
1

SUBJECT NAME : SOFTWARE TESTING

 SUBJECT CODE : IT8076

YEAR/SEM : III Year / Sixth Semester

DEPARTMENT : INFORMATION TECHNOLOGY

AUTHOR : R. LAVANYA, M.E., (Ph.D)

DESGINATION : ASSISTANT PROFESSOR

 2

REGULATIONS – 2017

SYLLABUS

OBJECTIVES:

 To learn the criteria for test cases.

 To learn the design of test cases.

 To understand test management and test automation techniques.

 To apply test metrics and measurements.

UNIT I INTRODUCTION

Testing as an Engineering Activity – Testing as a Process – Testing Maturity Model - Testing

axioms – Basic definitions – Software Testing Principles – The Tester’s Role in a Software

Development Organization – Origins of Defects – Cost of defects – Defect Classes – The Defect

Repository and Test Design – Defect Examples – Developer / Tester Support of Developing a

Defect Repository .

UNIT II TEST CASE DESIGN
Test case Design Strategies – Using Black Box Approach to Test Case Design –Boundary Value

Analysis – Equivalence Class Partitioning – State based testing – Cause-effect graphing –

Compatibility testing – user documentation testing – domain testing – Random Testing –

Requirements based testing –Using White Box Approach to Test design – Test Adequacy

Criteria – static testing vs. structural testing – code functional testing – Coverage and Control

Flow Graphs – Covering Code Logic – Paths – code complexity testing – Additional White Box

Testing Approaches - Evaluating Test Adequacy Criteria.

UNIT III LEVELS OF TESTING
The need for Levels of Testing – Unit Test – Unit Test Planning – Designing the Unit Tests –

The Test Harness – Running the Unit tests and Recording results – Integration tests – Designing

Integration Tests – Integration Test Planning – Scenario testing – Defect bash elimination

System Testing – Acceptance testing – Performance testing – Regression Testing –

Internationalization testing – Ad-hoc testing – Alpha, Beta Tests – Testing OO systems –

Usability and Accessibility testing – Configuration testing – Compatibility testing – Testing the

documentation – Website testing.

UNIT IV TEST AMANAGEMENT
People and organizational issues in testing – Organization structures for testing teams – testing

services – Test Planning – Test Plan Components – Test Plan Attachments – Locating Test Items

– test management – test process – Reporting Test Results –Introducing the test specialist –

Skills needed by a test specialist – Building a Testing Group – The structure of Testing Group –

The Technical Training Program.

UNIT V TEST AUTOMATION

Software test automation – skill needed for automation – scope of automation – design and

architecture for automation – requirements for a test tool – challenges in automation – Test

metrics and measurements – project, progress and productivity metrics.

 3

Unit – I

INTRODUCTION

Part – A

1. Define process.(Nov/Dec 2013)

 Process, in the software engineering domain, is the set of methods, practices, standards,

documents, activities, policies, and procedures that software engineers use to develop and maintain a

software system and its associated artifacts, such as project and test plans, design documents, code, and

manuals.

2. Differentiate verification and validation.

 Validation is the process of evaluating a software system or component during, or at the end of,

the development cycle in order to determine whether it satisfies specified requirements Validation is

usually associated with traditional execution-based testing, that is, exercising the code with test cases.

 Verification is the process of evaluating a software system or component to determine whether

the products of a given development phase satisfy the conditions imposed at the start of that phase.

3. Define testing and debugging. (May/June 2013), (May/June 2014)

 Testing is generally described as a group of procedures carried out to evaluate some aspect of a

piece of software. Testing can be described as a process used for revealing defects in software, and for

establishing that the software has attained a specified degree of quality with respect to selected attributes.

 Debugging, or fault localization is the process of (1) locating the fault or defect, (2) repairing the

code, and (3) retesting the code.

4. List the benefits of test process improvement.

 smarter testers

 higher quality software

 the ability to meet budget and scheduling goals

 improved planning

 the ability to meet quantifiable testing goals

5. Define Maturity goals.

 The maturity goals identify testing improvement goals that must be addressed in order to achieve

maturity at that level. To be placed at a level, an organization must satisfy the maturity goals at that level.

6. Define Activities, tasks and responsibilities (ATR).

 The ATRs address implementation and organizational adaptation issues at each TMM level.

Supporting activities and tasks are identified, and responsibilities are assigned to appropriate groups.

7. List the three critical views (CV) .

 Definition of their roles is essential in developing a maturity framework. The manager’s view

involves commitment and ability to perform activities and tasks related to improving testing capability.

The developer/tester’s view encompasses the technical activities and tasks that, when applied, constitute

quality testing practices. The user’s or client’s view is defined as a cooperating, or supporting, view.

8. What are the levels of TMM?(Apr/May 2018)

 Level 1: Initial

 Level 2: Phase Definition

 Level 3: Integration

 Level 4: Management and Measurement

 Level 5: Optimization/Defect Prevention and Quality Control

9. Define Errors, Faults (Defects) and Failures. .(Nov/Dec 2013), (May/June 2014), (Nov/Dec –
2016), (Apr/May 2019)
 An error is a mistake, misconception, or misunderstanding on the part of a software developer.

 A fault (defect) is introduced into the software as the result of an error. It is an anomaly in the

software that may cause it to behave incorrectly, and not according to its specification.

 4

Faults or defects are sometimes called “bugs.”

 A failure is the inability of a software system or component to perform its required functions

within specified performance requirements

10. How will the fault manifest itself as a failure?

 1. The input to the software must cause the faulty statement to be executed.

 2. The faulty statement must produce a different result than the correct statement. This event

produces an incorrect internal state for the software.

 3. The incorrect internal state must propagate to the output, so that the result of the fault is

observable.

11. What are the contents of a test case?

 A test case in a practical sense is a test-related item which contains the following information:

 1. A set of test inputs. These are data items received from an external source by the code under

test. The external source can be hardware, software, or human.

 2. Execution conditions. These are conditions required for running the test, for example, a certain

state of a database, or a configuration of a hardware device.

 3. Expected outputs. These are the specified results to be produced by the code under test.

12. Define Test, Test Oracle and Test Bed. (May/June 2013), (Apr/May 2018)

 A test is a group of related test cases, or a group of related test cases and test procedures (steps

needed to carry out a test,

 A test oracle is a document, or piece of software that allows testers to determine whether a test

has been passed or failed.

 A test bed is an environment that contains all the hardware and software needed to test a software

component or a software system.

13. Define Software Quality.

 Two concise definitions for quality are found in the IEEE Standard Glossary of Software

Engineering Terminology:

 1. Quality relates to the degree to which a system, system component, or process meets specified

requirements.

 2. Quality relates to the degree to which a system, system component, or process meets customer

or user needs, or expectations.

14. Define metric and quality metric.

 A metric is a quantitative measure of the degree to which a system, system component, or process

possesses a given attribute

 A quality metric is a quantitative measurement of the degree to which an item possesses a given

quality attribute

15. What are the Quality Attributes?

 Correctness

 reliability

 usability

 integrity

 portability

 maintainability

 interoperability

16. Define Software Quality Assurance Group.

 The software quality assurance (SQA) group is a team of people with the necessary training and

skills to ensure that all necessary actions are taken during the development process so hat the resulting

software conforms to established technical requirements.

17. What are Defect sources? (April/May 2017), (Nov/Dec 2019)

 Lack of Education

 Poor communication

 Oversight

 5

 Transcription

 Immature process

18. What are the Design Defect Classes?

 Algorithmic and processing

 Control, logic, and sequence

 Data

 Module interface description

 External interface description

19. What are the Coding Defect Classes?

 Algorithmic and processing

 Control, logic, and sequence

 Typographical data flow

 Data

 Module interface

 Code documentation

 External hardware,

 Software

20. What is Defect Repository?

 Defect classes

 Severity

 Occurrences

21. What is a test case?

A test case is a document, which has a set of test data, preconditions, expected results and post

conditions, developed for a particular test scenario in order to verify compliance against a specific

requirement.

Test Case acts as the starting point for the test execution, and after applying a set of input values, the

application has a definitive outcome and leaves the system at some end point or also known as

execution post condition.

22. What is the basic objective of software testing? (Nov/Dec 2016, Nov/Dec 2017)

Software Testing has different goals and objectives. The major objectives of Software testing are as

follows:

 Finding defects which may get created by the programmer while developing the software.

 Gaining confidence in and providing information about the level of quality.

 To prevent defects.

 To make sure that the end result meets the business and user requirements.

 To ensure that it satisfies the BRS that is Business Requirement Specification and SRS that is

System Requirement Specifications.

 To gain the confidence of the customers by providing them a quality product.

23. List the classification of defects.

Software Defects/ Bugs are normally classified as per:

 Severity / Impact

 Probability / Visibility

 Priority / Urgency

 Related Dimension of Quality

 Related Module / Component

 Phase Detected

 Phase Injected

24. What is design defect?

A design defect is a problem with the product’s design that makes the product inherently dangerous

or useless, even if it is manufactured perfectly and made of the best-quality materials.

25. What are the V&V tasks in testing phase?

 Execution of systems test case

 Execution of acceptance test case

 Updating of traceability metrics

 Risk analysis

http://istqbexamcertification.com/
http://istqbexamcertification.com/what-is-defect-or-bugs-or-faults-in-software-testing/
http://istqbexamcertification.com/what-is-software-quality/

 6

26.Mention the role of test Engineer in software development organization. (April/May 2017)

Testing is sometimes erroneously viewed as a destructive activity. The tester’s job is to reveal defects,

find weak points, inconsistent behavior, and circumstances where the software does not work as

expected.

27.Define test Bed.(Nov 2017)

A test bed is an environment that contains all the hardware and soft- ware needed to test a software

component or a software system.

28. Mention the role of process in software quality. (Nov/Dec 2018) , (Nov/Dec 2019)

Process, in the software engineering domain, is a set of methods, practices, Standards,
documents, activities, polices, and procedures that software engineers use to develop and
maintain a software system and its associated artifacts, such as project and test plans, design
documents, code, and manuals

29. What is meant by feature defects. (Nov/Dec 2018)

Features may be described as distinguishing characteristics of a software component or system. The

defects that are appearing in those components are known as feature defects.

30. Differentiate errors, faults and failures.

ced into the software as the result of an error. It is an anomaly in the

software that may cause it to behave incorrectly, and not according to its specification.

ions

within specified performance requirements.

Part – B

1. Explain the role of process in software quality.

The need for software products of high quality has pressured those in the profession to identify and

quantify quality factors such as usability, testability, maintainability, and reliability, and to identify

engineering practices that support the production of quality products having these favorable attributes.

Among the practices identified that contribute to the development of high-quality software are project

planning, requirements management, development of formal specifications, structured design with

use of information hiding and encapsulation, design and code reuse, inspections and reviews, product

and process measures, education and training of software professionals, development and application

of CASE tools, use of effective testing techniques, and integration of testing activities into the entire

life cycle.

In addition to identifying these individual best technical and managerial practices, software

researchers realized that it was important to integrate them within the context of a high-quality

software development process.

 7

It also was clear that adding individual practices to an existing software development process in an

ad hoc way was not satisfactory.

The software development process, like most engineering artifacts, must be engineered. That is, it

must be designed, implemented, evaluated, and maintained.

As in other engineering disciplines, a software development process must evolve in a consistent and

predictable manner, and the best technical and managerial practices must be integrated in a

systematic way.

Models such as the Capability Maturity Model_ (CMM)* and SPICE were developed to address

process issues.

All the software process improvement models that have had wide acceptance in industry are high-

level models, in the sense that they focus n the software process as a whole and do not offer adequate

support to evaluate and improve specific software development sub processes such as design and

testing.

Most software engineers would agree that testing is a vital component of a quality software process,

and is one of the most challenging and costly activities carried out during software development and

maintenance.

2. What are the difficulties and challenges for the tester?

Difficulties and challenges for the tester include the following:

 A tester needs to have comprehensive knowledge of the software engineering discipline.

 A tester needs to have knowledge from both experience and education as to how software is

specified, designed, and developed.

 A tester needs to be able to manage many details.

 A tester needs to have knowledge of fault types and where faults of a certain type might occur in

code constructs.

 A tester needs to reason like a scientist and propose hypotheses that relate to presence of specific

types of defects.

 A tester needs to have a good grasp of the problem domain of the software that he/she is testing.

Familiarly with a domain may come from educational, training, and work-related experiences.

 8

 A tester needs to create and document test cases. To design the test cases the tester must select

inputs often from a very wide domain.

 Those selected should have the highest probability of revealing a defect. Familiarly with the

domain is essential.

 A tester needs to design and record test procedures for running the tests.

 A tester needs to plan for testing and allocate the proper resources.

 A tester needs to execute the tests and is responsible for recording results.

 A tester needs to analyze test results and decide on success or failure for a test. This involves

understanding and keeping track of an enormous amount of detailed information. A tester may

also be required to collect and analyze test-related measurements.

 A tester needs to learn to use tools and keep abreast of the newest test tool advances.

 A tester needs to work and cooperate with requirements engineers, designers, and developers, and

often must establish a working relationship with clients and users.

 A tester needs to be educated and trained in this specialized area and often will be required to

update his/her knowledge on a regular basis due to changing technologies.

3. Explain 5 level structure of testing maturity model in detail.

(OR)

Give overview of Testing Maturity Model(TMM) and the test related activities that should be done

for V-model architecture? (Apr/May 2018), (Nov/Dec 2019).

The internal structure of the TMM is rich in testing practices that can be learned and applied in a

systematic way to support a quality testing process that improves in incremental steps.

There are five levels in the TMM that prescribe a maturity hierarchy and an evolutionary path to test

process improvement.

Each level with the exception of level 1 has a structure that consists of the following:

 A set of maturity goals. The maturity goals identify testing improvement goals that must be addressed

in order to achieve maturity at that level. To be placed at a level, an organization must satisfy the

maturity goals at that level. The TMM levels and associated maturity goals.

 Supporting maturity sub goals. They define the scope, boundaries and needed accomplishments for a

particular level.

 Activities, tasks and responsibilities (ATR). The ATRs address implementation and organizational

adaptation issues at each TMM level. Supporting activities and tasks are identified, and

responsibilities are assigned to appropriate groups.

 9

Level 1—Initial: (No maturity goals)

At TMM level 1, testing is a chaotic process; it is ill-defined, and not distinguished from debugging.

A documented set of specifications for software behavior often does not exist. Tests are developed in

an ad hoc way after coding is completed. Testing and debugging are interleaved to get the bugs out of

the software

Level 2—Phase Definition:
Goal 1: Develop testing and debugging goals;

Goal 2: Initiate a testing planning process;

Goal 3: Institutionalize basic testing techniques and methods

At level 2 of the TMM testing is separated from debugging and is defined as a phase that follows

coding. It is a planned activity; however, test planning at level 2 may occur after coding for reasons

related to the immaturity of the testing process. For example, there may be the perception at level 2,

that all testing is execution based and dependent on the code; therefore, it should be planned only

when the code is complete.

Level 3—Integration:
Goal 1: Establish a software test organization;

Goal 2: Establish a technical training program;

 10

Goal 3: Integrate testing into the software life cycle;

Goal 4: Control and monitor testing

At TMM level 3, testing is no longer a phase that follows coding, but is integrated into the entire

software life cycle. Organizations can build on the test planning skills they have acquired at level 2.

Unlike level 2, planning for testing at TMM level 3 begins at the requirements phase and continues

throughout the life cycle supported by a version of the V-model.

