
Unit 2 

TIME RESPONSE ANALYSIS 

PART-A 

1. What is an order of a system? APRIL/MAY 2011, Nov/Dec 2017 

The order of a system is the order of the differential equation governing the system. The order of the 

system can be obtained from the transfer function of the given system. 

2. Define type number of the system   Nov/Dec 2017 

The type number of the system is defined as number of poles which lies on the origin of the complex plane. 

3. What is step signal? 

The step signal is a signal whose value changes from zero A at t=0 and remains constant at A for  t>0.  

 

4. What is ramp signal? 

The ramp signal is a signal whose value increases linearly with time from an initial value of zero at t=0. 

The ramp signal resembles a constant velocity. 

 

5. State some standard signals used in time domain analysis      Nov’15, APRIL /MAY’11&16, Nov/Dec 2018 

Step signal, Ramp signal, Parabolic signal and sinusoidal signal 

 

6. What is transient response? 

The transient response is the response of the system when the system changes from one state to another. 

 

7. What is steady state response? 

The steady state response is the response of the system when it approached infinity. 

 

8. Define damping ratio. April/May 2019 

Damping ratio is defined as the ratio of actual damping to critical damping. 

 

9. List the time domain specifications  May/June 2016, NOV/DEC 2016 

The time domain specifications are  

i) Delay time 

ii) Rise time 

iii) Peak time 

iv) Peak overshoot 

v) Setting time 

10. What is damped frequency of oscillation? 

In under damped system the response is damped oscillatory. The frequency of damped oscillation is given 

by 2

d n 1      

11. What will be the nature of response of second order system with different types of damping? 

 For undamped system the response is oscillatory. 

 For under damped system the response is damped oscillatory. 

 For critically damped system the response is exponentially rising. 

 For over damped system the response is exponentially rising but the rise time will be very large 

. 

12. Define delay time. 

The time taken from for response to reach 50% of final value for the very first time is delay time. 

 

13. Define rise time       April / May 2010 

The time taken for response to raise from 0% to 100% for the very first time is rise time. 

 



14. Define peak time. 

The time taken for the response to reach the peak value for the first time is peak time. 

 

15. Define peak overshoot. Nov/ Dec 2010, April/May 2017 

Peak overshoot is defined as the ratio of maximum peak value measured from the Maximum value to final 

value. 

 

16. Define setting time. Nov/Dec 2018 

Setting time is defined as the time taken by the response to reach and stay within specified error. 

 

17. What is the need for a controller? 

The controller is provided to modify the error signal for better control action. 

 

18. What are the different types of controllers? 

The different types of the controller are  

 Proportional controller 

 PI controller 

 PD controller 

 PID controller 

19. What is proportional controller? 

It is device that produce a control signal which is proportional to the input error signal. 

 

20. What is PI Controller? 

It is device that produce a control signal consisting of two terms-one proportional to error signal and the 

other proportional to the integral of error signal. 

 

21. What is PD Controller? 

PD controller is a proportional plus derivative controller which produces an output signal consisting of two 

terms – one proportional to error signal and other proportional to the derivative of the signal. 

 

22. What is the significance of integral controller and derivative controller in a PID controller? 

The proportional controller stabilizes the gain but produces a steady state error. The integral control 

reduces or eliminated the steady state error. 

 

23. Define Steady state error. 

The steady state error is the value of error signal e(t) when t tends to infinity. 

 

24. What is the drawback of static coefficients? 

The main drawback of static coefficient is that it does not show the variation of error with time and input 

should be standard input. 

 

25. What are the three constants associated with a steady state error? 

The three steady state errors constant are 

 Positional error constant Kp 

 Velocity error constant Kv 

 Acceleration error constant Ka 

26. What are the main advantages of generalized error co-efficients? 

i) Steady state is function of time 

ii) Steady state can be determined from any type of input 

 

27. What are the effects of adding a zero to a system? 

Adding a zero to a system results in pronounced early peak to system  response thereby the peak overshoot 

increases appreciable. 



 

28. Why derivative controller is not used in control system? 

The derivative controller produces a control action based on rate of change of error signal and it does not 

produce corrective measures for any constant error. Hence derivative controller is not used in control 

system. 

 

29. What is the effect of PI controller on the system  performance?   Nov/Dec 2019, April/May 2017, May/June 

2016 

The PI Controller increases the order of the system by one, which results in reducing the steady state error. 

But the system because less stable than the original system. 

 

30. What is the effect of PD Controller of system performance? April/May 2017 

The effect of PD controller is to increase the damping ratio of the system and so the peak overshoot is 

reduced. 

31. What are the root loci? 

 The path taken by the root of the open loop transfer function when the loop gain is varied from 0 to infinity 

are called root loci. 

32. What is the dominant pole?     (NOV/DEC 2015, 2016) 

  The dominant pole is a pair of conjugate pole which decides the transient response of the system. In higher 

order system the dominant poles are very close to origin and all other poles of the system are widely separated and 

so they have less effect on transient response of the system. 

33. What are the main significance of root locus? 

i. The root locus technique is used for stability analysis. 

ii. Using root locus techniques the range of value of K, for as stable system can be determined. 

 

34. What are the breakaway point are break in points? 

 At break away point the root locus break from the real axis to enter into the complex plane. At break in 

point the root locus enters the real axis from then complex plane. To find the breakaway or break in points, from  

a equation for K from the characteristic equation and differentiate the equation of K with respect to s. Then find the 

roots of  the equations dK/dS = 0. The root of dK/dS = 0 are breakaway or break in points provided for this value of 

root the gain K should be positive and real. 

 

35. What are asymptotes? How will you find angle of asymptotes? 

 Asymptotes are the straight line which are parallel to root locus going to infinity and meet the root locus at 

infinity. 

Angle of asymptotes = 
 180 2q 1

q 0,1,2,3,....n m
n m

 
  


  

 N= number of poles 

 M = number of zeroes. 



36. What is the centriod? 

 The meeting point of the asymptotes with the real axis is called centroid. The centroid is given by Centroid 

= (sum of the poles-sum of the zeros)/n-m 

 N= number of poles 

 M = number of zeroes. 

37. What is magnitude criterion? 

 The magnitude criterion states that s = sa will be a point on root locus if for that value of s, magnitude of 

G(s)H(s) is equal to 1. 

     a

a
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
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38. What is angle criterion?  

