms i, the

f.t MUSt be observed that those integrals i"‘;‘)’]lvere[ of the type (B1"[D1[B], :vhere coefficieny,
‘ntegrals for a stiffness matrix [see Eq. (5.103)] are | ree polynomial term in the g

in [B] are Spatial derivatives Of[[N]. Therefore, the hlghestt ?;gstiffr;ess matrix. T oy
matrix expression is always of a degree higher than tha.) - te rule must be carefully Wity
rule of Gauss quadrature may not be adequate, and an approp '

: ices
6.5 Consistent and Lumped Mass Matr |
s matrices since we used the sam,

i nas
The mass matrices derived above are termed cons:s.tenrt1 ’wever possible to longs B e
shape functions as for their stiffness matrices. It is, (; ass, el reprcscntation"msmh
the entire element at its nodes and come up with a lumped-m - DU

in Figure 6.7.
an intuitive lumping is depicted for bar and beam elements in Fig

ing for bar and beam elements.

ing lumped mass matrices can be written as

1_-.

- ’
= for a bar element
0o PAL }
i 2.0
A : '
S 0
5 0 o
g 07 0" 9
f ment
o PAl or a beam element
o ()
2
0 o 0
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prom the beam element Jymneq
mass .
s 1y mulrl

ed rotary inertia to the n ~
lum . : . ()deS. 'Fh
 atrix which s : ¢ Mass i
gss matrl’ t;; computationally vu-d‘\h lumping at the noq
' / e . C H P > °8 as i
sibration problems are typicall _Y ddv.mlzlgcnus, The )_(' es has resulted in a diagonal
Y iterative (see Se (' > eigenvalue problem solvers for
wection 6 g) a ,A {
.8) and dynamic res
sponse

frec : .
iions involve time marchi

aleuld arching sche ‘

1 ence ore computationalls imfmi:ltmcs With small increments i

reseafCherS have proposed Cffiden{ €. Thus a diagonal mass €nts in time Ar (see Section 6.9),

the intuitive, ad hoc lumping above S\i/hemes to arrive at t};e Edmxd\m“ EERAC. Sl s 0

g . We will bri mped mass matrix rz

i many finite element calculations I briefly describe one such schem v r‘:lher i

. ‘ ' e, popularly used

('()” '
y "'-”l’”,
nd IUN',) d
i e M(ls" M 1 ’
Ll atrices 24

' c
X, we observe S dn
rve that we have a signe 0

65.1 HRZ Lumping Scheme

The essential idea in this scheme i :

mass matrix but to scale them in 1:ut(:)hsmply use only the diagonal elements of the consistent

For example; for the bar element 3 way that the total mass of the clement,is Pfese;‘led
, the HRZ lumped mass matrix can be written as :

. Aell 0
[m® Jyrz = _,q_[ ] (6.65)

24y

with reference .to the beam element lumped mass matrix, we first write the diagonal
ments of the consistent mass matrix (Eq. 6.31) as follows:

fisa?0 0 O]
pat| O 42 0 0

[ Jaiss. = 420/ 6.66
" 4200 0 156 0 o)

S 0. 0 AL

L

o W —

g all the diagonal

PAL (156 + 156)
420

ment is pAL, the scaling factor is %?23 We scale

repmsznted in this model) i obtained by summin

d.o.f. in one directio

The total mass (as
n. Thus we get

elements corresponding to translational

312
= Jop PAC. Sines the total mass of the ele
all the diagonal clements with this scale factor tO generate the HRZ Jumped mass matrix for
d beam as
s O Y
-» o %18 0 0 (667
[m* Tz =pALl, o v2 0
/L()Oﬂ
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. can be readily applied ¢,
. Simple intuitive lumping and HRZ lumping SChT;nn:nt. the HRZ massdisu'ilmﬁmt:i:
dfme“Sl'Onal elements also. For example, for the Quad§ e Sa
Yield the mags lumping at the nodes as shown in Figure 6.8.