Level 4—Management and Measurement:

Goal 1: Establish an organization wide review program;

Goal 2: Establish a test measurement program;

Goal 3: Software quality evaluation

Testing at level 4 becomes a process that is measured and quantified. Reviews at all phases of the

development process are now recognized as testing/quality control activities. They are a compliment

to execution based tests to detect defects and to evaluate and improve software quality.

Level 5—Optimization/Defect Prevention/Quality Control:

Goal 1: Defect prevention;

Goal 2: Quality control;

Goal 3: Test process optimization

Because of the infrastructure that is in place through achievement of the maturity goals at levels 1–4

of the TMM, the testing process is now said to be defined and managed; its cost and effectiveness can

be monitored .At level 5, mechanisms are in place so that testing can be fine-tuned and continuously

improved. Defect prevention and quality control are practiced.

Statistical sampling, measurements of confidence levels, trust worthiness, and reliability drive the

testing process. Automated tools totally support the running and rerunning of test cases.

4. Describe the test related activities using V model in requirement specification, design, coding

and installation phases.

V- Model means Verification and Validation model. Just like the waterfall model, the V-Shaped life

cycle is a sequential path of execution of processes. Each phase must be completed before the next

phase begins. Testing of the product is planned in parallel with a corresponding phase of

development in V-model.

The various phases of the V-model are as follows:

Requirements like BRS and SRS begin the life cycle model just like the waterfall model. But, in this

model before development is started, a system test plan is created. The test plan focuses on meeting

the functionality specified in the requirements gathering.

The high-level design (HLD) phase focuses on system architecture and design. It provide overview

of solution, platform, system, product and service/process. An integration test plan is created in this

phase as well in order to test the pieces of the software systems ability to work together.

The low-level design (LLD) phase is where the actual software components are designed. It defines

the actual logic for each and every component of the system. Class diagram with all the methods and

relation between classes comes under LLD. Component tests are created in this phase as well.

The implementation phase is, again, where all coding takes place. Once coding is complete, the path

of execution continues up the right side of the V where the test plans developed earlier are now put to

use.

Coding: This is at the bottom of the V-Shape model. Module design is converted into code by

developers.

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-system-testing/
http://istqbexamcertification.com/what-is-integration-testing/

 11

Validation Phases

Following are the Validation phases in V-Model:

 Unit Testing: Unit tests designed in the module design phase are executed on the code during

this validation phase. Unit testing is the testing at code level and helps eliminate bugs at an early

stage, though all defects cannot be uncovered by unit testing.

 Integration Testing: Integration testing is associated with the architectural design phase.

Integration tests are performed to test the coexistence and communication of the internal modules

within the system.

 System Testing: System testing is directly associated with the System design phase. System tests

check the entire system functionality and the communication of the system under development with

external systems. Most of the software and hardware compatibility issues can be uncovered during

system test execution.

 Acceptance Testing: Acceptance testing is associated with the business requirement analysis

phase and involves testing the product in user environment. Acceptance tests uncover the

compatibility issues with the other systems available in the user environment. It also discovers the

non functional issues such as load and performance defects in the actual user environment.

 12

Advantages of V-model:
 Simple and easy to use.

 Testing activities like planning, test designing happens well before coding. This saves a lot of

time. Hence higher chance of success over the waterfall model.

 Proactive defect tracking – that is defects are found at early stage.

 Avoids the downward flow of the defects.

 Works well for small projects where requirements are easily understood.

Disadvantages of V-model:
 Very rigid and least flexible.

 Software is developed during the implementation phase, so no early prototypes of the software

are produced.

 If any changes happen in midway, then the test documents along with requirement documents has

to be updated.

5.Explain software testing principles in detail. (May/June 2013) , (Nov/Dec 2013), (Nov/Dec 2016),

(April/May 2017),(Apr/May 2018),(Nov/Dec 2018),(Apr/May 2019), (Nov/Dec 2019)

(OR)

Illustrate with example the principles of software testing. (Nov/Dec 2017)

Principles play an important role in all engineering disciplines and are usually introduced as part of an

educational background in each branch of engineering.

A principle can be defined as:

1. A general or fundamental, law, doctrine, or assumption;

2. A rule or code of conduct;

3. The laws or facts of nature underlying the working of an artificial device.

Principle 1. Testing is the process of exercising a software component using a selected set of test

cases, with the intent of (i) revealing defects, and (ii) evaluating quality.

Software engineers have made great progress in developing methods to prevent and eliminate defects.

However, defects do occur, and they have a negative impact on software quality. Testers need to

detect these defects before the software becomes operational.

This principle supports testing as an execution-based activity to detect defects. It also supports the

separation of testing from debugging since the intent of the latter is to locate defects and repair the

software.

The term “software component” is used in this context to represent any unit of software ranging in

size and complexity from an individual procedure or method, to an entire software system.

The term “defects” as used in this and in subsequent principles represents any deviations in the

software that have a negative impact on its functionality, performance, reliability, security, and/or any

other of its specified quality attributes.

Principle 2. When the test objective is to detect defects, then a good test case is one that has a

high probability of revealing a yet undetected defect(s).

Principle 2 supports careful test design and provides a criterion with which to evaluate test case

design and the effectiveness of the testing effort when the objective is to detect defects.

It requires the tester to consider the goal for each test case, that is, which specific type of defect is to

be detected by the test case.

In this way the tester approaches testing in the same way a scientist approaches an experiment. In the

case of the scientist there is a hypothesis involved that he/she wants to prove or disprove by means of

the experiment.

http://istqbexamcertification.com/what-is-test-design-or-how-to-specify-test-cases/

 13

In the case of the tester, the hypothesis is related to the suspected occurrence of specific types of

defects.

The goal for the test is to prove/disprove the hypothesis, that is, determine if the specific defect is

present / absent.

Based on the hypothesis, test inputs are selected, correct outputs are determined, and the test is run.

Results are analyzed to prove/disprove the hypothesis.

Principle 3. Test results should be inspected meticulously.

Testers need to carefully inspect and interpret test results. Several erroneous and costly scenarios may

occur if care is not taken.

For example: A failure may be overlooked, and the test may be granted a “pass “status when in reality

the software has failed the test. Testing may continue based on erroneous test results. The defect may

be revealed at some later stage of testing, but in that case it may be more costly and difficult to locate

and repair.

 A failure may be suspected when in reality none exists. In this case the test may be granted a

“fail” status. Much time and effort may be spent on trying to find the defect that does not

exist. A careful reexamination of the test results could finally indicate that no failure has

occurred.

 The outcome of a quality test may be misunderstood, resulting in unnecessary rework, or

oversight of a critical problem.

Principle 4. A test case must contain the expected output or result.

It is often obvious to the novice tester that test inputs must be part of a test case. However, the test

case is of no value unless there is an explicit statement of the expected outputs or results,

f or example, a specific variable value must be observed or a certain panel button that must light up.

Expected outputs allow the tester to determine

(i)whether a defect has been revealed, and

(ii) pass/fail status for the test.

 It is very important to have a correct statement of the output so that needless time is not spent due

to misconceptions about the outcome of a test. The specification of test inputs and outputs should be

part of test design activities.

Principle 5. Test cases should be developed for both valid and in valid input conditions.

A tester must not assume that the software under test will always be provided with valid inputs.

Inputs may be incorrect for several reasons. For example, software users may have

misunderstandings, or lack information about the nature of the inputs.

They often make typographical errors even when complete/correct information is available. Devices

may also provide invalid inputs due to erroneous conditions and malfunctions.

Use of test cases that are based on invalid inputs is very useful for revealing defects since they may

exercise the code in unexpected ways and identify unexpected software behavior.

Invalid inputs also help developers and testers evaluate the robustness of the software, that is, its

ability to recover when unexpected events occur (in this case an erroneous input)

Principle 6. The probability of the existence of additional defects in a software component is

proportional to the number of defects already detected in that component.

What this principle says is that the higher the number of defects already detected in a component, the

more likely it is to have additional defects when it undergoes further testing.

 14

For example, if there are two components A and B, and testers have found 20 defects in A and 3

defects in B, then the probability of the existence of additional defects in A is higher than B. This

empirical observation may be due to several causes. Defects often occur in clusters and often in code

that has a high degree of complexity and is poorly designed.

In the case of such components developers and testers need to decide whether to disregard the current

version of the component and work on a redesign, or plan to expend additional testing resources on

this component to insure it meets its requirements.

These issues especially important for components that implement mission or safety critical functions.

Principle 7. Testing should be carried out by a group that is independent of the development

group.

This principle holds true for psychological as well as practical reasons. It is difficult for a developer

to admit or conceive that software he/she has created and developed can be faulty.

 Testers must realize that

(i) Developers have a great deal of pride in their work, and

(ii) On a practical level it may be difficult for them to conceptualize where defects could be found.

Even when tests fail, developers often have difficulty in locating the defects since their mental model

of the code may overshadow their view of code as it exists in actuality. They may also have

misconceptions or misunderstandings concerning the requirements and specifications relating to the

software.

Principle 8. Tests must be repeatable and reusable.

Principle 8 calls for experiments in the testing domain to require recording of the exact conditions of

the test, any special events that occurred, equipment used, and a careful accounting of the results.

This information is invaluable to the developers when the code is returned for debugging so that they

can duplicate test conditions. It is also useful for tests that need to be repeated after defect repair.

The repetition and reuse of tests is also necessary during regression test

Principle 9. Testing should be planned.

Test plans should be developed for each level of testing, and objectives for each level should be

described in the associated plan.

The objectives should be stated as quantitatively as possible. Plans, with their precisely specified

objectives, are necessary to ensure that adequate time and resources are allocated for testing tasks,

and that testing can be monitored and managed.

Principle 10. Testing activities should be integrated into the software life cycle.

It is no longer feasible to postpone testing activities until after the code has been written.

Test planning activities as supported by Principle 10,should be integrated into the software life cycle

starting as early as in the requirements analysis phase, and continue on throughout the software life

cycle in parallel with development activities.

Principle 11. Testing is a creative and challenging task

6. Explain the tester’s role in a software development organization. .(Nov/Dec 2013), (Apr/May

2018), (Nov/Dec 2017), (Nov/Dec 2019).

(OR)

Describe about Tester Support for Developing a Defect Repository.(Nov/Dec 2018)

 Testing is sometimes erroneously viewed as a destructive activity. The tester’s job is to reveal

defects, find weak points, inconsistent behavior, and circumstances where the software does

not work as expected.

 15

 As a tester you need to be comfortable with this role. Given the nature of the tester’s tasks,

you can see that it is difficult for developers to effectively test their own code Teams of

testers and developers are very common in industry, and projects should have an appropriate

developer/tester ratio.

 The ratio will vary depending on available resources, type of project, and TMM level. For

example, an embedded real-time system needs to have a lower developer/tester ratio (for

example, 2/1) than a simple data base application (4/1 may be suitable).

 At higher TMM levels where there is a well-defined testing group, the developer/ tester ratio

would tend to be on the lower end (for example 2/1 versus 4/1) because of the availability of

tester resources. In addition to cooperating with code developers, testers also need to work

alongside with requirements engineers to ensure that requirements are testable, and to plan

for system and acceptance test (clients are also involved in the latter).

 Testers also need to work with designers to plan for integration and unit test. In addition, test

managers will need to cooperate with project managers in order to develop reasonable test

plans, and with upper management to provide input for the development and maintenance of

organizational testing standards, polices, and goals.

 Finally, testers also need to cooperate with software quality assurance staff and software

engineering process group members. In view of these requirements for multiple working

relationships, communication and team working skills are necessary for a successful career as

a tester.

 Testers are specialists, their main function is to plan, execute, record, and analyze tests. They

do not debug software.

 When defects are detected during testing, software should be returned to the developers who

locate the defect and repair the code. The developers have a detailed understanding of the

code, and are the best qualified staff to perform debugging.

 Finally, testers need the support of management. Developers, analysts, and marketing staff

need to realize that testers add value to a software product in that they detect defects and

evaluate quality as early as possible in the software life cycle.

 This ensures that developers release code with few or no defects, and that marketers can

deliver software that satisfies the customers’ requirements, and is reliable, usable, and

correct.

 Test Engineers are usually responsible for:

Developing test cases and procedures

 Software testers need to develop test matrices to control the design of test cases.

 Software Testers need to design test cases based on effective testing techniques.

 Software testers need to design procedures based on the project needs.

Test data planning, capture, and conditioning

 Software testers need to plan test data to be used during test execution.

Reviewing analysis and design artifacts

 Software testers need to review and analyze:

 Requirement documents.

 Functional Documents.

 Design Documents.

Test execution

 Software testers are responsible for test execution based on testing milestones.

Utilizing automated test tools for regression testing

 Software testers are responsible to learn automated testing tools to simplify regression

testing.

Preparing test documentation

Software testers need to prepare any necessary test ware during the project:

 16

 Procedures.

 Guidelines.

Defect tracking and reporting

Software testers are responsible to:

 Find Defects.

 Report defects.

 Verify and validate defect fixes.

 Other testers joining the team will focus on:

 Test execution.

 Defect reporting.

 Regression testing.

The test team should be represented in:

 All key requirements.

 Design meetings, including:

 JAD or requirements definition sessions.

 Risk analysis sessions.

 Prototype review sessions

7. Explain all the defects related to requirement specification, design, coding and testing phases.

 (Nov/Dec 2013), (Nov/Dec 2016),(Apr/May 2018), (Nov/Dec 2019)

(OR)

Explain various design defects with suitable examples.(Nov/Dec 2017)
Requirement Specification Defect:

 The beginning of the software life cycle is critical for ensuring high quality in the software being

developed. Defects injected in early phases can persist and be very difficult to remove in later phases.

Since many requirements documents are written using a natural language representation, there are very

often occurrences of ambiguous, contradictory, unclear, redundant, and imprecise requirements.

Specifications in many organizations are also developed using natural language representations, and these

too are subject to the same types of problems as mentioned above. However, over the past several years

many organizations have introduced the use of formal specification languages that, when accompanied by

tools, help to prevent incorrect descriptions of system behavior. Some specific requirements/specification

defects are:

1. Functional Description Defects

2. Feature Defects

3. Feature Interaction Defects

4. Interface Description Defects

Design Defects

 Design defects occur when system components, interactions between system components,

interactions between the components and outside soft ware/hardware, or users are incorrectly

designed. This covers defects in the design of algorithms, control, logic, data elements, module

interface descriptions, and external software/hardware/user interface descriptions. When describing

these defects we assume that the detailed design description for the software modules is at the pseudo

code level with processing steps, data structures, input/output parameters, and major control

structures defined. If module design is not described in such detail then many of the defects types

described here may be moved into the coding defects class.

1. Algorithmic and Processing Defects

2. Control, Logic, and Sequence Defects

3. Data Defects

 17

4. Module Interface Description Defects

5. Functional Description Defects

6. External Interface Description Defects

Coding Defects

 Coding defects are derived from errors in implementing the code. Coding defects classes are

closely related to design defect classes especially if pseudo code has been used for detailed design.

Some coding defects come from a failure to understand programming language constructs, and

miscommunication with the designers. Others may have transcription or omission origins. At times it

may be difficult to classify a defect as a design or as a coding defect. It is best to make a choice and

be consistent when the same defect arises again.

1. Algorithmic and Processing Defects

2. Control, Logic and Sequence Defects

3. Typographical Defects

4. Initialization Defects

5. Data-Flow Defects

6. Data Defects

7. Module Interface Defects

8. Code Documentation Defects

9. External Hardware, Software Interfaces Defects

Testing Defects

 Defects are not confined to code and its related artifacts. Test plans, test cases, test harnesses, and

test procedures can also contain defects. Defects in test plans are best detected using review

techniques.