 The angle  criterion states that s = sa will be a point on root locus if for that value of  s, the argument or 

phase of G(s)H(s) is equal to an odd multiple 180   . 

     a asumof theangleof vectorsfromzeros to thepoint s s sumof theangleof vectorsfrompoles to thepoint s s 180 2q 1      
  

39. How will you find the root locus on real axis?   (MAY/JUNE 2016) 

 To find the root locus on real axis choose the test point on real axis to the right of this test point is odd 

number then the test point lie on the root locus. If it is even the test point does not lie on the root locus. 

 

Part – B & C QUESTIONS AND ANSWERS 

1. Derive the time response analysis of a first order system for (i) Unit step input (ii) Unit ramp (iii) impulse input 

(i) For Unit step input 

The closed loop transfer function of first order system  
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(ii) For Ramp input 

The closed loop transfer function of first order system, 
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(iii) For impulse input 

The closed loop transfer function of first order system, 

If the input impuse, then r(t)=δ(t) and R(s)=1 
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2. Discuss briefly about step response analysis second order system 

The closed loop second order system is shown in fig. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The standard form of closed loop transfer function of second order system is given by 
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Depending on the value of   , the second order system is classified into 4 types. 

1. Undamped system :  =0 

2. Underdamped system: 0<  <1 

3. Critically damped system:  =1 

4. Overdamped system:  >1 
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3. Response of undamped second order system for unit step input  Nov/Dec 2019, April/May 

2017 
The standard form of closed loop transfer function of second order system is, 
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The response of undamped second order system for unit step input is completely oscillatory. 

 

4. Response of under damped second order  system for unit step input. (Nov/Dec 2018) 

 The standard form of closed loop transfer function of second order system is  
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By partial fraction expansion 
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The response of under damped second order system for unit step input oscillator before setting to a final value. 

    

 

 

 

 

3. Response of critically damped second order system for unit step input 

The standard form of closed loop transfer function of second order system is  
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The response of critically damped closed loop second order system for unit step input, has no oscillations. 

4.Response of overdamped second order system for unit step input. 

 The standard form of closed loop transfer function of second order system is  
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The response of over damped closed loop system or unit step input has no oscillations, but it takes longer time for 

the response to reach the final steady value. 

 

 

5. What are the time domain specifications? Define them 

Time domain specifications 

The transient response characteristics of a control system to a unit step input is specified in terms of the following 

time domain specifications 

1. Delay time(td) 

2. Rise time (tr) 

3. Peak time (tp) 

4. Maximum overshoot (Mp) 

5. Settling time (ts) 

6. Steady state error (ess) 

 Delay time(td) is the time required to reach at 50% of its final value by a time response signal during its 

first cycle of oscillation. 



 Rise time (tr) is the time required to reach at final value by a under damped time response signal during its 

first cycle of oscillation. If the signal is over damped then rise time is counted as the time required by the 

response to rise form 10% to 90% of its final value. 

 Peak time (tp) is simply the time required by response to reach its first peak i.e the peak of first cycle of 

oscillation, or first overshoot. 

 Maximum overshoot (Mp) is straight way difference between the magnitude of the highest peak of time 

response and magnitude of its steady state. Maximum overshoot is expressed in terms of percentage of 

steady-state value of the response. As the first peak of response is normally maximum in magnitude, 

maximum overshoot is simply normalized difference between first peak and steady- state value of a 

response. 

 Settling time (ts): Time required for a response to become steady. It is defined as the time required by the 

response to reach and steady within specified range of 2% to 5% of its final value. 

 Steady state error (ess) is the difference between actual output and desired output at the infinite range of 

time 

 

6. Derive the expressions for time domain specifications of a second order system subjected to a step input  

           (April/May 2019) 

Expression for Rise time tr 

   

Transient response of  second order system is given by  
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Expression for Peak time tp: 

Transient response of  second order system is given by  
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As at t=tp, c(t) will achieve its maxima, according  to Maxima theorem. 

pt t

dc(t)
0

dt 
    

So differentiating c(t) w.r.t t, we can write  
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 tan (nπ +θ ) = tan θ 

 
d t = nπ where n = 1,2,3 

But tp and required for first peak overshoot n=1 
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Expression for maximum peak overshoot(%Mp) 
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Expression for setting time ts 

The setting time ts is the required by the output to settle down within 2% of tolerance band. So,  ts is the time 

when output becomes 98% of its final value and remains within the range of 2  %  

 
sc(t) at (t=t ) 0.98   

Now at t= ts, the transient oscillatory term completely vanishes. The only term which controls the amplitude 

of the output within 2% . Hence value of  ts is obtained considering only exponentially decaying envelope, 

neglecting all other terms. 

 c(t) at (t=ts)=1- n ste
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 0.98=1- n ste
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In practice the settling time is assumed to be  
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7. Discuss the effects of P, PI, PD and PID Controllers         Nov/Dec 2015, May/June 2016, Nov/Dec 2016,  

                                  Nov/Dec 2019 

Controllers: A Controller is a device introduced in the system to modify the error signal and to produce a control 

signal. 

The controller modifies/improves the transient response of the system 

The different types of controllers are 

 Proportional controller(P controller) 

 Integral controller (I controller) 

 PI controller 

 PD controller 

 PID Controller 

Proportional controller (P controller) 

 The proportional controller is a device that produces a control signal, u(t) proportional to the input error 

signal e(t). 

In P-controller , u(t)  e(t) 

  U(t) = Kp.e(t)…………..(1) 
Where Kp is the proportional gain or proportional constant On taking Laplace transform to (i) 

  U(s)=KpE(s) 

  p

U(s)
K .................(2)

E(s)
   

Equation (2) is the transfer function of P controller 

 The proportional controller amplifies the error signal by amount Kp 

 The introduction of controller on the system increases the loop gain by an amount Kp 



 The increase in loop gain improves steady state tracking accuracy, disturbance signal rejection and 

relative stability and also makes system less sensitive to parameter variation. 

2
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Where   is damping ratio and 
n  is undamped natural frequency. 

For steady state response, 

p s 0 ss
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If transient response is to be improved, damping ratio must be changed. 

In general good time response demands, 

 Less settling time 

 Less overshoot 

 Less rise time 

 Smallest steady state error 

 Increasing the gain Kv to very large values, steady state error may be reduced but due to high gain, settling 

time and peak overshoot increases and this may lead to instability of the system 

 Drawback : it leads to constant steady state error 

Integral controller (I controller) 

The integral controller is a device that produces a control signal u(t) which is proportional to integral of the 

input error signal [e(t)] 

In I controller, u (t) ∝ e(t)dt   

iu(t) K e(t)dt...................(1)  

Where Ki is the integral constant  



On taking Laplace transform to (i) U(s) = i

E(s)
K

s
  

    iKU(s)
...................(2)

E(s) s
   

Eqn(2) is the transfer function of I controller 

 The integral controller removes or reduces the steady state error without need for manual reset. Hence I 

controller is called automatic reset. 