m 8m
36 36
Fig. 6.8 HRz lumped mass matrix for Quad8 element on

We will now solve a

few simple free vibration pfoble ns. In the following example, we

compare the first few natura] frequencies obtained using both consistent Cﬁk%
martrices.
|

V 4

ion bar (Figure 6.9) of length L r -
re given by E and p. Estimate ¢
th consistent and lumped mass matri

'-‘ dary condition gt node 1 (u; = 0), we have
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The exact solution fo

1.571 /Elp. Thus w

matrix underestimates
If we now use

results with lumped

Results with l

The assembled equ

Consistent ang Lumped Mass Matrices 249

(6.70)

(6.71)

~ [(22) 6.72)
B P ey By ol ;
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L2
where 4 = P&

1.€.
2-4 - {“2} - {O}
[ -] l_(ﬂz) Hy 0 (6.76)
4E

For a nontrivial solution, we have

>

2- —;
4 . = 0 yielding 4; = 0.586, A, = 3414
-1 1-(A4/2)
Thus the natural frequencies are \
1531 " E -
a“ - L p ’ wz .

Results with consistent mass matrix N

Using consistent mass matrices, we obtain

2.1 O]
P2 11 4 1|
o 1 2l

-1-4 ‘ _,n*ti.mli;l

: 104 iben ol iy
Ay R
ve get 4y = 0.108 and 4, = 1.32. Thus the na
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ﬂ,us.
T |E

W = — |[—, n |E
N @ = ‘
LY p : 2\ p a, = 5”\/5, (6.83)

We observe that the given rod is a continuo

g us L
therefore infinitely many natural frequencies S System and hence has infinitely many d.o.f.

Our finite el :
. endent d.o.f. . element model with one element has
g one indep , and that with two elements has just two independent d.o.f. Thus

, ict only one o .

e a1 pre;jcltcively );\S = rert‘ltnvzothnatural fr.equencnes, for the one-element and two-element

» ,-etsl;: o .and g € mesh with more and more finite elements, we will actually

, admitting i 0.1, and‘ therefore, predict higher natural frequencies also. The
cy of predicte natural frequencies also improves.

Table 6.1 SPOWS’ for the axial vibrations of a rod, the predicted natural frequencies as we
ne the mesh.

Table 6.1 Natural Frequencies of a Fixed-free Bar
(L=1m, E=2x 10" N/m?, p = 7800 kg/m®, A = 30 x 10 m?)

A —io. of elements 1 2 3 4 8 16 Exact
Mode

1 1140.0 12340 1252.0 1258.0 1264.0 1265.0
1396.0 1299.0 1280.0 1274.0 1268.0 1266.0 1265.9
2078.0 34200 3582.0 3743.0 3784.0
4537.0 4188.0 4019.0 3853.0 3812.0 3797.8
4670.0 5366.0 6078.0 6266.0
7597.0 7301.0 6586.0 6393.0 6329.6
6319.0 8180.0 8688.0
R N 10,560.0 9563.0 9037.0 8861.5
& AN 10,000.0 11,030.0
N 12,850.0 11,7700  11,393.3

ch case, the upper row indicates the frequencies obtained with lumped mass and the lower
 the frequencies obtained with consistent mass matrices. We observe that typically these

Provide the lower and upper bounds on the frequencies and the exact frequency is in
een. It is conceivable that a mass matrix [m] which is an average of the two can provide

ler accuracy than either of them!

mple 6.3. Consider the simply supported beam, showon in Figure 6..11.‘ Let the length
Om, E =2 x 10" N/m% area of cross-section, =30 cm; momen} of n?erua I = 100 mm*;
ty p = 7800 kglm3 We will obtain the first five natural frequencne's using the three types
' - viz-., Aauplend umped, HRZ lumped, and consistent mass matrices.

6.2 gives the results.