 1. Test Harness Defects In order to test software, especially at the unit and integration levels,

auxiliary code must be developed. This is called the test harness or scaffolding code. Chapter 6 has a

more detailed discussion of the need for this code. The test harness code should be carefully designed,

implemented, and tested since it a work product and much of this code can be reused when new

releases of the software are developed. Test harnesses are subject to the same types of code and

design defects that can be found in all other types of software.

 2. Test Case Design and Test Procedure Defects These would encompass incorrect, incomplete,

missing, inappropriate test cases, and test procedures. These defects are again best detected in test

plan reviews as described in Chapter 10. Sometimes the defects are revealed during the testing

process itself by means of a careful analysis of test conditions and test results. Repairs will then have

to be made.

8. Explain in detail the origin of defects. (May/June 2013), (May/June 2014) ,(April/May 2017),

(Nov/Dec 2018), (Apr/May 2019)

The term defect and its relationship to the terms error and failure in the context of the software

development domain

 18

1. Education: The software engineer did not have the proper educational background to prepare the

software artifact. She did not understand how to do something.

For example, a software engineer who did not understand the precedence order of operators in a

particular programming language could inject a defect in an equation that uses the operators for a

calculation.

2. Communication: The software engineer was not informed about something by a colleague.

For example, if engineer 1 and engineer 2 are working on interfacing modules, and engineer 1 does

not inform engineer 2 that a no error checking code will appear in the interfacing module he is

developing, engineer 2 might make an incorrect assumption relating to the presence/absence of an

error check, and a defect will result.

3. Oversight: The software engineer omitted to do something. For example, a software engineer might

omit an initialization statement.

4. Transcription: The software engineer knows what to do, but makes a mistake in doing it. A simple

example is a variable name being misspelled when entering the code.

5. Process: The process used by the software engineer misdirected her actions. For example, a

development process that did not allow sufficient time for a detailed specification to be developed and

reviewed could lead to specification defects.

A successful test will reveal the problem and the doctor can begin treatment. Completing the analogy

of doctor and ill patient, one could view defective software as the ill patient. Testers as doctors need

to have knowledge about possible defects (illnesses) in order to develop defect hypotheses. They use

the hypotheses to:

 design test cases;

 design test procedures;

 assemble test sets;

 select the testing levels (unit, integration, etc.) appropriate for the tests;

 evaluate the results of the tests.

Physical defects in the digital world may be due to manufacturing errors, component wear-out, and/or

environmental effects.

 19

The fault models are often used to generate a fault list or dictionary. From that dictionary faults can

be selected, and test inputs developed for digital components. The effectiveness of a test can be

evaluated in the context of the fault model, and is related to the number of faults as expressed in the

model, and those actually revealed by the test.

simple example of a fault model a software engineer might have in memory is “an incorrect value for

a variable was observed because the precedence order for the arithmetic operators used to calculate its

value was incorrect.” This could be called “an incorrect operator precedence order” fault.

An error was made on the part of the programmer who did not understand the order in which the

arithmetic operators would execute their operations. Some incorrect assumptions about the order were

made.

The defect (fault) surfaced in the incorrect value of the variable. The probable cause is a lack of

education on the part of the programmer. Repairs include changing the order of the operators or

proper use of parentheses.

The tester with access to this fault model and the frequency of occurrence of this type of fault could

use this information as the basis for generating fault hypotheses and test cases.

 20

Unit – II

TEST CASE DESIGN

Part – A

1. What are Black Box Knowledge?

Sources, Requirements, document, Specifications, Domain knowledge, Defect analysis, Data

2. What are Black Box Methods?

Equivalence class, partitioning, Boundary value analysis, State transition testing, Cause and effect

graphing, Error guessing

3. What are White box Knowledge sources?

 High-level design

 Detailed design

 Control flow

 graphs

 Cyclomatic

 Complexity

4. What are White box methods?

 Statement testing

 Branch testing

 Path testing

 Data flow testing

 Mutation testing

 Loop testing

5. Define a State.

 A state is an internal configuration of a system or component. It is defined in terms of the values

assumed at a particular time for the variables that characterize the system or component.

6. Define a finite-state machine.

 It is an abstract machine that can be represented by a state graph having a finite number of states

and a finite number of transitions between states.

7. Define Random Testing.

 Each software module or system has an input domain from which test input data is selected. If a

tester randomly selects inputs from the domain, this is called random testing.

8. Define Equivalence Class Partitioning and give its advantages.

 If a tester is viewing the software-under-test as a black box with well defined inputs and outputs, a

good approach to selecting test inputs is to use a method called equivalence class partitioning. Equivalence

class partitioning results in a partitioning of the input domain of the software under test.

Advantages of Equivalence Class Partitioning are,

 1. It eliminates the need for exhaustive testing, which is not feasible.

 2. It guides a tester in selecting a subset of test inputs with a high probability of detecting a defect.

 3. It allows a tester to cover a larger domain of inputs/outputs with a smaller subset selected from an

equivalence class.

9. What are the steps involved in Equivalence Class Partitioning?

 A good approach includes the following steps.

 1. Each equivalence class should be assigned a unique identifier. A simple integer is sufficient.

 2. Develop test cases for all valid equivalence classes until all have been covered by (included in) a test

case. A given test case may cover more than one equivalence class.

 3. Develop test cases for all invalid equivalence classes until all have been covered individually. This is to

insure that one invalid case does not mask the effect of another or prevent the execution of another.

10. What are the rules-of-thumb?

 21

The rules-of-thumb described below are useful for getting started with boundary value analysis.

 1. If an input condition for the software-under-test is specified as a range of values, develop valid test cases

for the ends of the range, and invalid test cases for possibilities just above and below the ends of the range.

 2. If an input condition for the software-under-test is specified as a number of values, develop valid test

cases for the minimum and maximum numbers as well as invalid test cases that include one lesser and one

greater than the maximum and minimum.

 3. If the input or output of the software-under-test is an ordered set, such as a table or a linear list, develop

tests that focus on the first and last elements of the set.

11. List the steps in developing test cases with a cause-and-effect graph.(Apr/May 2017)

1. The tester must decompose the specification of a complex software component into lower-level units.

2. For each specification unit, the tester needs to identify causes and their effects. A cause is a distinct input

condition or an equivalence class of input conditions. An effect is an output condition or a system

transformation. Putting together a table of causes and effects helps the tester to record the necessary details.

The logical relationships between the causes and effects should be determined. It is useful to express these

in the form of a set of rules.

3. From the cause-and-effect information, a Boolean cause-and-effect graph is created. Nodes in the graph

are causes and effects. Causes are placed on the left side of the graph and effects on the right. Logical

relationships are expressed using standard logical operators such as AND, OR, and NOT, and are associated

with arcs.

4. The graph may be annotated with constraints that describe combinations of causes and/or effects that are

not possible due to environmental or syntactic constraints.

5. The graph is then converted to a decision table.

6. The columns in the decision table are transformed into test cases.

12. What is State transition testing?

 State transition testing is useful for both procedural and object-oriented development. It is based on

the concepts of states and finite-state machines, and allows the tester to view the developing software in

term of its states, transitions between states, and the inputs and events that trigger state changes.

13. What are the contents of the defect/problem fix report?

The defect/problem fix report should contain the following information:

• project identifier

• the problem/defect identifier

• testing phase that uncovered the defect

• a classification for the defect found

• a description of the repairs that were done

• the identification number(s) of the associated tests

• the date of repair

• the name of the repairer.

14. List the application scope of adequacy criteria.(Apr/May 2019)

(i) Helping testers to select properties of a program to focus on during test;

(ii) Helping testers to select a test data set for a program based on the selected properties;

(iii) Supporting testers with the development of quantitative objectives for testing;

(iv) Indicating to testers whether or not testing can be stopped for that program.

15. What is test data set?

 A test data set is statement, or branch, adequate if a test set T for program P causes all the

statements, or branches, to be executed respectively.

16. What is cyclomatic complexity?

 A cyclomatic complexity attribute is very useful to a tester The complexity value is usually

calculated from the control flow graph (G) by the formula

 V (G) = E -N + 2

 The value E is the number of edges in the control flow graph and N is the number of nodes. This

formula can be applied to flow graphs where there are no disconnected components.

 22

17. What are Loop testing strategies?

 Loop testing strategies focus on detecting common defects associated with these structures. For

example, in a simple loop that can have a range of zero to n iterations, test cases should be developed so that

there are:

 (i) Zero iterations of the loop, i.e., the loop is skipped in its entirely;

 (ii) One iteration of the loop;

 (iii) Two iterations of the loop;

 (iv) k iterations of the loop where k _ n;

 (v) n_ 1 iterations of the loop;

 (vi) n_ 1 iterations of the loop (if possible).

18. What is Mutation testing?

 Mutation testing is another approach to test data generation that requires knowledge of code

structure, but it is classified as a fault-based testing approach. It considers the possible faults that could

occur in a software component as the basis for test data generation and evaluation of testing effectiveness.

19. List the two major assumptions of Mutation testing.

Mutation testing makes two major assumptions:

1. The competent programmer hypothesis. This states that a competent programmer writes programs that are

nearly correct. Therefore we can assume that there are no major construction errors in the program; the code

is correct except for a simple error(s).

2. The coupling effect. This effect relates to questions a tester might have about how well mutation testing

can detect complex errors since the changes made to the code are very simple. DeMillo has commented on

that issue as far back as 1978 [10]. He states that test data that can distinguish all programs differing from a

correct one only by simple errors are sensitive enough to distinguish it from programs with more complex

errors.

20. Define test set.

 A test set T is said to be mutation adequate for program P provided that for every in equivalent

mutant Pi of P there is an element t in T such that Pi(t) is not equal to P(t).

21. Write down the advantages and disadvantages of random testing.

Advantages of Random Testing:

 Random testing gives us an advantage of easily estimating software reliability from test outcomes.

 They're are done from a user’s point of view

 Do not require to know programming languages or how the software has been implemented

 Can be conducted by a body independent from the developers,

 Can be designed as soon as the specifications are complete

Disadvantages of random testing:

 They are not realistic.

 Many of the tests are redundant and unrealistic.

 More time is spent on analyzing results.

 One cannot recreate the test if data is not recorded which was used for testing.

 The actual test results are random in the case of randomized software and random testing. Therefore

it is not possible to give an exact expected value.

22. What is a control flow graph? .(Nov/Dec 2013)

The control flow graph G = (N, E) of a program consists of a set of nodes N and a set of edge E. Each

node represents a set of program statements. There are five types of nodes. There is a unique entry node

and a unique exit node. There is an edge from node n1 to node n2 if the control may flow from the last

statement in n1 to the first statement in n2 .

23. How to compute cyclomatic complexity?

The cyclomatic complexity of a section of source code is the number of linearly independent paths within it

Mathematically, the cyclomatic complexity of a structured program is defined with reference to the control

flow graph of the program, a directed graph containing the basic blocks of the program, with an edge

between two basic blocks if control may pass from the first to the second. The complexity M is then defined

as

M = E − N + 2P,

where

https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Basic_block

 23

E = the number of edges of the graph.

N = the number of nodes of the graph.

P = the number of connected components.

24. What is meant by desk checking?

Desk checking is a paper and pencil exercise where the programmer works through the program by

hand keeping track of the values of each variable and the statements that are executed.

25. What do you mean by test coverage?

Test coverage measures the amount of testing performed by a set of test. Wherever we can count things

and can tell whether or not each of those things has been tested by some test, then we can measure

coverage and is known as test coverage.

The basic coverage measure is where the ‘coverage item’ is whatever we have been able to count and

see whether a test has exercised or used this item.

26.Differentiate black box with white box testing. (May/June 2013) ,(April/May 2017), (Nov/Dec 2017),

(Nov/Dec 2018), (Apr/May 2019),(Nov/Dec 2019).

 Black Box Testing White Box Testing

1

Black box testing is the Software

testing method which is used to test

the software without knowing the

internal structure of code or program.

White box testing is the software testing

method in which internal structure is being

known to tester who is going to test the

software.

2

This type of testing is carried out by

testers.

Generally, this type of testing is carried out

by software developers.

3

Implementation Knowledge is not

required to carry out Black Box

Testing.

Implementation Knowledge is required to

carry out White Box Testing.

4

Programming Knowledge is not

required to carry out Black Box

Testing.

Programming Knowledge is required to carry

out White Box Testing.

5

Testing is applicable on higher levels

of testing like System Testing,

Acceptance testing.

Testing is applicable on lower level of testing

like Unit Testing, Integration testing.

27. What are the basic primes that are used in a structure program? (Nov/Dec 2017)

Structured programming is a programming paradigm aimed at improving the clarity, quality,

and development time of a computer program by making extensive use of the structured

control flow constructs of selection (if/then/else) and repetition (while and for), block

structures, and subroutines in contrast to using simple tests and jumps such as the go to

https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
http://www.softwaretestingclass.com/what-is-software-testing/
http://www.softwaretestingclass.com/what-is-software-testing/

 24

statement, which can lead to “spaghetti code” that is potentially difficult to follow and

maintain.

28. Define COTS Components. (Nov/Dec 2018) , (Nov/Dec 2019)

The reusable component may come from a code reuse library within their org or, as is most likely,

from an outside vendor who specializes in the development of specific types of software

components. Components produced by vendor org are known as commercial off-the shelf, or

COTS, components

29. What are the factors affecting less than 100% degree of coverage? (Apr/May 2018)

The nature of the unit

be unnecessary.

rketing constraints.

30. Write the formula for Cyclomatic complexity? (Apr/May 2018) (Nov/Dec 2016)

The complexity value is usually calculated from control flow graph (G) by the formula V (G) = E-N+2.

Where the value E is the number of edges in the control flow graph and the value N is the number of

nodes.

31. Error vs Defects vs failures.Discuss. (Apr/May 2017), (Nov/Dec 2019)

software that may cause it to behave incorrectly, and not according to its specification.

specified performance requirements.

32.Sketch the control flow graph for an ATM withdrawl System. (Nov/Dec 2016)

 25

Part – B

1. Explain in detail about black box testing strategies and COTS components.(Nov/Dec 2016)

 As software development evolves into an engineering discipline, the reuse of software components

will play an increasingly important role. Reuse of components means that developers need not reinvent

the wheel; instead they can reuse an existing software component with the required functionality. The

reusable component may come from a code reuse library within their organization or, as is most likely,

from an outside vendor who specializes in the development of specific types of software components.

Components produced by vendor organizations are known as commercial off-the-shelf, or COTS,

components. The following data illustrate the growing usage of COTS components. In 1997,

approximately 25% of the component portfolio of a typical corporation consisted of COTS components.

Estimates for 1998 were about 28% and during the next several years the number may rise to 40%.

 Using COTS components can save time and money. However, the COTS component must be

evaluated before becoming a part of a developing system. This means that the functionality, correctness,

and reliability of the component must be established. In addition, its suitability for the application must

be determined, and any unwanted functionality must be identified and addressed by the developers.

Testing is one process that is not eliminated when COTS components are used for development

 When a COTS component is purchased from a vendor it is basically a black box. It can range in size

from a few lines of code, for example, a device driver, to thousands of lines of code, as in a

telecommunication subsystem. It most cases, no source code is available, and if it is, it is very expensive

to purchase. The buyer usually receives an executable version of the component, a description of its

functionality, and perhaps a statement of how it was tested. In some cases if the component has been

widely adapted, a statement of reliability will also be included. With this limited information, the

developers and testers must make a decision on whether or not to use the component. Since the view is

mainly as a black box, some of the techniques discussed in this chapter are applicable for testing the

COTS components.