 Drawback: it may lead to oscillatory response of increasing or decreasing amplitude, which is 

undesirable and the system may become unstable. 

 

PI Controller 

The proportional plus integral controller produces an output signal consisting of two terms, one proportional to error 

signal and the other proportional to the integral of the error signal 

In PI Controller, u(t) e(t) e(t)dt      
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Equation (2) is the transfer function of PI Controller 

The advantages of both P controller and I Controller are combined in PI controller. The proportional control action 

increases the loop gain and makes the system less sensitive to variations of system parameters. 

The integral control action is adjusted by varying the integral time. The change in value of Kp affects both the 

proporational and integral parts of control action. The inverse of the integral time Ti is called the reset rate. 

 

Effects of PI Controller: 
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i.e it becomes third order. 

As order increases by one, system relatively becomes less stable as Ki must be designed in such a way that system 

will remain in stable condition. Second order system is always stable. 

Hence transient response gets affected if controller is not designed properly. While,  

For steady state response, 
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 Hence as type is increased by one, error becomes zero for ramp type of inputs, i.e., steady state of system 

gets improved and becomes more accurate in nature. 

Hence PI controller ha following effects: 

 It increases order of the system 

 It increases the TYPE of the system 

 Design of Ki must be proper to maintain stability of system. So it makes system relatively less stable. 

 Steady state error reduces tremendously for same type of inputs. 

In general PI controller improves steady state part affecting the transient part. 

PD Controller 

 The proportional plus derivative controller produces an output signal consisting of two terms: one 

proportional to error signal and the other proportional to the derivative of error signal. 

In  PD  Controller,  
d

u(t) e(t) e(t)
dt
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p p d

p d
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Where K  is the proportional gain and T  is the derivative time
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On taking Laplace transform to (i), 
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U(s) K E(s) K T sE(s)

U(s)
K (1 T s)...............(2)
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 
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Equation (2) is the transfer function of PD Controller. 

The derivative control acts on rate of change of error and not on the actual error signal. The derivative control is 

effective only during transient periods and so it does not produce corrective measures for any constant error. Hence 

the derivative controller is never used alone, but it is employed in association with proportional and integral 

controllers. 

 The derivative controller does not affect the steady state error directly but anticipates the error, initiates an 

early corrective action and tends to increase the stability of the system. 

 It amplifies noise signal and may cause a saturation effect in the actuator.  

 The derivative control action is adjusted by varying the derivative time. The change in the value of Kp 

affects both P and D parts of control action. The derivative control action is called as rate control. 

 



  

 

 

Effects of PD Controller: 
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Comparing the denominator with standard form, 
n  is same as P type controller. 
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Because of this controller, damping ratio increases by factor n dT
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For steady state response, 
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As there is no change in coefficients, error also will remain same. Hence PI controller has following effecs: 

 It increases the damping ratio 

 
n  for system remains unchanged. 

 TYPE number of the system remains unchanged. 

 It reduces peak overshoot 

 It reduces settling time 

 Steady state error remains unchanges 



In general PD controller improves transient part without affecting steady state 

PID controller 

The PID controller produces an output signal consisting of three terms: one proportional to error signal, another one 

proportional to integral of error signal and that one proportional to derivative of error signal 

In PID controller,  u(t)∝[e(t)+
d

e(t)dt e(t)]
dt

   

   U(t)=
p

p p d

i

K d
K e(t) e(t)dt K T e(t)..................(1)

T dt
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Where Kp is the proportional gain, Ti integral time and Td is the derivative time.  

On taking Laplace transform to (1), 
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Equation (2) is the transfer function of PID controller. 

 The combination of proportional control action. Integral action and derivative control action is called PID 

control. 

The proportional controller stabilizes the gain but produces a steady state error 

The integral controller reduces (or) eliminates the steady error. 

The derivative controller reduces the rate of change of error. 



  

 

 

Problems 

1. A system  has the following transfer function 

C(s) 20

R(s) s 10



  

Determine its unit impulse and unit step response with zero initial conditions. 

Sol: 

a) Unit impulse input 

For unit impulse input R(s)=1 
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b) Unit step input 

For unit step input, R(s) =1/S 

C(s) 20

R(s) s 10



 

Response in ‘s’ domain C(s)=R(s) 
20

s 10
 

 



 

1 20
C(s)

s (s 10)

A B
       = by partial fraction expansion

s s 10

A(s 10) Bs 20

comparing coefficients of s,

A+B=0 (1)

comparing constant terms

10A=20 A 2

B 2

substituting A and B

2 2
C(s)=

s s 10







  



 

  




  

Response in time domain c(t) = L
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2. Obtain the unit step response and unit impulse response of the unity feedback system having open loop 

transfer function  
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(a) Unit step input 

For unit step input, r(t) =1, R(s)=1/s 

Response in s domain C(s) = R(s) 
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A(s 2s 10) Bs Cs 10

comparing constant terms

10A=10 A 1

comparing the coefficients of s terms

2A+C=0 C 2


 

 
    

 

  

  

 

Comparing the coefficients of s
2
, 

 

A+B=0→ B 1    

2

2

2

2 2

2 2

1 s 2
C(s)

s s 2s 10

1 s 2
         

s s 2s 1 1 10

1 s 2
          =

s (s 1) 9

1 s 1 1
          =

s (s 1) 9 (s 1) 9

1 s 1 3
          =

s (s 1) 9 3((s 1) 9)


  

 


 
   



 


 
   


 
   

 

1 at

2 2

1 at

2 2

L e sin t
(s a)

s a
L e cos t

(s a)

 

 

 
    

 
    

  

Response in time domain c(t) =  1L C s      

t t

t

1
c(t) 1 e cos3t e sin 3t

3

c(t) 1 e [cos3t 0.33sin 3t]

   

  
  

b)Impulse response 

 for impulse input, R(s)=1 

 

2

2

2 2

1

2 2

t

t

10
C(s) R(s)

s 2s 10

10
C(s)

s 2s 10

10
C(s)

(s 1) 3

c(t) L C(s)

10 3
       =

3 (s 1) 3

       =3.33 e sin 3t

c(t) 3.33 e sin 3t  







 
 


 


 



 



 1 at

2 2
L e sin t

(s a)

  
    

 

3. A positional control system with velocity feedback is shown in fig. What is the response of the system for unit 

step input? 