- ion Analysis, 2nd ed., McGraw-Hill, New York,
 example, L. Meirovitch, Elements of Vibrghion AnALY rk, 1986.
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T R e e ——

X 5,

mple 6.3).

Fig. 6.11 Simply supported beam (Exa

Table 6.2 Natural Frequencies (Hz) of a Simply Supported Beam

(For each mode, the first row gives the results obtained with simple lumping,

the second row with HRZ lumping, and the third row with consistent mass matrix.)
e —

\w of elements 2 3 4 8 Exact
Mode i .

1 14.42 14.52 14.52 14.52
14.21 14.46 14.51 14.52 1452
14.58 14.53 14.52 14.52
2 57.67 58.07 58.09
104.3 56.84 57.84 58.03 58.11
64.47 58.32 58.11 58.09
3 122.4 130.5 130.7
149.2 120.2 129.3 130.4 130.75
162.1 133.1 130.9 130.7
4 230.7 232.3
180.0 416.2 227.4 231.4 23245
295.5 257.9 233.3 232.4
5 354.7 362.8
4813 348.0 360.6 363.20
409.9 366.4 363.3

We observe that the simple lumped mass matrix assigns zero rotary inertia, and hence has
fewer nonzero mass matrix elements. Therefore, it predicts fewer natural frequencies of the
system. The HRZ lumping scheme corrects this by assigning appropriate rotational inertia at the
nodes and accurately predicts as many frequencies as the full consistent mass matrix. A good
mass lumping scheme, e.g. the HRZ scheme, is computationally advantageous, excellent in
accuracy and is, therefore, popularly used. ,

The exact mode shapes for the simply supported beam are given by

2 . inmx
VI(X) = — 8 _ | = .84
VpaL " i SRI20I (634

The fifth mode shape, for example, is plotted in Figure 6.12. Within each beam element.

we recall that the interpolation functions used permit cubic variation Thus, even with eight

elements, our approximation to the mode shape is inaccurate and we commit approximately
4% erar in the natural frequency using the HRZ lumped mass. The anticipatedmmmd& ~shape

vis-a-vis the individual element shape/inte i - mind
. Py rpolation fuy e
while deciding the fineness of finjte element mesh re;]sit:;’(rilsf (;Irlu;;n::‘l:u?;s b:,bbm in
ics problems.
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g » finite element noda i .
If the beam is modelled with four beam ¢lements, then the f1 Pointg wil|
vibrate as shown in the following equation:
V 0
0, |
v, 0.707
0, 0.707
Va 1 »
Wy =4 =
| 9} 0
Ve 0.707 (6.89)
0, -0.707
v 0
| 0s L =3

The “mode shape” only indicates the relative amplitudes of vibration (viz., overall sha
of vibration) and may readily be “scaled” to any amplitude. Thus we could write {U,} assuming
v3 = 10 units, and all the d.o.f. will be also scaled by the same factor. Thus there is no unique
amplitude of free vibration. There are certain commonly accepted norms for scaling, which we
will discuss later on.

Another way of interpreting the natural frequency and mode shape is that, if the structure
were given an initial displacement to all its d.o.f. according to the relative amplitudes given in
the mode shape, and left free to vibrate on its own, it will vibrate at the natural frequency @
always maintaining these relative amplitudes.

Since the finite element mesh of the structure has

“n” d.o.f., our model would yield n
pairs of natural frequency

@ and mode shape (U} (i = 1, 2, ..., n). It is to be appreciated
that the structure, being a continuous system, has infinitely many d.o.f., and hence infinitely

many natural frequencies and mode shapes. Thus it is expected that our finite element model
will become more and more accurate as we refine the mesh. The

. general form of the goveming
equations for the undamped free vibration is given by
[K],,x,,{Ui}md = wleM]nxn{Ui}nxl (6.90)
We may rewrite Eq. (6.90) as
. MKW, = 0?u,) 691
i
ANV = A, i
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