 If the COTS component is small in size and a specification of its inputs/outputs and functionality is

available, then equivalence class partitioning and boundary value analysis may be useful for detecting

defects and establishing component behavior. The tester should also use this approach for identifying

any unwanted or unexpected functionality or side effects that could have a detrimental effect on the

application. Assertions, which are logic statements that describe correct program behavior, are also

useful for assessing COTS behavior

 Usage profiles are characterizations of the population of intended uses of the software in its

intended environment As in the testing of newly developing software, the testing of COTS components

requires the development of test cases, test oracles, and auxiliary code called a test harness. In the case

of COTS components, additional code, called glue software, must be developed to bind the COTS

component to other modules for smooth system functioning. This glue software must also be tested. All

of these activities add to the costs of reuse and must be considered when project plans are developed.

Researchers are continually working on issues related to testing and certification of COTS components.

2. Explain cause-and–effect graphing in detail. (Apr/May 2017)

 Cause-and-effect graphing is a technique that can be used to combine conditions and derive an

effective set of test cases that may disclose inconsistencies in a specification. However, the specification

must be transformed into a graph that resembles a digital logic circuit. The tester is not required to have

a background in electronics, but he should have knowledge of Boolean logic. The graph itself must be

expressed in a graphical language.

 Developing the graph, especially for a complex module with many combinations of inputs, is

difficult and time consuming. The graph must be converted to a decision table that the tester uses to

develop test cases. Tools are available for the latter process and allow the derivation of test cases to be

more practical using this approach. The steps in developing test cases with a cause-and-effect graph are

as follows

 26

1. The tester must decompose the specification of a complex software component into lower-level

units.

2. For each specification unit, the tester needs to identify causes and their effects. A cause is a distinct

input condition or an equivalence class of input conditions. An effect is an output condition or a system

transformation. Putting together a table of causes and effects helps the tester to record the necessary

details. The logical relationships between the causes and effects should be determined. It is useful to

express these in the form of a set of rules.

 3. From the cause-and-effect information, a Boolean cause-and-effect graph is created. Nodes in the

graph are causes and effects. Causes are placed on the left side of the graph and effects on the right.

Logical relationships are expressed using standard logical operators such as AND, OR, and NOT, and

are associated with arcs. An example of the notation is shown in Figure 4.4. Myers shows additional

examples of graph notations.

 4. The graph may be annotated with constraints that describe combinations of causes and/or effects

that are not possible due to environmental or syntactic constraints.

5. The graph is then converted to a decision table.

6. The columns in the decision table are transformed into test cases.

The following example illustrates the application of this technique. Suppose we have a specification

for a module that allows a user to perform a search for a character in an existing string. The

specification states that the user must input the length of the string and the character to search for. If the

string length is out-of-range an error message will appear. If the character appears in the string, its

position will be reported. If the character is not in the string the message “not found” will be output.

The input conditions or causes are as follows:

C1: Positive integer from 1 to 80

C2: Character to search for is in string

The output conditions or effects are:

 E1: Integer out of range

E2: Position of character in string

E3: Character not found

The rules or relationships can be described as follows:

 If C1 and C2, then E2.

 If C1 and not C2, then E3.

If not C1, then E1.

Based on the causes, effects, and their relationships, a cause-and-effect graph to represent this

information is shown in Figure

 27

 The next step is to develop a decision table. The decision table reflects the rules and the graph and

shows the effects for all possible combinations of causes. Columns list each combination of causes, and

each column represents a test case. Given n causes this could lead to a decision table with 2n entries,

thus indicating a possible need for many test cases. In this example, since we have only two causes, the

size and complexity of the decision table is not a big problem. However, with specifications having

large numbers of causes and effects the size of the decision table can be large. Environmental

constraints and unlikely combinations may reduce the number of entries and subsequent test cases.

 A decision table will have a row for each cause and each effect. The entries are a reflection of the

rules and the entities in the cause and effect graph. Entries in the table can be represented by a “1” for a

cause or effect that is present, a “0” represents the absence of a cause or effect, and a “—” indicates a

“don’t care” value. A decision table for our simple example is shown in Table where C1, C2, C3

represent the causes, E1, E2, E3 the effects, and columns T1, T2, T3 the test cases.

 The tester can use the decision table to consider combinations of inputs to generate the actual tests.

In this example, three test cases are called for. If the existing string is “abcde,” then possible tests are

the following:

One advantage of this method is that development of the rules and the graph from the specification

allows a thorough inspection of the specification. Any omissions, inaccuracies, or inconsistencies are

likely to be detected. Other advantages come from exercising combinations of test data that may not be

considered using other black box testing techniques. The major problem is developing a graph and

decision table when there are many causes and effects to consider. A possible solution to this is to

decompose a complex specification into lower-level, simpler components and develop cause-and-effect

graphs and decision tables for these.

 28

3. What is control flow graph? How is it used in white box test design? (May/June 2014), (Nov/Dec

2016) ,(April/May 2017)

(OR)

Explain the significance of control flow graph and cyclomatic complexity in white box

testing.(Nov/Dec 2017), (Apr/May 2017), (Apr/May 2019).

 Control flow testing uses the control structure of a program to develop the test cases for the

program. The test cases are developed to sufficiently cover the whole control structure of the program.

The control structure of a program can be represented by the control flow graph of the program.

Flow Graph Notation

• A circle in a graph represents a node, which stands for a sequence of one or more procedural

statements

• A node containing a simple conditional expression is referred to as a predicate node

– Each compound condition in a conditional expression containing one or more Boolean

operators (e.g., and, or) is represented by a separate predicate node

– A predicate node has two edges leading out from it (True and False)

• An edge, or a link, is a an arrow representing flow of control in a specific direction

– An edge must start and terminate at a node

– An edge does not intersect or cross over another edge

• Areas bounded by a set of edges and nodes are called regions

• When counting regions, include the area outside the graph as a region, too

Flow Graph Example

 29

Independent Program Paths

• Defined as a path through the program from the start node until the end node that introduces at least

one new set of processing statements or a new condition (i.e., new nodes)

• Must move along at least one edge that has not been traversed before by a previous path

• Basis set for flow graph on previous slide

– Path 1: 0-1-11

– Path 2: 0-1-2-3-4-5-10-1-11

– Path 3: 0-1-2-3-6-8-9-10-1-11

– Path 4: 0-1-2-3-6-7-9-10-1-11

• The number of paths in the basis set is determined by the cyclomatic complexity

Cyclomatic Complexity

• Provides a quantitative measure of the logical complexity of a program

• Defines the number of independent paths in the basis set

• Provides an upper bound for the number of tests that must be conducted to ensure all statements

have been executed at least once

• Can be computed three ways

– The number of regions

– V(G) = E – N + 2, where E is the number of edges and N is the number of nodes in graph G

– V(G) = P + 1, where P is the number of predicate nodes in the flow graph G

• Results in the following equations for the example flow graph

– Number of regions = 4

– V(G) = 14 edges – 12 nodes + 2 = 4

– V(G) = 3 predicate nodes + 1 = 4

Deriving the Basis Set and Test Cases

1) Using the design or code as a foundation, draw a corresponding flow graph

2) Determine the cyclomatic complexity of the resultant flow graph

3) Determine a basis set of linearly independent paths

4) Prepare test cases that will force execution of each path in the basis set

 30

4. Explain all additional white box test design approaches?

 Data Flow and White Box Test Design

 Loop Testing

 Mutation Testing

Data Flow and White Box Test Design

 In order to discuss test data generation based on data flow information, some basic concepts that

define the role of variables in a software component need to be introduced.

 We say a variable is defined in a statement when its value is assigned or changed.

For example in the statements

 Y = 26 * X

 Read (Y)

the variable Y is defined, that is, it is assigned a new value. In data flow notation this is indicated as a

def for the variable Y.

 We say a variable is used in a statement when its value is utilized in a statement. The value of the

variable is not changed.

 A more detailed description of variable usage is given by Rapps and Weyuker. They describe a

predicate use (p-use) for a variable that indicates its role in a predicate. A computational use (c-use)

indicates the variable’s role as a part of a computation. In both cases the variable value is unchanged.

For example, in the statement Y = 26 * X the variable X is used. Specifically it has a c-use. In the

statement if (X >98) Y = max, X has a predicate or p-use. There are other data flow roles for variables

such as undefined or dead, . An analysis of data flow patterns for specific variables is often very useful

for defect detection. For example, use of a variable without a definition occurring first indicates a defect

in the code. The variable has not been initialized. Smart compilers will identify these types of defects.

Testers and developers can utilize data flow tools that will identify and display variable role

information. These should also be used prior to code reviews to facilitate the work of the reviewers.

 Using their data flow descriptions, Rapps and Weyuker identified several data-flow based test

adequacy criteria that map to corresponding coverage goals.

 All def

 All p-uses

 All c-uses/some p-uses

 All p-uses/some c-uses

 All uses

 All def-use paths

The strongest of these criteria is all def-use paths. This includes all p- and c-use

 31

 To satisfy the all def-use criterion the tester must identify and classify occurrences of all the

variables in the software under test. A tabular summary is useful. Then for each variable, test data is

generated so that all definitions and all uses for all of the variables are exercised during test.

 On the table each def-use pair is assigned an identifier. Line numbers are used to show occurrence

of the def or use. Note that in some statements a given variable is both defined and used

After completion of the tables, the tester then generates test data to exercise all of these def-use pairs

Set 1 covers pair 1 for n, pair 2 for sum, and pair 1 for i. Set 2 covers pair 1 for n, pair 1 for number,

pairs 1,3,4 for sum, and pairs 1,2,3,4 for i. Note even for this small piece of code there are four tables

and four def-use pairs for two of the variables

Loop Testing

 Loops are among the most frequently used control structures. Experienced software engineers

realize that many defects are associated with loop constructs. These are often due to poor programming

practices and lack of reviews. Therefore, special attention should be paid to loops during testing. Beizer

has classified loops into four categories: simple, nested, concatenated, and unstructured

 Loop testing strategies focus on detecting common defects associated with these structures. For

example, in a simple loop that can have a range of zero to n iterations, test cases should be developed so

that there are:

(i) zero iterations of the loop, i.e., the loop is skipped in its entirely;

(ii) one iteration of the loop;

(iii) two iterations of the loop;

(iv) k iterations of the loop where k < n;

(v) n - 1 iterations of the loop;

 32

 (vi) n +1 iterations of the loop (if possible).

 If the loop has a nonzero minimum number of iterations, try one less than the minimum. Other

cases to consider for loops are negative values for the loop control variable, and n 1 iterations of the

loop if that is possible. Zhu has described a historical loop count adequacy criterion that states that in

the case of a loop having a maximum of n iterations, tests that execute the loop zero times, once, twice,

and so on up to n times are required

Mutation Testing(April/May 2017)

 Mutation testing is another approach to test data generation that requires knowledge of code

structure, but it is classified as a fault-based testing approach. It considers the possible faults that could

occur in a software component as the basis for test data generation and evaluation of testing

effectiveness.

 Mutation testing makes two major assumptions:

 1. The competent programmer hypothesis. This states that a competent programmer writes programs

that are nearly correct. Therefore we can assume that there are no major construction errors in the

program; the code is correct except for a simple error(s).

 2. The coupling effect. This effect relates to questions a tester might have about how well mutation

testing can detect complex errors since the changes made to the code are very simple.

 DeMillo states that test data that can distinguish all programs differing from a correct one only by

simple errors are sensitive enough to distinguish it from programs with more complex errors. Mutation

testing starts with a code component, its associated test cases, and the test results. The original code

component is modified in a simple way to provide a set of similar components that are called mutants.

 Each mutant contains a fault as a result of the modification. The original test data is then run with

the mutants. If the test data reveals the fault in the mutant (the result of the modification) by producing a

different output as a result of execution, then the mutant is said to be killed. If the mutants do not

produce outputs that differ from the original with the test data, then the test data are not capable of

revealing such defects. The tests cannot distinguish the original from the mutant. The tester then must

develop additional test data to reveal the fault and kill the mutants.

 Mutations are simple changes in the original code component, for example: constant replacement,

arithmetic operator replacement, data statement alteration, statement deletion, and logical operator

replacement. There are existing tools that will easily generate mutants. Tool users need only to select a

change operator

 To measure the mutation adequacy of a test set T for a program P we can use what is called a

mutation score (MS), which is calculated as follows

 Mutation testing is useful in that it can show that certain faults as represented in the mutants are not

likely to be present since they would have been revealed by test data. It also helps the tester to generate

hypotheses about the different types of possible faults in the code and to develop test cases to reveal

them.

5. How white box testing methods related to TMM?

 White box methods also provide a systematic way of developing test cases. However, white box

methods have a stronger theoretical foundation and are supported by test adequacy criteria that guide

the development of test data and allow evaluation of testing goals when tests are subsequently executed.

In addition, white box methods have adequate tool support, and they depend on the use of notations that

allow a connection to other development activities, for example, design.

 Managers should ensure that testers are trained in the use of both for consistent application to all

organizational projects as described in the TMM. The Activities/Tasks/Responsibilities (ATR’s)

associated with adapting and implementing black box methods also apply to white box methods as well.

 When making a choice among white box testing methods the tester must consider the nature of the

software to be tested, resources available, and testing constraints and conditions. For example, a tester

 33

might choose to develop test designs using elements of control flow such as branches. In this same

example, to insure coverage of compound conditions the tester may decide that multiple decision

coverage is a wise testing goal. However, if the code is not complex, and is not mission, safety, or

business critical, then simple branch coverage might be sufficient. The tester must also apply this

reasoning to selection of a degree of coverage. For example, for a simple non mission critical module,

85% branch coverage may prove to be a sufficient goal for the module if testing resources are tight

 In all cases the tester should select a combination of strategies to develop test cases that includes

both black box and white box approaches. No one test design approach is guaranteed to reveal all

defects, no matter what its proponents declare! Use of different testing strategies and methods has the

following benefits

1. The tester is encouraged to view the developing software from several different views to

generate the test data. The views include control flow, data flow, input/output behavior,

loop behavior, and states/state changes. The combination of views, and the test cases

developed from their application, is more likely to reveal a wide variety of defects, even

those that are difficult to detect. This results in a higher degree of software quality

2. The tester must interact with other development personnel such as requirements analysts

and designers to review their representations of the software. Representations include

input/output specifications, pseudo code, state diagrams, and control flow graphs which are

rich sources for test case development. As a result of the interaction, testers are equipped

with a better understanding of the nature of the developing software, can evaluate its

testability, give intelligent input during reviews, generate hypotheses about possible defects,

and develop an effective set of tests.

3. The tester is better equipped to evaluate the quality of the testing effort (there are more

tools and approaches available from the combination of strategies). The testers are also

more able to evaluate the quality of the software itself, and establish a high degree of

confidence that the software is operating occurring to the specifications. This higher

confidence is a result of having examined software behavior and structural integrity in

several independent ways.

4. The tester is better able to contribute to organizational test process improvement efforts

based on his/her knowledge of a variety of testing strategies. With a solid grasp of both

black and white box test design strategies, testers can have a very strong influence on the

development and maintenance of test policies, test plans, and test practices. Testers are also

better equipped to fulfill the requirements for the Activities, Tasks, and Responsibilities

called for at TMM level. With their knowledge they can promote best practices, technology

transfer, and ensure organization wide adaptation of a variety of test design strategies and

techniques.