 

Sol: 

The closed loop transfer function is  

2 2

C(s) G(s)

R(s) 1 G(s).H(s)

100
given G(s) H(s) 0.1s 1

s(s 2)

100

C(s) s(s 2)

100R(s)
1 (0.1s 1)

s(s 2)

100

s(s 2)
           =

s(s 2) 100(0.1s 1)

s(s 2)

100 100
           =

s 2s 10s 100 s 12s 100

The characteristic po




  



 

 



  




    

2lynomial is s 12s 100 

  

1, 2

12 144 4x100
roots are s s   = 

2

12 j16
         =

2

         =-6 j8

  

 



  

The roots are complex conjugate. The system is under damped. So the response of the system will have damped 

oscillations. 

The response in s-domain C(s) = R(s) 
2

100

s 12s 100 
  

Since input is unit step, R(s)=1/s 



 

2

2

2 2

1 100
C(s) .

s s 12s 100

A Bs C
          = By partial fraction expansion

s s 12s 100

A(s 12s 100) Bs Cs 100

comparing the constant terms,

100A=100 A 1

comparing the coefficients of s,

12A+C C 12

comparing the

 
 




 
    

 

  
2

2

 coefficients of s ,

A B 0 B 1

1 s 12
C(s)

s s 12s 100

    


  
 

  

2

2 2

2 2 2 2

2 2 2 2

1 s 12

s s 12s 36 64

1 s 6 6

s (s 6) 8

1 s 6 6

s (s 6) 8 (s 6) 8

1 s 6 6 8

s 8(s 6) 8 (s 6) 8


 

  
 

 
 


  
   


  

   

  

The time domain response is obtained by taking inverse Laplace transform of C(s) 

 1Time response, c(t)=L C(s)   

1

2 2 2 2

6t 6t

6t

1 s 6 6 s
c(t) L

s 8(s 6) 8 (s 6) 8

6
        = 1-e cos8t e sin8t

8

6
c(t) 1 e sin8t cos8t

8



 



 
   

    



     

  

4. Find all the time domain specifications for a unity feedback control system whose open loop transfer function is 

given as G(s)=
25

s(s 6)
  

The open loop transfer function G(s)=
25

 H(s) = 1
s(s 6)

  

The closed loop transfer function
C(s) G(s)

R(s) 1 G(s).H(s)



  



2

2

25

C(s) 25 25s(s 6)

25R(s) s(s 6) 25 s 6s 25
1 .1

s(s 6)

C(s) 25

R(s) s 6s 25


   

   



 

  

The characteristic equation is 
2s 6s 25 0     

By comparing the equation with standard form 2 2

n ns 2 s 0, we get      

2

n

n

2.5

5

 
 

                            

n

n

2 6

6 6
0.6

2x 2x5

 

   


  

2

d n 1 5 1 0.36 4rad / sec         

2

1 11 1 0.36
tan tan 53.12 0.92rad.

0.6

 
                

  

1. Rise time 
r

d

0.92
t 0.55sec

4

 
  

   

2. Peak time p

d

t 0.785s
4

 
  


  

3. Delay time d

n

1 0.7 1 0.7x0.6
t 0.284s

5

  
  


  

4. Setting time s

n

4 4
t 1.33s

0.6x5
  


  

2

2

/ 1

p

0.6x / 1 0.6

p

5. % Peak overshoot %M e x100%

      =e x100%

%M 9.5%

 

  




  

Results 

 

r

p

d

s

p

t 0.55sec

t 0.785sec

t 0.284sec

t 1.33sec

%M 9.5%











  



5. The differential equation of the system is given by 
2

2

d y dy
5 16y 16x

dxdt
   . Find the time domain specifications 

and output response expression. 

Sol: 

The given differential equation 
2

2

d y dy
5 16y 16x

dxdt
     

Taking Laplace transform, we get  

2

2

s Y(s) 5sY(s) 16Y(s) 16X(s)

Y(s) 16

X(s) s 5s 16

  


 

   

Comparing with standard form of second order system, 

2

n

2

n n

2

n

n

C(s)

R(s) s 2 s

16

4rad / sec




  

 
 

   
n2 5

5
0.625

2x4

 

  
  

Damping ratio   =0.625 

Natural frequency of oscillation = 
n 4rad / sec    

Damping frequency 2

d n 1      

                              
2     =4 1 (0.625)

     =3.1225 rad/sec


 

2 2
1 11 1 0.625

tan tan 51.3 0.8949rad / sec
0.625

  
    


  

d

n

r

d

p

d

1 0.7 1 .07(0.625)
Delay time t 0.3593sec

4

3.14 0.8949
Rise time t 0.719sec

3.1225

3.14
Peak time t 1.006sec

3.1225

  
  


  

  



  


  



 

2

2

/ 1

p

(3.14x0.625)/ 1 0.625

s

s
n

%Peak overshoot (M ) e x100

                                = e x100

                                = 8.09%

setting time t

44for 2% tolerance, t 1.6sec
0.625x4

for 5% to

 

 





  

s
n

33lerance, t 1.2sec
0.625x4

  

  

Output response of the system 

Since   =0.625, it is under damped system. The response of the second order under damped system is given by  

n t

d
2

0.625x4xt

2

2.5t

e
c(t) 1 sin( t )

1

e
      =1- sin(3.1225t 0.8949)

1 0.625

c(t) 1 1.2810e sin(3.1225t 0.8949)







    
 




  

  

6.  The unity feedback system is characterized as shown in fig. What is the response c(t) to the unit step input. Given 

that 0.5.   Also calculate rise time, peak time, maximum overshoot and settling time. 

     

Sol 

The closed loop transfer function 
C(s) G(s)

R(s) 1 G(s).H(s)



  

2

2

16
G(s) ;H(s) Ks 1

s(s 0.8)

16

C(s) 16s(s 0.8)

16R(s) s 0.8s 16Ks 16
1 (Ks 1)

s(s 0.8)

16
            =

s (0.8 16K)s 16

  



  

   


  

  

By comparing with standard form of second order transfer function 



2

n

2 2 2

n n

C(s) 16

R(s) s 2 s s (0.8 16k)s 16


 

     
  

2

n

n

16

4

 
 

                         

 

n

n

2 0.8 16K

2 0.8
K

16

2x0.5x4 0.8
    =

16

K 0.2

  

 






  

2 2

C(s) 16 16

R(s) s (0.8 16x0.2)s 16 s 4s 16
  

    
 

Output response 

The response in S domain, C(s)=R(s).
2

16

s 4s 16 
  

For unit step input, R(s)=1/s 

 

2

2

2 2

1 16
C(s) .

s s 4s 16

A Bs C
       = by partial fraction expansion

s s 4s 16

A(s 4s 16) Bs Cs 16

comparing the constant term,

16A=16 A 1


 


 
    

 

  

Comparing the coefficients of s
2
 term 

A B 0 B 1

Comparing the coefficients of s term

4A C 0 C 4A 4 C 4

    

        

  

2

2

2

2 2

2 2

1 s 4
C(s)

s s 4s 16

1 s 4
          =

s s 4s 4 12

1 s 4
          =

s (s 2) 12

1 s 2 2
          =

s (s 2) 12 (s 2) 12

1 s 2 2 12
          =

s (s 2) 12 (s 2) 1212


  

 



  



 


 

   


 

   

  



Time domain response is obtained by taking inverse Laplace transform, of C(s) 

1 1

2 2

1 s 2 2 12
c(t) L [C(s)] L

s (s 2) 12 (s 2) 1212

   
    

    
  

2t 2t

2t 2t

2t 2t

2
           =1-e cos 12t e sin 12t

12

2
           =1-e cos 12t e sin 12t

2 3

1
c(t) 1 e [cos 12t e sin 12t

3

 

 

 





  

  

Damped frequency of oscillation 

2 2

d n

r

d

2 2
1 1

1 4 1 0.5 3.464 rad / sec

1.047
Rise time t 0.6046sec

3.464

1 1 0.5
where =tan tan 60 1.047radian

0.5

 

      

 
  



           
     

  

Peak time p

d

t 0.907sec
3.464

 
  


  

2

2

/ 1 x100%

0.5x / 1 .05 x100%

p e% Maximum ove

e

16.3

rshoot,   % M

%

 
 

  




  

Setting time ts= 

s

n

s

n

3 3
for 5% error, t 3T 1.5sec

0.5x4

4 4
for 2% error, t 4T 2sec

0.5x4

   


   


  

7. The unity feedback control system is characteristic by an open loop transfer function G(s)=K/[s(s+10)]. 

Determine the gain K, so that the system will have damping ratio of 0.5 for this value of K, determine peak 

overshoot and peak time for a unit step input. 

Sol 

The closed loop transfer function is given by  



2

C(s) G(s)

R(s) 1 G(s).H(s)

K
G(s) ,H(s) 1

s(s 10)

K

C(s) Ks(s 10)

KR(s) s 10s K
1

s(s 10)




 



  

 


  

The standard form of second order equation of a closed loop system is  

2

n

2 2

n n

2

n n

n

2

C(s)

R(s) s 2 s

comparing these two equations,

K K

5
2 10

k

25 25
for =0.5, K= 100

0.25

K 100




  

    

    

  




  

n K 100 10      

(b) Peak time(
pt )   

p
2 2

d n

p

p

t 0.363sec
1 10 1 (0.5)

%M 16.3%

   t 0.363sec

  
   
   





  

8. The open loop transfer function of a unity feedback control system is given by G(s)=
K

s(sT 1)
 where K and T are 

positive constants. By what factor should the amplifier gain be reduced so that the peak overshoot of unit step 

response of the system is reduced form 75% to 25% APRIL/MAY 2017 

 

Sol 

The closed loop transfer function is given by  

C(s) G(s)

R(s) 1 G(s)



 

2
2

K
G(s)

s(sT 1)

K

C(s) K K / Ts(sT 1)

K 1 KR(s) Ts s K
1 s s

s(sT 1) T T





   

   


  

Comparing this with standard second order system equation, the  



2

n

2 2

n n

C(s)

R(s) s 2 s




  
  

2

n n n

n

K K 1
  ;     2

T T T

1 1

2 T 2 KT

      

  


  

Let the peak overshoot Mp1correspond to 
1 p2 and M    be the peak overshoot for  

2     and 

corresponding gains be
1 2K  and K  respectively  

2
1 1

2
2 2

/ 1

p1

1

2

1

1

/ 1

p2

2

2

2

2

2 2

2

M e 0.75

taking natural logarthims on both sides,

ln 0.75 0.2877
1

from which 0.091

IIIly,

       M e 0.25

taking ln on both sides,

ln 0.25 1.3863
1

1  =2.266

  

  

 

 
  

 

 

 

 
  

 

 



1 2

1 2

0.4

1 1
 and  since T is same in both the cases

K K



   

  

2 2

1 2

2 2

12

2 1

K (0.091) 1

K 19.4(0.4)

1
(or) K K

19.4


  





  

 

Hence the original gain has to be reduced by factor 19.4 to reduce the overshoot from 75% to 25% 

 

9. For a unity feedback control system, the open loop transfer function G(s)=[10(s+2)]/s
2
(s+1) find 

1. The position, velocity , acceleration error constants 

2. The steady state error, when R(s)=
2 3

3 2 1

s s 3s
    

Sol 

2

10(s 2)
G(s) .  H(s) = 1

s (s 1)





  

1. Position, velocity and acceleration error constant  



p
s 0

2s 0

v
s 0

2s 0

a
s

K Lt G(s)

10(s 2)
    = Lt

s (s 1)

Velocity error constant, K Lt sG(s)

10(s 2)
                                          = Lt s

s (s 1)

Position error consta

Acceleration erro

nt,

r constant, K Lt












 





 



 2

0

2

2s 0

s 0

s G(s)

10(s 2)
                                                = Lt s

s (s 1)

10(s 2) 10x2
                                                = Lt 20

(s 1) 1











 



  

(2) To find steady state error 

 

2 3 2

2 3 2 3

2

2 2

2 2

2 2

R(s)

1 G(s).H(s)

3 2 1 10(s 2)
R(s) ,      G(s)= ;H(s) 1

s s 3s s (s 1)

3 2 1 3 2 1

s ss 3s s 3sE(s)
10

The error signal in s domain E s  

(s 2) s (s 1) 10(s 2)
1

s (s 1) s (s 1)

3 s (s 1) 2 s (

s s (s 1) 10(s 2) s




   


   
 

   
 

 
     



2

2 3 2

2

2 2 2s 0

s 1) 1 s (s 1)

s (s 1) 10(s 2) 3s s (s 1) 10(s 2)

3s (s 1) 2(s 1) (s 1)
Lt

s (s 1) 10(s 2) s (s 1) 10(s 2) 3s(s (s 1) 10(s 2))

    
           

   
   

         

  

=0-0+
1

60
 =

1

60
 

Steady state error 
ss

1
e

60
   

10. Consider a unity feedback system with closed loop transfer function 
2

C(s) Ks b
.