6. Explain in detail about : Equivalence Class Partitioning and Boundary value Analysis. (May/June

2013), (May/June 2014), (Nov/Dec 2016), (April/May 2017), (Nov/Dec 2017), (Apr/May 2018),

(Nov/Dec 2018), (Apr/May 2019), (Nov/Dec 2019).

Equivalence Partitioning:

Equivalence class partitioning results in a partitioning of the input domain of the software under-test.

The technique can also be used to partition the output domain, but this is not a common usage. The

finite number of partitions or equivalence classes that result allow the tester to select a given member of

an equivalence class as a representative of that class. It is assumed that all members of an equivalence

class are processed in an equivalent way by the target software.

 Using equivalence class partitioning a test value in a particular class is equivalent to a test value of

any other member of that class. Therefore, if one test case in a particular equivalence class reveals a

defect, all the other test cases based on that class would be expected to reveal the same defect. We can

also say that if a test case in a given equivalence class did not detect a particular type of defect, then no

 34

other test case based on that class would detect the defect (unless a subset of the equivalence class falls

into another equivalence class, since classes may overlap in some cases). A more formal discussion of

equivalence class partitioning is given in Beizer

 Based on this discussion of equivalence class partitioning we can say that the partitioning of the

input domain for the software-under-test using this technique has the following advantages:

1. It eliminates the need for exhaustive testing, which is not feasible.

2. It guides a tester in selecting a subset of test inputs with a high probability of detecting a defect.

3. It allows a tester to cover a larger domain of inputs/outputs with a smaller subset selected from

an equivalence class

Important points related to equivalence class partitioning:

1. The tester must consider both valid and invalid equivalence classes. Invalid classes represent

erroneous or unexpected inputs.

2. Equivalence classes may also be selected for output conditions.

3. The derivation of input or outputs equivalence classes is a heuristic process. The conditions that

are described in the following paragraphs only give the tester guidelines for identifying the

partitions. There are no hard and fast rules. Given the same set of conditions, individual testers

may make different choices of equivalence classes. As a tester gains experience he is more able

to select equivalence classes with confidence.

4. In some cases it is difficult for the tester to identify equivalence classes. The

conditions/boundaries that help to define classes may be absent, or obscure, or there may seem

to be a very large or very small number of equivalence classes for the problem domain. These

difficulties may arise from an ambiguous, contradictory, incorrect, or incomplete specification

and/or requirements description. It is the duty of the tester to seek out the analysts and meet

with them to clarify these documents.

List of Conditions:

1. ‘‘If an input condition for the software-under-test is specified as a range of values, select one valid

equivalence class that covers the allowed range and two invalid equivalence classes, one outside

each end of the range.’’

2. ‘‘If an input condition for the software-under-test is specified as a number of values, then select one

valid equivalence class that includes the allowed number of values and two invalid equivalence

classes that are outside each end of the allowed number.’’

3. ‘‘If an input condition for the software-under-test is specified as a set of valid input values, then

select one valid equivalence class that contains all the members of the set and one invalid

equivalence class for any value outside the set.’’

4. ‘‘If an input condition for the software-under-test is specified as a “must be” condition, select one

valid equivalence class to represent the “must be” condition and one invalid class that does not

include the “must be” condition.’’

Boundary value Analysis:

The test cases developed based on equivalence class partitioning can be strengthened by use of

another technique called boundary value analysis. With experience, testers soon realize that many

defects occur directly on, and above and below, the edges of equivalence classes.

 35

Boundaries of an equivalence partition

An Example of the Application of Equivalence Class Partitioning and Boundary Value

Analysis

• Widget identifiers into a widget data base
• We have three separate conditions that apply to the input:

(i) it must consist of alphanumeric characters
(ii) the range for the total number of characters is between 3 and 15,
(iii) the first two characters must be letters.

• First we consider condition 1, the requirement for alphanumeric characters.
This is a ―must be‖ condition. We derive two equivalence classes.

– EC1. Part name is alphanumeric, valid.
– EC2. Part name is not alphanumeric, invalid.

• Then we treat condition 2, the range of allowed characters 3–15.
– EC3. The widget identifier has between 3 and 15 characters, valid.
– EC4. The widget identifier has less than 3 characters, invalid.
– EC5. The widget identifier has greater than 15 characters, invalid.

 36

• Finally we treat the ―must be‖ case for the first two characters.
– EC6. The first 2 characters are letters, valid.
– EC7. The first 2 characters are not letters, invalid.

Fig : Example equivalence class reporting table

• For example:
– BLB—a value just below the lower bound
– LB—the value on the lower boundary
– ALB—a value just above the lower boundary
– BUB—a value just below the upper bound
– UB—the value on the upper bound
– AUB—a value just above the upper bound

• For our example module the values for the bounds groups are:
– BLB—2 BUB—14
– LB—3 UB—15

– ALB—4 AUB—16

Summary of test inputs using equivalence class partitioning and boundary value

analysis for sample module

• A major weakness with equivalence class partitioning is that it does not
allow testers to combine conditions.

 37

7. Explain State transition testing and error guessing.(Apr/May 2018)

 State transition testing is useful for both procedural and object-oriented development. It is

based on the concepts of states and finite-state machines, and allows the tester to view the developing

software in term of its states, transitions between states, and the inputs and events that trigger state

changes. This view gives the tester an additional opportunity to develop test cases to detect defects

that may not be revealed using the input/output condition as well as cause-and-effect views presented

by equivalence class partitioning and cause-and-effect graphing.
 The data flow approach is most effective at the unit level of testing. When code becomes more

complex and there are more variables to consider it becomes more time consuming for the tester to

analyze data flow roles, identify paths, and design the tests

 A state is an internal configuration of a system or component. It is defined in terms of the values

assumed at a particular time for the variables that characterize the system or component. A

finite-state machine is an abstract machine that can be represented by a state graph having a finite

number of states and a finite number of transitions between states. During the specification phase a

state transition graph (STG) may be generated for the system as a whole and/or specific modules. In

object oriented development the graph may be called a state chart. STG/state charts are useful models

of software (object) behavior. STG/state charts are commonly depicted by a set of nodes (circles,

ovals, rounded rectangles) which represent states. These usually will have a name or number to

identify the state. A set of arrows between nodes indicate what inputs or events will cause a transition

or change between the two linked states.

 Outputs/actions occurring with a state transition are also depicted on a link or arrow. A simple

state transition diagram is shown in Figure . S1 and S2 are the two states of interest. The black dot

represents a pointer to the initial state from outside the machine. Many STGs also have “error” states

and “done” states, the latter to indicate a final state for the system. The arrows display inputs/actions

that cause the state transformations in the arrow directions. For example, the transition from S1 to S2

occurs with input, or event B. Action 3 occurs as part of this state transition. This is represented by

the symbol “B/act3.”

 It is often useful to attach to the STG the system or component variables that are affected by state

transitions. This is valuable information for the tester as we will see in subsequent paragraphs. For

large systems and system components, state transition graphs can become very complex. Developers

can nest them to represent different levels of abstraction. This approach allows the STG developer to

group a set of related states together to form an encapsulated state that can be represented as a single

entity on the original STG. The STG developer must ensure that this new state has the proper

connections to the unchanged states from the original STG. Another way to simplify the STG is to

use a state table representation which may be more concise. A state table for the STG in Figure is

shown in Table

 38

 The state table lists the inputs or events that cause state transitions. For each state and each input

the next state and actions taken are listed. Therefore, the tester can consider each entity as a

representation of a state transition.

 The STGs should be subject to a formal inspection when the requirement/specification is

reviewed. This step is required for organization assessed at TMM level 3 and higher. It is essential

that

testers be present at the reviews. From the tester’s view point the review should ensure that (i) the

proper number of states are represented, (ii) each state transition (input/output/action) is correct, (iii)

equivalent states are identified, and (iv) unreachable and dead states are identified. Unreachable states

are those that no input sequence will reach, and may indicate missing transitions. Dead states are

those that once entered cannot be exited. In rare cases a dead state is legitimate, for example, in

software that controls a destructible device.

 After the STG has been reviewed formally the tester should plan appropriate test cases. An STG

has similarities to a control flow graph in that it has paths, or successions of transitions, caused by a

sequence of inputs. Coverage of all paths does not guarantee complete testing and may not be

practical. A simple approach might be to develop tests that insure that all states are entered. A more

practical and systematic approach suggested by Marik consists of testing every possible state

transition

Error Guessing

 Designing test cases using the error guessing approach is based on the tester’s/developer’s past

experience with code similar to the code-under test, and their intuition as to where defects may lurk in

the code. Code similarities may extend to the structure of the code, its domain, the design approach

used, its complexity, and other factors. The tester/developer is sometimes able to make an educated

“guess” as to which types of defects may be present and design test cases to reveal them. Some

examples of obvious types of defects to test for are cases where there is a possible division by zero,

where there are a number of pointers that are manipulated, or conditions around array boundaries.

Error guessing is an ad hoc approach to test design in most cases. However, if defect data for similar

code or past releases of the code has been carefully recorded, the defect types classified, and failure

symptoms due to the defects carefully noted, this approach can have some structure and value. Such

data would be available to testers in a TMM level 4 organizations.

8. How will you use white box approach to test case design?

 White-box testing (also known as clear box testing, glass box testing, transparent box testing,

and structural testing) is a method of testing software that tests internal structures or workings of an

application, as opposed to its functionality (i.e. black-box testing). In white-box testing an internal

perspective of the system, as well as programming skills, are used to design test cases. The tester chooses

inputs to exercise paths through the code and determine the appropriate outputs. This is analogous to

testing nodes in a circuit, e.g. in-circuit testing (ICT). White-box testing can be applied at

the unit, integration and system levels of the software testing process. Although traditional testers tended

to think of white-box testing as being done at the unit level, it is used for integration and system testing

more frequently today. It can test paths within a unit, paths between units during integration, and between

subsystems during a system–level test.
 White-box testing's basic procedures involves the tester having a deep level of understanding of

the source code being tested. The programmer must have a deep understanding of the application to

https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Black-box_testing
https://en.wikipedia.org/wiki/In-circuit_test
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/System_testing
https://en.wikipedia.org/wiki/Software_testing

 39

know what kinds of test cases to create so that every visible path is exercised for testing. Once the

source code is understood then the source code can be analyzed for test cases to be created. These are

the three basic steps that white-box testing takes in order to create test cases:

1. Input involves different types of requirements, functional specifications, detailed designing of

documents, proper source code, security specifications. This is the preparation stage of white-box

testing to layout all of the basic information.

2. Processing involves performing risk analysis to guide whole testing process, proper test plan,

execute test cases and communicate results. This is the phase of building test cases to make sure

they thoroughly test the application the given results are recorded accordingly.

3. Output involves preparing final report that encompasses all of the above preparations and results.

9. Discuss in detail about static testing and structural testing. Also mention the difference

between these two testing concepts. (Nov/Dec 2018) , (Nov/Dec 2019)

Software testing is a process of analyzing or operating software for the purpose of finding bugs.

As we know, testing can involve either “analyzing” or “operating” software. Test activities that

are associated with analyzing the products of software development are called static testing.

Static testing includes code inspections, walkthroughs, and desk checks. On the other hand, test

activities that involve operating the software are called dynamic testing. Static and dynamic

testing complement to one another and each type has a unique approach to detecting bugs.

Test activities that are associated with analyzing the products of software development are

called static testing. Static testing includes code inspections, walkthroughs, and desk checks. On

the other hand, test activities that involve operating the software are called dynamic testing.

Static testing is a system of White Box testing where developers verify or check code to find

fault. This type of testing is completed without executing the applications that are currently

developed.

 Dynamic Testing is completed by walking the real application with valid entries to verify the

expected results. Examples of methodologies for dynamic testing are unit testing, integration

testing, system testing & acceptance testing.

Main Difference between Static testing and Dynamic Testing:

Static testing is about prevention whereas dynamic testing is about cure.Static testing is more

cost-effective than dynamic testing.Static testing tools provide greater marginal benefits as

compare to dynamic testing.Static testing gives comprehensive diagnostics for code than

dynamic testing.

Dynamic testing finds fewer bugs as compare to static testing.Dynamic testing usually takes

longer time as compare to static testing as it test each case separately.

Static testing covers more areas than dynamic testing in shorter time.Static testing is done before

the code deployment whereas dynamic testing is after the code deployment.

 40

Static testing is done in verification stage whereas dynamic testing is done in validation stage.In

static testing code is being examined without being executed whereas In dynamic testing, code is

being executed and tested without necessarily being examined.

10.Explain in detail about code coverage testing? (Nov/Dec 2016)

Code Coverage testing is determining how much code is being tested. It can be calculated using

the formula:

Code Coverage = (Number of lines of code exercised)/(Total Number of lines of code) * 100%

Following are the types of code coverage Analysis:

 Statement coverage and Block coverage

 Function coverage

 Function call coverage

 Branch coverage

 Modified condition/decision coverage

Statement Coverage

Statement coverage is a white box test design technique which involves execution of all the

executable statements in the source code at least once. It is used to calculate and measure the

number of statements in the source code which can be executed given the requirements.

Statement coverage is used to derive scenario based upon the structure of the code under test.

Decision Coverage

Decision coverage reports the true or false outcomes of each Boolean expression. In this

coverage, expressions can sometimes get complicated. Therefore, it is very hard to achieve 100%

coverage.

That's why there are many different methods of reporting this metric. All these methods focus on

covering the most important combinations. It is very much similar to decision coverage, but it

offers better sensitivity to control flow.

Branch Coverage

In the branch coverage, every outcome from a code module is tested. For example, if the

outcomes are binary, you need to test both True and False outcomes.

It helps you to ensure that every possible branch from each decision condition is executed at least

a single time.

 41

By using Branch coverage method, you can also measure the fraction of independent code

segments. It also helps you to find out which is sections of code don't have any branches.

Condition Coverage

Conditional coverage or expression coverage will reveal how the variables or subexpressions in

the conditional statement are evaluated. In this coverage expressions with logical operands are

only considered.

For example, if an expression has Boolean operations like AND, OR, XOR, which indicated total

possibilities.

Conditional coverage offers better sensitivity to the control flow than decision coverage.

Condition coverage does not give a guarantee about full decision coverage

Finite State Machine Coverage

Finite state machine coverage is certainly the most complex type of code coverage method. This

is because it works on the behavior of the design. In this coverage method, you need to look for

how many time-specific states are visited, transited. It also checks how many sequences are

included in a finite state machine.

Advantages of Using Code Coverage

 Helpful to evaluate a quantitative measure of code coverage

 It allows you to create extra test cases to increase coverage

 It allows you to find the areas of a program which is not exercised by a set of test cases

Disadvantages of Using Code Coverage

 Even when any specific feature is not implemented in design, code coverage still report

100% coverage.

 It is not possible to determine whether we tested all possible values of a feature with the

help of code coverage

 Code coverage is also not telling how much and how well you have covered your logic

 In the case when the specified function hasn't implemented, or a not included from the

specification, then structure-based techniques cannot find that issue.

 42

Unit – III

LEVELS OF TESTING

Part – A

1. What are the levels or major phases of testing? (May/June 2013), (Nov/Dec 2013), (Nov/Dec 2018)

 Unit test, integration test, system test, and acceptance test

2. Define Unit.

A unit is the smallest possible testable software component. It can be characterized in several

ways. For example, a unit in a typical procedure-oriented software system:

 • performs a single cohesive function;

 • can be compiled separately;

 • is a task in a work breakdown structure (from the manager’s point of view);

 • contains code that can fit on a single page or screen.

3. What are the tasks to be performed in unit test?

 To prepare for unit test the developer/tester must perform several tasks. These are:

 (i) plan the general approach to unit testing;

 (ii) design the test cases, and test procedures (these will be attached to the test plan);

 (iii) define relationships between the tests;

 (iv) prepare the auxiliary code necessary for unit test.