R(s) s as b




 
 Determine the transfer 

function G(s). show that the steady state error with unit ramp is given by 
 a K

b


  

Sol 

For unity feedback system, H(s)=1 



The closed loop transfer function, M(s)=
C(s)

R(s)
  

M(s)=
C(s)

R(s)
=

G(s) G(s)

1 G(s).H(s) 1 G(s)


 
  

G(s)
M(s)

1 G(s)
 


  

2

2

2

2

G(s) M(s)(1 G(s))

G(s) M(s) M(s).G(s)

G(s) M(s)G(s) M(s)

G(s)(1 M(s)) M(s)

M(s) Ks b
G(s) M(s) (given)

1 M(s) s as b

open loop transfer function

Ks b

M(s) Ks bs as bG(s)=
Ks b1 M(s) (s as b) Ks b

1
s as b

Ks

 
 
 
 


 

  




  
    

 



2

b Ks b

s(s (a K)s (a K)s




  

  

0

s 0

s 0

v
s
Lt sG(s)H(Velo s)

Lt sG(s)

Ks b b
L

city error cons

t s
s(s

ta

(a K)) a

nt,  K

K












 

  

  

With velocity input, steady state error, 

ss

v

1 a K
e

K b

Hence proved


 

  

11.  For a unity feedback control system having open loop transfer function 
K(s 2)

s(s 5)(4s 1)


 

  

The input applied is r(t)=1-3t. Find the minimum value of K. so that the steady state error is less than 1. 

Sol 



p
s 0 s 0

v
s 0 s 0

K(s 2)
G(s) ;  H(s)=1

s(s 10)(s 1)

Error constants

K(s 2)
K Lt G(s)H(s) Lt

s(s 5)(4s 1)

K(s 2)
K Lt sG(s)H(s) Lt s

s(s 5)(4s 1)

K(s 2) 2K
                             = =  

(s 5)(4s 1) 5

 

 




 


   

 


 
 


 

  

Total steady state error due to r(t)=1+3t 

ss

p v

ss

1 3
e

1 K K

1 3 3 3
     = 0

21 0.4K 0.4K
k

5

3
e 1(given)  

For steady state e

1
0.4k

K rror to be less than 17.5

 


   


  

 

  

12. Determine the type and order of the system with the following transfer function 

(1) 
s 4

(s 2)(s 3)


 

  

Sol:        order is 2 

 Type number 0 

 

(2) 
3 2

10

s (s 2s 1) 
  

Sol:        order is 5 

 Type number 3 

*INCLUDE THIS *                                                 ROOT LOCUS 

1. Sketch the root locus of the system whose open loop transfer function is     
K

G S .
s s 2 s 4


 

. Find the 

value of K, So that the damping ratio of the closed loop system is 0.5 

 Solution: 

 Step 1: To locate poles and zeros 

 The poles of open loop transfer function are the roots of the equation    s s 2 s 4  = 0 



Poles are lying at s = 0, -2, -4. 

Let us denoted poles 
1 2 3p 0,p 2,p 4       

Step 2: To find the root locus on the real axis  

 The root locus starts from pole p1 = 0& terminal at p2 = -2 and it form the part  of root locus  and 

the root locus starts from p3 & the terminates at open loop zero at infinity. 

Step 3: to find asymptotes and centroid 

 
 180 2q 1

angle of asymptotes q 0,1,2,3....n m
n m

  
  


  

Here n = 3, m = 0.      q 0,1,2,3.    

A

A

A

180
when q 0, 60

3

180 3
when q 1, 180

3

180 5
when q 2, 300 60

3

 
     

 
     

 
        

  

A

sum of poles sum of zeros
Centroid

n m

0 2 4 0
2

3





  

   
  

Step 4: To find the break away and break in points 

 The closed loop transfer function = 
 
 

 
 

C s G s

R s 1 G s



  

 
 
 

  

  
  

K

C s s s 2 s 4 K

KR s s s 2 s 4 K
1

s s 2 s 4

 
 

  
 

  

The characteristic equation is given by 



 

  
 2

3 2

3 2

2

2

2

s s 2 s 4 K 0

s s 6s 8 K 0

s 6s 8s K 0

K s 6s 8s

dK
s 12s 8

ds

dK
put 0 3s 12s 8 0

ds

12 12 4 3 8
s 0.845 or 3.154

2 3

   

   

   

     

    

    

    
   



  

Check for K; 

 When s=-0.845, the K is given by      3 2
K 0.845 6 0.845 8 0.845 3.08            Since K 

is  +ve and real for s = -0.845, this point is actual break away point. 

 When s = -3.154, the value is given by      3 2
K 3.154 6 3.154 8 3.154 3.08            

Since K, is negative for s  = -3.154, this is not a actual breakaway point. 

Step 5: To find angle of departure  

 since there are no complex pole (or) zero, there is no need to find angle of departure  

Step 6:  To find the crossing point imaginary axis. 

The characteristics equation is given by: 

 3 2s 6s 8s K 0     

Put s j   

 

     3 2

3 2

j 6 j 8 j K 0

j 6 8j K 0

      

        

Equating imaginary part to zero, 

 

3

3

2

j j8

j j8

8 8

     

    

    
  

 

Equating real parts to zero  



 

2

2

6 K 0

K 6 6 8 48

   

    
 

The crossing point of root locus is j2.8  

The value of K corresponding to this point is K = 48. Thus is the limiting value of K for stability. 

The complete root locus sketch is shown in fig.  The root locus has three branches. One branch starts at the 

pole at s = -4, travel the ‘-ve’ real axis to meet the zero at infinity, the other two root locus branches starts 

at s = 0 and s = -2 & travel the –ve real axis breakaway from real axis at s= -0.845, then cross imaginary 

axis s j2.8  & travel parallel to asymptotes to meet zero at infinity. 

To find the value of K corresponding to G = 0.5 

Given that G = 0.5 

 1cos 0.5 cos 0.5 60       

Draw a line OP, such that the angle between line OP & -ve real axis is 60
0
  60    

The meeting point of OP and root locus is sd  

k at s = sd 

 

d

d

1 2 3

Product of length of vector from all pole 

to the point s = s

Product of length of vector from all zeros 

to the point s = s

1.3 1.75 3.5
7.96 8

1 1



   
  

 



 

 



2. The open loop transfer of a unity feedback control system is given by,  2 2

K
G(s)

s s 4s 13


 
 Sketch the 

root locus. 

Solution:-  

Step 1: To locate poles and zeros  

Poles  

 

24 4 4 13
s 0,

2

0, 2 j3, 2 j3

   


    

 

Let 
1 2 3P 0,P 2 j3,P 2 j3        

Zeros: Nil  

Step 2: To find root locus on the real axis there is only one pole at origin. Hence the entire –ve real axis will be a 

part of root locus. 

Step 3: To find angles of asymptotes and centroid  

Angle of asymptote 
 

A

180 2q 1

n m

  
 


 

   q = 0, 1, 2, ……n-m 

Here n = 3, q = 0, 1, 2, 3. 

When q =0, A

180
60

3

 
      

When q =1, 
A

180
3 180

3

 
       

When q = 2, 
A

180
5 300 60

3

 
         

When q = 3, A

180
7 420 60

3

 
          

Centroid A

Sum of poles - Sum of zeros 

n m
 


 

               
0 2 j3 2 j3 0 4

1.33
3 3

     
     



Step 4: To find the breakaway and break in points  

The closed loop transfer function  

  

 
 

2

2

2

C(s) G(s)

R(s) 1 G(s)

K

s s 4s 13C(s) K

KR(s) s s 4s 13 K

s s 4s 13




 
 

  
 

 

The characteristics equation is  2s s 4s 13 K 0     

 

 
 

2

2

2

2

2

s s 4s 13 K 0

K s 4s 13

dK
3s 8s 13

ds

dK
0 3s 8s 13 0

ds

8 8 4 13 3
s

2 3

s 1.33 j 1.6

   

   

     

    

    



  

 

Check for K: 

When s= -1.33 + j1.6 the value of K is given by  

 

 
     

2 2

3 2

K s 4s 13s

1.33 j1.6 4 1.33 j1.6 13 1.33 j1.6

real ve

   

           
 

 

Similarly when s = -1.33 – j 1.6, the value of K is not   positive & real. Therefore, the root locus has reither 

breakaway nor breakin points, 



 

Step 5: To find the angle of departure consider complex pole P2. Draw velocities from all other poles to the pole P2. 

Let the angles of these vectors be 
1 2&   

Here 1

1 2
3180 tan 123.7 , 90

2
         

Angle of departure from the complex pole P2  



 

 
 

1 2180

180 123.7 90

33.7

     

     

  
 

The angle of departure at complex pole P3 is negative of the angle of departure at complex pole A. 

Angle of departure at pole P3 = +33.7
0
  

Step 6: To find the crossing point an imaginary axis  

The characteristics equation is given by  

 3 2s 4s 13s K 0     

Put s = j 

 
     3 2

3 2

j 4 j 13 j K 0

j 4 j13

      

        
 

Equating imaginary parts to zeros, 

 

2

3

2

13 0

13

13 13 3.6

   

   

       

 

Equating real part to zero  

 2 24 K 0 K 4 4 3 52           

The crossing point of root locus is 3.6  

The value of K at this crossing point is 52. 

The complete root sketch is shown in fig. 

3. The open loop transfer function of 0 unity feedback system is given by, 
 

 2

K s 9
G(S)

s s 4s 11




 
. Sketch the 

root locus of the system. 

Solution:-  

Step 1: To locate poles & zeros  

Poles  



 
 2s s 4s 11 0

s 0, 2 j2.64, 2 j2.64

  

    
 

Let P1= 0, P2 = -2+j2.64, P3 = -2-j2.64 

Zeros: s +9 = 0 & s = -9 

Let Z = -9 

Step 2: To find root locus on real axis the position of real axis from s = 0 to s= -9 will be a part of root locus & from 

s = -9 to s =  will not be part of root locus. 

Step 3: To find angle of asymptotes & centroid angle of asymptotes  

 
 

A

180 2q 1

n m

 
  


 

Where q = 0, 1, ….n - m 

Here n = 3, m = 1, q = 0, 1, 2 

When q = 0, 
A

180
90

2


       

When q = 1, 
A

180
3 270 90

2


         

When q = 2, 
A

180
5 450 90

2


          

Centroid 

A

Poles zeors

n m

0 2 j2.64 2 j2.64 ( 9)

2

2.5

 
 


     





 

Step 4: To find break away and break is points  

The characteristics equation of the system is  



 

 
 

 

 

2

2

3 2

2

K s 9
1 0

s s 4s 11

s s 4s 11
K

s 9

dK
0 2s 31s 61s 0

dS

s s 15.5s 30.5 0

s 0,s 13.157, s 2.313


 

 

  




    

   

     

 

There are no valid breakaway (or) break in points. 

Step 5: To find the angle of departure  

Consider complex pole P2. Draw vectors from all poles and zeros to pole P2. 

 

1

1

2

1

3

2.64
180 tan 127.1

2

90

2.64
tan 20.7

7





     

  

   

 

 The Angle of departure from complex pole P2  = 180-(127.1+90)+20.7 = -16.4 

The angle of departure from complex pole P3 is negative of the angle of departure of from complex pole P2.  

Angle of departure from complex pole P3 = 16.4
0
  

Step 6: To find the crossing point of imaginary axis. 

The closed loop transfer function 
C(s) G(s)

R(s) 1 G(s)



  

The characteristics equation is 1+G(s) 

 

 
 

 

 

2

2

3 2

3 2

K s 9
1

s s 4s 11

s s 4s 11

s 4s 11s Ks 9K 0

s 4s 11 K s 9K 0


  

 

  

     

     

  

Put s = jω 

 
     3 2

3 2

j 4 j 11 j Kj

j 4 j11 j

        

        
  



Equating imaginary part  to zero  

  

3

3

2

11 0

11 K

11 K (1)

   

   

   

  

 



 



–

 Equating real part to zero, 

 2 24 9K 0 9K 4         

But, 2 11 K    

 9K 4 1 K 44 4K

9K 4K 44

5K 44

44
K 8.8

5

    

  


 

  

Put K = 8.8 in eqn (1) 

 
2 11 8.8 19.8

19.8 4.4

   

    
  

The crossing point of root locus = ± j 4.4. the value of K corresponding to this point is 8.8. 

The complete root locus sketch is shown in fig. 