4. Define test harness. (May/June 2013), (April/May 2017).

 The auxiliary code developed to support testing of units and components is called a test harness.

The harness consists of drivers that call the target code and stubs that represent modules it calls.

5. What are the goals of Integration test?

 Integration test for procedural code has two major goals:

 (i) to detect defects that occur on the interfaces of units;

 (ii) to assemble the individual units into working subsystems and finally a complete system that is

ready for system test.

6. Define Cluster.

 A cluster consists of classes that are related, for example, they may work together (cooperate) to

support a required functionality for the complete system.

7. What are the items included in a Cluster Test Plan?

 Cluster Test Plan includes the following items:

 (i) Clusters this cluster is dependent on;

 (ii) A natural language description of the functionality of the cluster to be tested;

 (iii) List of classes in the cluster;

 (iv) a set of cluster test cases.

8. List the types of system test. (Nov/Dec 2016)

 There are several types of system tests as follows:

 • Functional testing

 • Performance testing

 • Stress testing

• Configuration testing

• Security testing

• Recovery testing

9. Define Functional Testing.

 Functional tests are black box in nature. The focus is on the inputs and proper outputs for each

function. Improper and illegal inputs must also be handled by the system. System behavior under the

latter circumstances tests must be observed. All functions must be tested.

10. What are the goals of the Functional Testing?

 • All types or classes of legal inputs must be accepted by the software.

 • All classes of illegal inputs must be rejected.

 • All possible classes of system output must exercise and examined.

 • All effective system states and state transitions must be exercised and examined.

 43

 • All functions must be exercised.

11. What are two major types of requirements?

 1. Functional requirements. Users describe what functions the software should perform. We test

for compliance of these requirements at the system level with the functional-based system tests.

 2. Quality requirements. There are nonfunctional in nature but describe quality levels expected

for the software. One example of a quality requirement is performance level. The users may have

objectives for the software system in terms of memory use, response time, throughput, and delays.

12. What are the goals of system performance test?

 The goal of system performance tests is to see if the software meets the performance

requirements. Testers also learn from performance test whether there are any hardware or software factors

that impact on the system’s performance. Performance testing allows testers to tune the system; that is, to

optimize the allocation of system resources.

13. Define Stress Testing. (Apr/May 2019)

 When a system is tested with a load that causes it to allocate its resources in maximum amounts,

this is called stress testing. For example, if an operating system is required to handle 10 interrupts/second

and the load causes 20 interrupts/second, the system is being stressed.

14. Define Configuration testing.

 Configuration testing allows developers/testers to evaluate system performance and availability

when hardware exchanges and reconfigurations occur. Configuration testing also requires many resources

including the multiple hardware devices used for the tests. If a system does not have specific requirements

for device configuration changes then large-scale configuration testing is not essential.

15. What are the objectives of configuration testing according to Beizer?

 • Show that all the configuration changing commands and menus work properly.

 • Show that all interchangeable devices are really interchangeable, and that they each enter the

proper states for the specified conditions.

 • Show that the systems’ performance level is maintained when devices are interchanged, or when

they fail.

16. What is security testing? (Apr/May 2018)

 Security testing evaluates system characteristics that relate to the availability, integrity, and

confidentially of system data and services. Users/clients should be encouraged to make sure their security

needs are clearly known at requirements time, so that security issues can be addressed by designers and

testers.

17. What are the areas to be focused on during security testing?

 Password Checking

 Password Expiration

 Encryption.

 Legal and Illegal Entry with Passwords

 Browsing

 Trap Doors

 Viruses

18. Define Recovery testing.

 Recovery testing subjects a system to losses of resources in order to determine if it can recover

properly from these losses. This type of testing is especially important for transaction systems, for

example, on-line banking software.

19. Define Regression testing.(Nov/Dec 2018)

 Regression testing is not a level of testing, but it is the retesting of software that occurs when

changes are made to ensure that the new version of the software has retained the capabilities of the old

version and that no new defects have been introduced due to the changes. Regression testing can occur at

any level of test.

20. Define a use case.

44

 A use case is a pattern, scenario, or exemplar of usage. It describes a typical interaction between

the software system under development and a user.

21. Define internationalization testing.

Internationalization testing is the process of verifying the application under test to work uniformly

across multiple regions and cultures.

The main purpose of internationalization is to check if the code can handle all international support

without breaking functionality that might cause data loss or data integrity issues. Globalization

testing verifies if there is proper functionality of the product with any of the locale settings.

22. Define scenario testing.

Scenario testing is a software testing activity that uses scenarios: hypothetical stories to help the tester

work through a complex problem or test system. The idealscenario test is a credible, complex,

compelling or motivating story the outcome of which is easy to evaluate.

23. What is localization testing? List its characteristics.

Localization testing is performed to verify the quality of a product's localization for a particular target

culture/locale and is executed only on the localized version of the product.

Localization Testing - Characteristics:

 Modules affected by localization, such as UI and content

 Modules specific to Culture/locale-specific, language-specific, and region-specific

 Critical Business Scenarios Testing

 Installation and upgrading tests run in the localized environment

 Plan application and hardware compatibility tests according to the product's target region.

24. Define acceptance testing.

Acceptance testing, a testing technique performed to determine whether or not the software system has

met the requirement specifications. The main purpose of this test is to evaluate the system's compliance

with the business requirements and verify if it is has met the required criteria for delivery to end users.

There are various forms of acceptance testing:

 User acceptance Testing

 Business acceptance Testing

 Alpha Testing

 Beta Testing

25. Define alpha and beta testing. (May/June 2014), (Nov/Dec 2016)

Alpha testing takes place at the developer's site by the internal teams, before release to external

customers. This testing is performed without the involvement of the development teams.

Beta testing also known as user testing takes place at the end users site by the end users to validate the

usability, functionality, compatibility, and reliability testing.

26. Define Unit test. (Nov/Dec 2017)

Unit testing is a software development process in which the smallest testable parts of an

application, called units, are individually and in- dependently scrutinized for proper

operation. Unit testing can be done manually but is often automated.

27. Why is it important to design test harness for testing?(Nov/Dec 2017), (Apr/May 2017),

(Apr/May 2019), (Nov/Dec 2019).

Test harness enables the automation of tests. It refers to the system test drivers and other

supporting tools that requires to execute tests. It provides stubs and drivers which are small

programs that interact with the software under test.

Test harnesses execute tests, by using a test library and generates a report. It requires that

your test scripts are designed to handle different test scenarios and test data.

45

28. What is Bottom up integration Testing? And its advantages. (Apr/May 2018)

Bottom-up testing
 Integrate individual components in levels until the complete system is created

 Advantages and disadvantages

 Architectural validation

 Top-down integration testing is better at discovering errors in the system architecture

 System demonstration

 Top-down integration testing allows a limited demonstration at an early stage in the

development

 Test implementation

 Often easier with bottom-up integration testing.

 Test observation

 Problems with both approaches. Extra code may be required to observe tests

46

Part – B

1. Explain the levels of testing in detail? (Nov/Dec 2013)

 The approach used to design and develop a software system has an impact on how testers plan

and design suitable tests. There are two major approaches to system development—bottom-up, and

top-down. These approaches are supported by two major types of programming languages—

procedure-oriented and object-oriented. Testing at different levels for systems are developed with

both approaches using either traditional procedural programming languages or object-oriented

programming languages. The different nature of the code produced requires testers to use different

strategies to identify and test components and component groups.

 Systems developed with procedural languages are generally viewed as being composed of passive

data and active procedures. When test cases are developed the focus is on generating input data to

pass to the procedures (or functions) in order to reveal defects. Object oriented systems are viewed as

being composed of active data along with allowed operations on that data, all encapsulated within a

unit similar to an abstract data type. The operations on the data may not be called upon in any specific

order. Testing this type of software means designing an order of calls to the operations using various

parameter values in order to reveal defects. Issues related to inheritance of operations also impact on

testing.

 Levels of abstraction for the two types of systems are also somewhat different. In traditional

procedural systems, the lowest level of abstraction is described as a function or a procedure that

performs some simple task. The next higher level of abstraction is a group of procedures (or

functions) that call one another and implement a major system requirement. These are called

subsystems. Combining subsystems finally produces the system as a whole, which is the highest level

of abstraction. In object-oriented systems the lowest level is viewed by some researchers as the

method or member function .The next highest level is viewed as the class that encapsulates data and

methods that operate on the data. To move up one more level in an object-oriented system some

researchers use the concept of the cluster, which is a group of cooperating or related classes. Finally,

there is the system level, which is a combination of all the clusters and any auxiliary code needed to

run the system.

 Not all researchers in object-oriented development have the same view of the abstraction levels,

for example, Jorgensen describes the thread as a highest level of abstraction. Differences of opinion

will be described in other sections of this chapter. While approaches for testing and assembling

traditional procedural type systems are well established, those for object-oriented systems are still the

subject of ongoing research efforts. There are different views on how unit, integration, and system

tests are best accomplished in object oriented systems. When object-oriented development was

47

introduced key beneficial features were encapsulation, inheritance, and polymorphism. It was said

that these features would simplify design and development and encourage reuse.

 However, testing of object-oriented systems is not straightforward due to these same features.

For example, encapsulation can hide details from testers, and that can lead to uncovered code.

Inheritance also presents many testing challenges, among those the retesting of inherited methods

when they are used by a subclass in a different context. It is also difficult to define a unit for object-

oriented code. Some researchers argue for the method (member function) as the unit since it is

procedure like. However, some methods are very small in size, and developing test harnesses to test

each individually requires a large overhead. Should a single class be a unit? If so, then the tester need

to consider the complexity of the test harness needed to test the unit since in many cases, a particular

class depends on other classes for its operation. Also, object-oriented code is characterized by use of

messages, dynamic binding, state changes, and nonhierarchical calling relationships. This also makes

testing more complex.

2. Explain Unit Testing. (May/June 2013) ,(May/June 2014), (Nov/Dec 2018), (Apr/May 2018),

(Nov/Dec 2019).

A workable definition for a software unit is as follows: A unit is the smallest possible testable

software component. It can be characterized in several ways. For example, a unit in a typical

procedure-oriented software system: • performs a single cohesive function; • can be compiled

separately; • is a task in a work breakdown structure (from the manager’s point of view); • contains

code that can fit on a single page or screen. A unit is traditionally viewed as a function or procedure

implemented in a procedural (imperative) programming language. In object-oriented systems both

the method and the class/object have been suggested by researchers as the choice for a unit. The

relative merits of each of these as the selected component for unit test are described in sections that

follow. A unit may also be a small-sized COTS component purchased from an outside vendor that is

undergoing evaluation by the purchaser

 Components suitable for unit testing or a simple module retrieved from an in-house reuse library.

These unit types are shown in Figure

Unit Test: The Need for Preparation:

The principal goal for unit testing is insure that each individual software unit is functioning

according to its specification. Good testing practice calls for unit tests that are planned and public.

Planning includes designing tests to reveal defects such as functional description defects,

algorithmic defects, data defects, and control logic and sequence defects. Resources should be

allocated, and test cases should be developed, using both white and black box test design

strategies. The unit should be tested by an independent tester (someone other than the developer)

and the test results and defects found should be recorded as a part of the unit history (made

public). Each unit should also be reviewed by a team of reviewers, preferably before the unit test.

Unfortunately, unit test in many cases is performed informally by the unit developer soon after

the module is completed, and it compiles cleanly.

 Some developers also perform an informal review of the unit. Under these circumstances

the review and testing approach may be ad hoc. Defects found are often not recorded by the

developer; they are private (not public), and do not become a part of the history of the unit. This

is poor practice, especially if the unit performs mission or safely critical tasks, or is intended for

reuse.

48

To implement best practices it is important to plan for, and allocate resources to test each unit. If

defects escape detection in unit test because of poor unit testing practices, they are likely to show

up during integration, system, or acceptance test where they are much more costly to locate and

repair. In the worst-case scenario they will cause failures during operation requiring the

development organization to repair the software at the clients’ site. This can be very costly.

 To prepare for unit test the developer/tester must perform several tasks. These are:

(iii) plan the general approach to unit testing;

 (ii) design the test cases, and test procedures (these will be attached to the test plan);

(iii) define relationships between the tests;

(iv) prepare the auxiliary code necessary for unit test

Unit Test Planning

 A general unit test plan should be prepared. It may be prepared as a component of the master test

plan or as a stand-alone plan. It should be developed in conjunction with the master test plan and the

project plan for each project. Documents that provide inputs for the unit test plan are the project plan,

as well the requirements, specification, and design documents that describe the target units.

Components of a unit test plan are described in detail the IEEE Standard for Software Unit Testing

 A brief description of a set of development phases for unit test planning is found below

Phase 1: Describe Unit Test Approach and Risks

 In this phase of unit testing planning the general approach to unit testing is outlined.

The test planner: (i) identifies test risks;

(iv) describes techniques to be used for designing the test cases for the units;

(v) describes techniques to be used for data validation and recording of test results; (iv) describes the

requirements for test harnesses and other software that interfaces with the units to be tested, for

example, any special objects needed for testing object-oriented units.

Phase 2: Identify Unit Features to be Tested

 This phase requires information from the unit specification and detailed design description. The

planner determines which features of each unit will be tested, for example: functions, performance

requirements, states, and state transitions, control structures, messages, and data flow patterns. If

some features will not be covered by the tests, they should be mentioned and the risks of not testing

them be assessed. Input/output characteristics associated with each unit should also be identified, such

as variables with an allowed range of values and performance at a certain level.

Phase 3: Add Levels of Detail to the Plan

 In this phase the planner refines the plan as produced in the previous two phases. The planner

adds new details to the approach, resource, and scheduling portions of the unit test plan. As an

example, existing test cases that can be reused for this project can be identified in this phase. Unit

availability and integration scheduling information should be included in the revised version of the

test plan. The planner must be sure to include a description of how test results will be recorded. Test-

related documents that will be required for this task, for example, test logs, and test incident reports,

should be described, and references to standards for these documents provided. Any special tools

required for the tests are also described. The next steps in unit testing consist of designing the set of

test cases, developing the auxiliary code needed for testing, executing the tests, and recording and

analyzing the results

Designing the Unit Tests

 Part of the preparation work for unit test involves unit test design. It is important to specify (i) the

test cases (including input data, and expected outputs for each test case), and, (ii) the test procedures

(steps required run the tests).

 As part of the unit test design process, developers/testers should also describe the relationships

between the tests. Test suites can be defined that bind related tests together as a group. All of this test

design information is attached to the unit test plan. Test cases, test procedures, and test suites may be

reused from past projects if the organization has been careful to store them so that they are easily

retrievable and reusable. Test case design at the unit level can be based on use of the black and white

box test design strategies. Both of these approaches are useful for designing test cases for functions

49

and procedures. They are also useful for designing tests for the individual methods (member

functions) contained in a class.

3. Summarize the issues that arise in class testing.

 Class Testing:

 The complete test coverage of a class involves

 Testing all operations associated with an object

 Setting and interrogating all object attributes

 Exercising the object in all possible states

Preparatory steps for class testing

(i) List specified states for the object that is to be tested

(ii) List the messages and operations that will be exercised as a consequence of the

test

(iii) List the exceptions that may occur as the object is tested

(iv) List external conditions

(v) Document all supplementary information that will aid in understanding or

implementing the test

 A class cannot be tested directly (i.e.) a class can be tested only indirectly by testing several of its

instances.

 Issue: How can an abstract class be tested which has no instance.

 Control flow is characterized by message passing amongst the objects

Issue: There is no sequential control flow within a class

 Inheritance introduces new issues in object oriented approach

Issue: Structure of Inheritance e.g. possibility of repeated or multiple inheritance makes an object

more error prone

 Type of inheritance , e.g. if derived class is redefined

 To test an object, interaction between the methods provided by the object need to be tested.

 Abstract classes may be tested by using the approach of using different patterns foe invoking the

methods.

4. Explain in detail about test harness.

 In addition to developing the test cases, supporting code must be developed to exercise each unit

and to connect it to the outside world. Since the tester is considering a stand-alone

function/procedure/class, rather than a complete system, code will be needed to call the target unit,

and also to represent modules that are called by the target unit. This code called the test harness, is

developed especially for test and is in addition to the code that composes the system under

development

 The auxiliary code developed to support testing of units and components is called a test harness.

The harness consists of drivers that call the target code and stubs that represent modules it calls

The development of drivers and stubs requires testing resources. The drivers and stubs must be tested

themselves to insure they are working properly and that they are reusable for subsequent releases of

the software. Drivers and stubs can be developed at several levels of functionality. For example, a

driver could have the following options and combinations of options:

5. call the target unit;

(ii) do 1, and pass inputs parameters from a table;

(iii) do 1, 2, and display parameters;

(iv) do 1, 2, 3 and display results (output parameters).

The stubs could also exhibit different levels of functionality. For example a stub could:

(i) display a message that it has been called by the target unit;

50

(ii) do 1, and display any input parameters passed from the target unit;

(iii) do 1, 2, and pass back a result from a table;

 (iv) do 1, 2, 3, and display result from table

 Test harness

 Drivers and stubs as shown in Figure are developed as procedures and functions for traditional

imperative-language based systems. For object-oriented systems, developing drivers and stubs often

means the design and implementation of special classes to perform the required testing tasks. The test

harness itself may be a hierarchy of classes. For example, in Figure the driver for a procedural system

may be designed as a single procedure or main module to call the unit under test; however, in an

object-oriented system it may consist of several test classes to emulate all the classes that call for

services in the class under test. Researchers such as Rangaraajan and Chen have developed tools that

generate test cases using several different approaches, and classes of test harness objects to test

object-oriented code.

 The test planner must realize that, the higher the degree of functionally for the harness, the more

resources it will require to design, implement, and test. Developers/testers will have to decide

depending on the nature of the code under test, just how complex the test harness needs to be. Test

harnesses for individual classes tend to be more complex than those needed for individual procedures

and functions since the items being tested are more complex and there are more interactions to

consider.

5. Explain different types of system testing. (May/June 2013), (Nov/Dec 2018),(Apr/May 2019),

(Nov/Dec 2019).

(OR)

Explain Security testing and configuration testing with its objectives? (Apr/May 2018),

(Nov/Dec 2016), (Nov/Dec 2019).

51

The types are as follows:

Functional testing

 Functional tests at the system level are used to ensure that the behavior of the system adheres to

the requirements specification. All functional requirements for the system must be achievable by the

system.

Functional tests are black box in nature. The focus is on the inputs and proper outputs for each

function. Improper and illegal inputs must also be handled by the system. System behavior under the

latter circumstances tests must be observed. All functions must be tested that can be used to generate

test cases. State-based tests are also valuable. In fact, the tests should focus on the following goals.

• All types or classes of legal inputs must be accepted by the software.

• All classes of illegal inputs must be rejected (however, the system should remain available).

• All possible classes of system output must exercised and examined.

• All effective system states and state transitions must be exercised and examined.

• All functions must be exercised

Performance testing

 The goal of system performance tests is to see if the software meets the performance

requirements. Testers also learn from performance test whether there are any hardware or software

factors that impact on the system’s performance. Performance testing allows testers to tune the

system; that is, to optimize the allocation of system resources. For example, testers may find that they

need to reallocate memory pools, or to modify the priority level of certain system operations. Testers

may also be able to project the system’s future performance levels. This is useful for planning

subsequent releases.

Stress testing

 When a system is tested with a load that causes it to allocate its resources in maximum amounts,

this is called stress testing

Stress testing is important because it can reveal defects in real-time and other types of systems, as

well as weak areas where poor design could cause unavailability of service. For example, system

prioritization orders may not be correct, transaction processing may be poorly designed and waste

memory space, and timing sequences may not be appropriate for the required tasks. This is

particularly important for real-time systems where unpredictable events may occur resulting in input

loads that exceed those described in the requirements documents. Stress testing often uncovers race

conditions, deadlocks, depletion of resources in unusual or unplanned patterns, and upsets in normal

operation of the software system.

 Configuration testing

 According to Beizer configuration testing has the following objectives

 Show that all the configuration changing commands and menus work properly.

• Show that all interchangeable devices are really interchangeable, and that they each enter the proper

states for the specified conditions.

52

• Show that the systems’ performance level is maintained when devices are interchanged, or when

they fail.

Several types of operations should be performed during configuration test. Some sample operations

for testers are

(i) rotate and permutated the positions of devices to ensure physical/logical device permutations

work for each device (e.g., if there are two printers A and B, exchange their positions);

(ii) induce malfunctions in each device, to see if the system properly handles the malfunction; (iii)

induce multiple device malfunctions to see how the system reacts.

Security testing

 Security testing evaluates system characteristics that relate to the availability, integrity, and

confidentially of system data and services. Users/clients should be encouraged to make sure their

security needs are clearly known at requirements time, so that security issues can be addressed by

designers and testers.

 Computer software and data can be compromised by: (i) criminals intent on doing damage,

stealing data and information, causing denial of service, invading privacy; (ii) errors on the part of

honest developers/maintainers who modify, destroy, or compromise data because of misinformation,

misunderstandings, and/or lack of knowledge. Both criminal behavior and errors that do damage can

be perpetuated by those inside and outside of an organization. Attacks can be random or systematic.

 Damage can be done through various means such as:

(i) viruses;

(ii) Trojan horses;

(iii) Trap doors;

 (iv) Illicit channels.

The effects of security breaches could be extensive and can cause:

(i) Loss of information; (ii) corruption of information; (iii) misinformation; (iv) privacy violations;

(v) denial of service.

 A password checker can enforce any rules the designers deem necessary to meet security

requirements. Password checking and examples of other areas to focus on during security testing are

described below.

 Password Checking

 Legal and Illegal Entry with Passwords

 Password Expiration

 Encryption

 Browsing

 Trap Doors

 Viruses

Recovery testing

 Recovery testing subjects a system to losses of resources in order to determine if it can recover

properly from these losses. This type of testing is especially important for transaction systems, for

example, on-line banking software. A test scenario might be to emulate loss of a device during a

transaction. Tests would determine if the system could return to a well known state, and that no

transactions have been compromised. Systems with automated recovery are designed for this purpose.

They usually have multiple CPUs and/or multiple instances of devices, and mechanisms to detect the

failure of a device. They also have a so-called “checkpoint” system that meticulously records

transactions and system states periodically so that these are preserved in case of failure. This

information allows the system to return to a known state after the failure. The recovery testers must

ensure that the device monitoring system and the checkpoint software are working properly.

6. Explain in detail about integration testing. (Nov/Dec 2016), (Apr/May 2018), (Apr/May 2019)

(OR) Explain the different integration testing strategies for procedures and functions.

With suitable diagrams. (Nov/Dec 2017)

53

 Integration testing tests integration or interfaces between components, interactions to different

parts of the system such as an operating system, file system and hardware or interfaces between

systems.

 Also after integrating two different components together we do the integration testing. As

displayed in the image below when two different modules ‘Module A’ and ‘Module B’ are

integrated then the integration testing is done.

 Integration testing is done by a specific integration tester or test team.

 Integration testing follows two approach known as ‘Top Down’ approach and ‘Bottom Up’

approach as shown in the image below:

1. Big Bang integration testing:

In Big Bang integration testing all components or modules are integrated simultaneously, after which

everything is tested as a whole. As per the below image all the modules from ‘Module 1′ to ‘Module 6′

are integrated simultaneously then the testing is carried

out.

Advantage: Big Bang testing has the advantage that everything is finished before integration testing

starts.

Disadvantage: The major disadvantage is that in general it is time consuming and difficult to trace the

cause of failures because of this late integration.

2. Top-down integration testing: Testing takes place from top to bottom, following the control flow or

architectural structure (e.g. starting from the GUI or main menu). Components or systems are substituted

by stubs. Below is the diagram of ‘Top down Approach':

54

Advantages of Top-Down approach:

 The tested product is very consistent because the integration testing is basically performed in an

environment that almost similar to that of reality

 Stubs can be written with lesser time because when compared to the

 drivers then Stubs are simpler to author.

Disadvantages of Top-Down approach:
 Basic functionality is tested at the end of cycle

3. Bottom-up integration testing: Testing takes place from the bottom of the control flow upwards.

Components or systems are substituted by drivers. Below is the image of ‘Bottom up approach':

Advantage of Bottom-Up approach:

 In this approach development and testing can be done together so that the product or application

will be efficient and as per the customer

 Specifications.

Disadvantages of Bottom-Up approach:
 We can catch the Key interface defects at the end of cycle

 It is required to create the test drivers for modules at all levels except the top control

4. Hybrid Approach:

To overcome the limitations and to exploit the advantages of Top-down and Bottom-up approaches,

a hybrid approach in testing is used. As the name suggests, it is a mixture of the two approaches like

Top Down approach as well as Bottom Up approach.

In this approach the system is viewed as three layers consisting of the main target layer in the

middle, another layer above the target layer, and the last layer below the target layer.

The Top-Down approach is used in the topmost layer and Bottom-Up approach is used in the

lowermost layer. The lowermost layer contains many general-purpose utility programs, which are

helpful in verifying the correctness during the beginning of testing.

55

Testing converges for the middle level target layers are selected on the basis of system

characteristics and the structure of the code. The middle level target layer contains components using

the utilities.

Final decision on selecting an integration approach depends on system characteristics as well as on

customer expectations. Sometimes the customer wants to see a working version of the application as

soon as possible thereby forcing an integration approach aimed at producing a basic working system

in the earlier stages of the testing process.

7. Explain in detail about ad-hoc testing. .(Nov/Dec 2013)

When a software testing performed without proper planning and documentation, it is said to be Ad-hoc

Testing. Such kinds of tests are executed only once unless we uncover the defects.

Ad-hoc Tests are done after formal testing is performed on the application. Ad-hoc methods are the least

formal type of testing as it is NOT a structured approach. Hence, defects found using this method are hard

to replicate as there are no test cases aligned for those scenarios.

Testing is carried out with the knowledge of the tester about the application and the tester tests randomly

without following the specifications/requirements.

Hence the success of Ad-hoc testing depends upon the capability of the tester, who carries out the test.

The tester has to find defects without any proper planning and documentation, solely based on tester's

intuition.

Various ways to make Ad-hoc testing more effective

1. Preparation: By getting the defect details of a similar application, the probability of finding

defects in the application is more.

2. Creating a Rough Idea: By creating a rough idea in place the tester will have a focused

approach. It is NOT required to document a detailed plan as what to test and how to test.

3. Divide and Rule: By testing the application part by part, we will have a better focus and better

understanding of the problems if any.

4. Targeting Critical Functionalities: A tester should target those areas that are NOT covered

while designing test cases.

5. Using Tools: Defects can also be brought to the lime light by using profilers, debuggers and even

task monitors. Hence being proficient in using these tools one can uncover several defects.

6. Documenting the findings: Though testing is performed randomly, it is better to document the

tests if time permits and note down the deviations if any. If defects are found, corresponding test

cases are created so that it helps the testers to retest the scenario.

Types of Ad-hoc testing

Buddy testing:
In this form of testing there will be a test member and a development member that will be chosen to work

on the same module. Just after the developer completes the unit testing, the tester and developer sit

together and work on the module. This kind of testing enables the feature to be viewed in a broader scope

for both parties. The developer will gain a perspective of all the different of tests the tester runs and tester

will gain a perspective of how the inherent design is which will help him avoid designing invalid

scenarios, thereby preventing invalid defects. It will help one think like think the other.

Pair testing:
In this testing, two testers work together on a module with the same test setup shared between them. The

idea behind this form of testing to have the two testers brainstorms ideas and methods to have more

number of defects. Both can share the work of testing and making necessary documentation of all

observations made.

http://www.softwaretestinghelp.com/unit-testing/
http://www.softwaretestinghelp.com/tester-and-developer-communication/
http://www.softwaretestinghelp.com/tester-and-developer-communication/

56

Exploratory testing

Exploratory testing is about exploring, finding out about the software, what it does, what it doesn’t do,

what works and what doesn’t work. The tester is constantly making decisions about what to test next and

where to spend the (limited) time. This is an approach that is most useful when there are no or poor

specifications and when time is severely limited.

Exploratory testing is a hands-on approach in which testers are involved in minimum planning and

maximum test execution.

The planning involves the creation of a test charter, a short declaration of the scope of a short (1 to 2

hour) time-boxed test effort, the objectives and possible approaches to be used.

The test design and test execution activities are performed in parallel typically without formally

documenting the test conditions, test cases or test scripts.

Iterative testing

Iterative testing simply means testing that is repeated, or iterated, multiple times. Iterative usability testing

matters because the ultimate goal of all usability work is to improve usability, not to catalog problems.

Iterative testing uses the “waterfall model.” In Royce's original waterfall model, the following phases are

followed perfectly in order:

 Requirements specification and/or problem statement

 Design

 Construction, creation, and writing

 Integration

 Testing, outside reviews, and verification

 Installation

 Maintenance

Agile and Extreme Testing

A software testing practice that follows the principles of agile software development is called Agile

Testing. Agile is an iterative development methodology, where requirements evolve through collaboration

between the customer and self-organizing teams and agile aligns development with customer needs.

Advantages

 Agile Testing Saves Time and Money

 Less Documentation

 Regular feedback from the end user

 Daily meetings can help to determine the issues well in advance

XP work flow

There are different steps involved in XP methodologies.

 Develop user stories

 Prepare acceptance test cases

 Code

 Test

 Refractor

 delivery

8. Explain in detail about testing Object Oriented Systems.(Apr/May 2019)

Testing is a continuous activity during software development. In object-oriented systems, testing

encompasses three levels, namely, unit testing, subsystem testing, and system testing.

Unit Testing

57

In unit testing, the individual classes are tested. It is seen whether the class attributes are implemented as

per design and whether the methods and the interfaces are error-free. Unit testing is the responsibility of

the application engineer who implements the structure.

Subsystem Testing

This involves testing a particular module or a subsystem and is the responsibility of the subsystem lead. It

involves testing the associations within the subsystem as well as the interaction of the subsystem with the

outside. Subsystem tests can be used as regression tests for each newly released version of the subsystem.

System Testing

System testing involves testing the system as a whole and is the responsibility of the quality-assurance

team. The team often uses system tests as regression tests when assembling new releases.

Object-Oriented Testing Techniques

Grey Box Testing

The different types of test cases that can be designed for testing object-oriented programs are called grey

box test cases. Some of the important types of grey box testing are:

 State model based testing: This encompasses state coverage, state transition coverage, and state

transition path coverage.

 Use case based testing: Each scenario in each use case is tested.

 Class diagram based testing: Each class, derived class, associations, and aggregations are tested.

 Sequence diagram based testing: The methods in the messages in the sequence diagrams are

tested.

Techniques for Subsystem Testing

The two main approaches of subsystem testing are:

 Thread based testing: All classes that are needed to realize a single use case in a subsystem are

integrated and tested.