4. Sketch the root locus plot of the system whose OLTF is given as  APRIL/MAY 2017 

  2

K
G(s).H(s)

s s 4 s 4s 13


  
  

Solution:-  

Step 1: To locate poles and zeros  

Poles: 

 
2s(s 4)(s 4s 13) 0

s 0, 4, 2 j3, 2 j3

   
     

  

Let P1 = 0, P2 = -4, P3 = -2+j3, P4 = -2-j3 

Step 2: To locate root locus on real axis  

The portion between s =0 & s = -4 is a part of the root locus. 

Step 3: To find angle of asymptotes & centroid  



Angle of asymptotes 

 
A

180 2q 1

n m

q 0,1,.....n m

 
 


 

  

Here n = 4, m = 0, q = 0, 1, 2, 4, 

When q = 0, 
A

180
1 45

4
         

When q = 1, 
A

180
3 135

4


         

When q = 2, 
A

180
5 225

4


         

When q = 3, 
A

180
7 315

4


         

Centroid  

 
 

A

A

poles zeros

n m

0 4 2 j3 2 j3 (0)

4 0

2

 
 


     




  

 

Step 4: To find breakaway and break in points  

The characteristics equation is 

 

  
  
 

2

2

4 3 2

3 2

1 G(s)H(s) 0

K
1 0

s s 4 s 4s 13

K s s 4 s 4s 13

K s 18s 29s 52s

dK
0 4s 24s 58s 52 0

dS

s 2,s 2 j1.58, s 2 j1.58

 

 
  

    

    

     

        

   

The valid break away point are  

B1 = -2, B2 = -2+j 1.58, B3 = -2-j 1.58 

Step 5: To find angle of departure  

Consider complex pole P3. Draw vectors from all other poles to pole P3.  



Now  

 

1

2

3

125

90

55

  

  
  

 

Angle of departure  from  

 

 
 

3 1 2 3P 180

180 125 90 55

90

      

     

  

 

Angle of departure from  4p 90 90         

Step 6: To find crossing point of imaginary axis  

The characteristics equation is  

 4 3 2s 8s 29s 52s K 0       

Using Routh Hurwitz criterion  

s
4
: 1  29 K ROW 1 

s3:  8  52  ROW 2 

s
2
: 22.5  K  ROW 3 

s
1
:   52-0.3K    ROW 4 

s
0
:  K    ROW 5 

 

For stability K > 0, (from S
0
 row) 

And 52 – 0.35 K > 0 (from S
1 

row) 

 K > 0, K < 148.6 

For system to be stable, the maximum value of K is 148.6 

The auxiliary equation is 22.5 s
2
 + K = 0 

 
222.5s 148.6 0

s j2.56

 
 

  

Column 1 



The crossing point of imaginary axis is 2.56 & corresponding value of K is 148.6 

The complex root locus sketch is shown in fig. 
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Time response analysis 

  5. With neat steps, write down the procedure for the construction of root locus. 

Procedure for constructing the root locus of the loop transfer function when k is varied from 0 to ∞. 

1. Symmetry: The root locus plot is always symmetrical with respect to the real axis is s – plane  

2. Starting and Ending points: the root locus originates from an open loop pole ie, K = 0 and terminates at open loop 

zero is K = ∞ 

3. Number of Loci: The number of separate root locus (N) depends upon the number of pole (n) and number of zeros 

(m) of the loop transfer function. 

N = n for n> m 

N = m  for m > n 

Where n is the number of finite poles of G(s) H(s)  

 M is the number of finite zeros of G(s) H(s)  

Thus, the number of separate root locus is equal to the number of poles (or) zeros which ever is greater. 

4. Existence on real axis: Some of the loci will lie on the real axis. A point on the real axis if the sum of open loop 

transfer function poles and zeros to the point is odd. 

5. The number of asymptotic lines: Asymptotes is defined as a line on which the root locus touches at infinity. 

For the function, G(s) H(s) having n finite poles and m finite zeros  , the no. of asymptotes q = n-m  

6. Angle of asymptotes: If the number of poles is greater than the number of zeros n > m; then n – m branches will 

move to infinity and these cbranches move along the asymptotes. For root locus, the angle of asymptotes, 

 
A

180 2q 1
0

n m

 
  


  

Where q is a positive integer having values 0, 1, 2…. (n – m) 

7. Centre of Asymptote or centroid : The point at which asymptotes intersect on real axis in s – plane is called 

centroid & is given by  

 A

polesof G(s)H(s) zerosofG(s)H(s)

n m

 
 


  



8. Breakaway (or) break in points: Breakaway point is defined as the point at which root locus comes out of the real 

axis and breakin point is defined as the point at which root locus enters the real axis.  

The breakaway (or) break in points are the points on the root locus at which multiple roots of the characteristic 

equation occur. 

The following are the steps to determine the breakaway (or) break in points  

(a) Find the characteristics equation, 1+ G(s) H(s) = 0 

(b) Write K in terms of s 

(c) Derive 
dK dK

& put 0
ds ds

   

(d) The roots of equation 
dK

0
ds

  may be breakaway (or) break in points  

If the value of K is positive & real for any root of 
dK

0,
dS

  then the corresponding root is avalid break away (or) 

break in points 

9. Intersection of root locus with imaginary axis  

The point of intersection of root locus with the imaginary axis in the s – plane can be determined by use of the Routh 

criterion. Alternatively by letting s = j in the characteristic equation and separate real part and imaginary part. Two 

equations are obtained: one by equating real parts to zero and the other by equating imaginary part to zero. Solve the 

two equations for  and K. 

The value of  gives the point where the root locus crosses the imaginary axis & the value of K gives value of gain 

K at crossing point. Also this value of K is the limiting value of K for stability of the system. 

10. Angle of departure (or) arrival: The root locus leaves from a complex pole & arrives at a complex zero. These 

two angles are known as angle of departure and angle of arrival, respectively. 

Angle of departure 
sum of angles to the complex

(from a complex 180
 pole A from other poles 

pole A)

Sum of angles of vectors 

to the complex pole A from zeros.

Angle of arrival at 

a c


      
 


 

 
 

Sum of angles of vectors

180  to the complex zero A from 
omplex zero A

all other zeros

Sum of angles of vectors to 

the complex zero A from 

poles

 
        

 
 
  
 
 

 . 



11. Value of K at a point on the root locus  

The value of K at a point S1 on the root locus is determine by measuring the vectors from the poles and zeros of 

loop transfer function to point S1 on the root of is given as  

n m

1 j

j 1

n

1 i

i 1

s P
1

K
G(s) H(s)

s Z








 






  

1

1

Product of all vectors lengths from poles of G(s) H(s) to s

Pr oduct of all vectors lengths from zeros of G(s) H(s) to s
  