 Use based testing: The interfaces and services of the modules at each level of hierarchy are

tested. Testing starts from the individual classes to the small modules comprising of classes,

gradually to larger modules, and finally all the major subsystems.

Categories of System Testing

 Alpha testing: This is carried out by the testing team within the organization that develops

software.

 Beta testing: This is carried out by select group of co-operating customers.

 Acceptance testing: This is carried out by the customer before accepting the deliverables.

9.Differentiate alpha testing form beta testing. (Nov/Dec 2017)

Alpha and Beta testing are user acceptance testing (UAT)

Alpha Testing Beta Testing

1. It is always performed by the

developers at the software

development site.

It is always performed by the

customer’s at their own site.

2. It is done by testing team. It is done by testing team and

customers.

3. It is not open to the market and public It is always open to the market and public

58

4. It is conducted for the software

application and project

It is usually conducted for the software

product.

5. It is always performed in virtual

environment

It is performed in real – time

environment.

6. It is performed within the

organization

It is performed in outside the

organization

7. It comes white box and black box

testing.
It comes only the black box testing

8. It is done in user acceptance testing

time.
It is done in product delivery time.

9. No other name of alpha testing It is also called as “ field testing”

10

.

It is a developer premises It is user premises

11

.

For software application For software product

9. With examples explain the following black box techniques to testing

i) Requirement based testing

ii) Positive and Negative testing

iii) State based testing

iv) User documentation and compatibility. (Apr/May 2017)

Requirement based testing

Requirements-based testing is a testing approach in which test cases, conditions and data are

derived from requirements. It includes functional tests and also non-functional attributes such as

performance, reliability or usability.

Stages in Requirements based Testing:

 Defining Test Completion Criteria - Testing is completed only when all the functional

and non-functional testing is complete.

 Design Test Cases - A Test case has five parameters namely the initial state or

precondition, data setup, the inputs, expected outcomes and actual outcomes.

 Execute Tests - Execute the test cases against the system under test and document the

results.

 Verify Test Results - Verify if the expected and actual results match each other.

 Verify Test Coverage - Verify if the tests cover both functional and non-functional

aspects of the requirement.

 Track and Manage Defects - Any defects detected during the testing process goes

through the defect life cycle and are tracked to resolution. Defect Statistics are

maintained which will give us the overall status of the project.

59

Requirements Testing process:

 Testing must be carried out in a timely manner.

 Testing process should add value to the software life cycle, hence it needs to be effective.

 Testing the system exhaustively is impossible hence the testing process needs to be

efficient as well.

 Testing must provide the overall status of the project, hence it should be manageable.

Positive and Negative testing

Positive testing is the type of testing that can be performed on the system by providing the valid

data as input. It checks whether an application behaves as expected with positive inputs. This

test is done to check the application that does what it is supposed to do.

For example -

There is a text box in an application which can accept only numbers. Entering values up to 99999

will be acceptable by the system and any other values apart from this should not be acceptable.

To do positive testing, set the valid input values from 0 to 99999 and check whether the system

is accepting the values.

Negative Testing is a variant of testing that can be performed on the system by

providing invalid data as input. It checks whether an application behaves as expected with the

negative inputs. This is to test the application does not do anything that it is not supposed to do

so.

For example -

60

Negative testing can be performed by entering characters A to Z or from a to z. Either software

system should not accept the values or else it should throw an error message for these invalid

data inputs.

State based testing

State Transition testing, a black box testing technique, in which outputs are triggered by

changes to the input conditions or changes to 'state' of the system. In other words, tests are

designed to execute valid and invalid state transitions.

When to use?

 When we have sequence of events that occur and associated conditions that apply to

those events

 When the proper handling of a particular event depends on the events and conditions that

have occurred in the past

 It is used for real time systems with various states and transitions involved

Deriving Test cases:

 Understand the various state and transition and mark each valid and invalid state

 Defining a sequence of an event that leads to an allowed test ending state

 Each one of those visited state and traversed transition should be noted down

 Steps 2 and 3 should be repeated until all states have been visited and all transitions

traversed

 For test cases to have a good coverage, actual input values and the actual output values

have to be generated

Advantages:

 Allows testers to familiarise with the software design and enables them to design tests

effectively.

 It also enables testers to cover the unplanned or invalid states.

Example:

A System's transition is represented as shown in the below diagram:

61

The tests are derived from the above state and transition and below are the possible scenarios

that need to be tested.

Tests Test 1 Test 2 Test 3

Start State Off On On

Input Switch ON Switch Off Switch off

Output Light ON Light Off Fault

Finish State ON OFF On

User documentation and compatibility

62

User documentation refers to the documentation for a product or service provided to the end

users. The user documentation is designed to assist end users to use the product or service. This

is often referred to as user assistance. The user documentation is a part of the overall product

delivered to the customer.

Traditionally user documentation was provided as a user guide, instruction manual or online

help. However, user documentation is increasingly being delivered online today. This has

enabled technical writers to be more imaginative in how they assist users.

User documentation is important because it provides a avenue for users to learn:

1. how to use your software

2. features of your software

3. tips and tricks of your software

4. how to resolve common problems with your software

11.Explain what techniques applied for website testing? (Nov/Dec 2016), (Nov/Dec 2018)

Web application testing, a software testing technique exclusively adopted to test the

applications that are hosted on web in which the application interfaces and other functionalities

are tested.

Web Application Testing - Techniques:

1. Functionality Testing - The below are some of the checks that are performed but not limited

to the below list:

 Verify there is no dead page or invalid redirects.

 First check all the validations on each field.

 Wrong inputs to perform negative testing.

 Verify the workflow of the system.

 Verify the data integrity.

2. Usability testing - To verify how the application is easy to use with.

 Test the navigation and controls.

 Content checking.

 Check for user intuition.

3. Interface testing - Performed to verify the interface and the dataflow from one system to

other.

4. Compatibility testing- Compatibility testing is performed based on the context of the

application.

63

 Browser compatibility

 Operating system compatibility

 Compatible to various devices like notebook, mobile, etc.

5. Performance testing - Performed to verify the server response time and throughput under

various load conditions.

 Load testing - It is the simplest form of testing conducted to understand the behaviour of

the system under a specific load. Load testing will result in measuring important

business critical transactions and load on the database, application server, etc. are also

monitored.

 Stress testing - It is performed to find the upper limit capacity of the system and also to

determine how the system performs if the current load goes well above the expected

maximum.

 Soak testing - Soak Testing also known as endurance testing, is performed to determine

the system parameters under continuous expected load. During soak tests the parameters

such as memory utilization is monitored to detect memory leaks or other performance

issues. The main aim is to discover the system's performance under sustained use.

 Spike testing - Spike testing is performed by increasing the number of users suddenly by

a very large amount and measuring the performance of the system. The main aim is to

determine whether the system will be able to sustain the work load.

6. Security testing - Performed to verify if the application is secured on web as data theft and

unauthorized access are more common issues and below are some of the techniques to verify

the security level of the system.

 Injection

 Broken Authentication and Session Management

 Cross-Site Scripting (XSS)

 Insecure Direct Object References

 Security Misconfiguration

 Sensitive Data Exposure

 Missing Function Level Access Control

 Cross-Site Request Forgery (CSRF)

 Using Components with Known Vulnerabilities

 Unvalidated Redirects and Forwards

12. What is Regression testing? Outline the issues to be addressed for developing test cases

to perform regression testing? (Apr/May 2019).

Regression testing a black box testing technique that consists of re-executing those tests that are

impacted by the code changes. These tests should be executed as often as possible throughout

the software development life cycle.

Types of Regression Tests:

64

 Final Regression Tests: - A "final regression testing" is performed to validate the build

that hasn't changed for a period of time. This build is deployed or shipped to customers.

 Regression Tests: - A normal regression testing is performed to verify if the build has

NOT broken any other parts of the application by the recent code changes for defect

fixing or for enhancement.

Selecting Regression Tests:

 Requires knowledge about the system and how it affects by the existing functionalities.

 Tests are selected based on the area of frequent defects.

 Tests are selected to include the area, which has undergone code changes many a times.

 Tests are selected based on the criticality of the features.

Regression Testing Steps:

Regression tests are the ideal cases of automation which results in better Return On Investment

(ROI).

 Select the Tests for Regression.

 Choose the apt tool and automate the Regression Tests

 Verify applications with Checkpoints

 Manage Regression Tests/update when required

 Schedule the tests

 Integrate with the builds

 Analyze the results

65

Unit IV

TEST AMANAGEMENT

Part – A

1. What is a goal?

A goal can be described as (i) a statement of intent, or (ii) a statement of a accomplishment that

an individual or an organization wants to achieve.

2. What are the types of goals?

1. Business goal: to increase market share 10% in the next 2 years in the area of financial

software.

2. Technical goal: to reduce defects by 2% per year over the next 3 years.

3. Business/technical goal: to reduce hotline calls by 5% over the next 2 years.

4. Political goal: to increase the number of women and minorities in high management positions

by 15% in the next 3 years.

3. Define a policy.

A policy can be defined as a high-level statement of principle or course of action that is used to

govern a set of activities in an organization.

4. Define a plan.

A plan is a document that provides a framework or approach for achieving a set of goals.

5. Define a milestone. (Nov/Dec 2016)

Milestones are tangible events that are expected to occur at a certain time in the project’s lifetime.

Managers use them to determine project status.

6. What are the high-level items included by a planner?

The planner usually includes the following essential high-level items.

 Overall test objectives.

 What to test (scope of the tests).

 Who will test?

 How to test.

 When to test.

 When to stop testing.

7. Give some of the test Plan Components.

 Test plan identifier

 Introduction

 Items to be tested

 Features to be tested

 Approach

8. What is a Work Breakdown Structure?

A Work Breakdown Structure is a hierarchical or treelike representation of all the tasks that are

required to complete a project.

9. What is a cost driver?

A cost driver can be described as a process or product factor that has an impact on overall project

costs.

10. What is COCOMO Model?

The test planner can use the COCOMO model to estimate total project costs, and then allocate a

fraction of those costs for test. Application of the COCOMO model is based on a group of project

constants that depend on the nature of the project and items known as cost drivers.

11. What are the tests Design Specification?

 Test Design Specification Identifier

 Features to Be Tested

66

 Approach Refinements

 Test Case Identification

 Pass/Fail Criteria

12. What are Test case Specifications? (Apr/May 2019)

 Test Case Specification Identifier

 Test Items

 Input Specifications

 Output Specifications

 Special Environmental Needs

 Special Procedural Requirements

 Interface Dependencies

13. What are Test Summary Report?

 Test Summary Report identifier

 Variances

 Comprehensiveness assessment

 Summary of results

 Evaluation

 Summary of activities

 Approvals

14. What are the responsibilities for the developers/testers?

 Working with management to develop testing and debugging policies and goals.

 Participating in the teams that oversee policy compliance and change management.

 Familiarizing themselves with the approved set of testing/debugging goals and policies,

keeping up-to-date with revisions, and making suggestions for changes when appropriate.

 When developing test plans, setting testing goals for each project at each level of test that

reflect organizational testing goals and policies.

 Carrying out testing activities that are in compliance with organizational policies.

15. List the Personal and Managerial Skills.

 Organizational, and planning skills

 Track and pay attention to detail

 Determination to discover and solve problems

 Work with others, resolve conflicts

 Mentor and train others

 Work with users/clients

 Written/oral communication skills

 Think creatively

16. List some of the Technical Skills.

 General software engineering principles and practices

 Understanding of testing principles and practices

 Understanding of basic testing strategies, and methods

 Ability to plan, design, and execute test cases

 Knowledge of process issues

17. What is the role of Test Lead?

The test lead assists the test manager and works with a team of test engineers on individual

projects. He or she may be responsible for duties such as test planning, staff supervision, and

status reporting. The test lead also participates in test design, test execution and reporting,

technical reviews, customer interaction, and tool training.

18. What is the role of Test Engineer?

67

The test engineers design, develop, and execute tests, develop test harnesses, and set up test

laboratories and environments. They also give input to test planning and support maintenance of

the test and defect repositories.

19. What is the role of the Junior Test Engineer?

The junior test engineers are usually new hires. They gain experience by participating in test

design, test execution, and test harness development. They may also be asked to review user

manuals and user help facilities defect and maintain the test and defect repositories.

20. Give some of the knowledge that must be shown by Candidates for Certification.

Candidates for certification must show knowledge in areas that include:

 Quality management;

 Project management;

 Measurement;

 Testing;

 Audits;

 Configuration management.

21. What is the use of V-model in testing?

 The V-model is the model that illustrates how the testing activities can be integrated in

to each phase of the standard software life cycle.

22. Explain the test team hierarchy.

 The test manager

 The test lead

 The test engineer

 The junior test engineer

23. What are the steps in forming the test group? (May/June 2013)

 Upper management support for test function

 Establish test group organization

 Define education and skill levels

 Develop job description

 Interview candidates

 Select test group members

24. Define the term pass/Fail Criteria.

 Given a test item and a test case, the tester must have a set of criteria to decide on

whether the test has been passed or failed upon execution.

25. Define suspension and resumption criteria.

 The criteria to suspend and resume testing are described in the simplest of cases testing

is suspended at the end of a working day and resumed the following morning.

26. Discuss the role of test manager in a test group? (Apr/May – 2017) (Nov/Dec – 2016)

The test manager is usually responsible for test policy making, customer interaction, test planning,

test documentation, controlling and monitoring of tests, training, test tool acquisition, participation in

inspections and walkthroughs, reviewing test work, the test repository, and staffing issues such as

hiring, firing, and evaluation of the test team members
27.What are the issues in testing object oriented systems?(Nov/Dec 2016), (Nov/Dec 2019)

Traditional testing methods are not directly applicable to OO programs as they involve

OO concepts including encapsulation, inheritance, and polymorphism. These concepts

lead to issues, which are yet to be resolved.

28.State the limitations of statement coverage? (Apr/May 2017)

68

It cannot test the false conditions. It does not report that whether the loop reaches its

termination condition. It does not understand the logical operators.

29. Differentiate decision and condition coverage? (Apr/May 2017)

 Decision/branch coverage is said to test that each branch/output of a decisions is tested, i.e.

all statements in both false/true branches will be executed.

Condition coverage. With Condition coverage the possible outcomes of (“true” or “false”) for

each condition are tested at least once. This means that each individual condition is one time true

and false.

30.List the various skills needed by a test specialist. (Nov/Dec 2017), (Nov/Dec 2019)

Critical thinking skills.

Analytical skills and ability to see the big picture.

Organizational skills.

Sense of responsibility.

Independent judgment.

Self-sufficiency, resourcefulness.

Aptitude for teamwork.

31.What is the role of Test Summary Report?(Nov/Dec 2017)

Test summary report is a formal document that summarizes the results of all testing efforts

for a particular testing cycle of a project / module or a sub module. Generally, test leads or

test managers prepare this document at the end of testing cycle.

32. Define work breakdown structure? (Apr/May 2018)

A Work Breakdown Structure is a hierarchical or treelike representation of all the tasks that are

required to complete a project.

And the elements are 1. Project startup 2. Management coordination 3. Tool selection 4. Test

planning 5. Test design 6. Test development 7. Test execution 8. Test measurement, and

monitoring 9. Test analysis and reporting 10. Test process improvement

33. What is the function of Test item transmittal report or Locating test items? (Apr/May 2018)

It identifies the test items being transmitted for testing in the event that separate development and

test groups are involved or in the event that a formal beginning of test execution is desired .

34. What is the need of Test incident Report.(Nov/Dec 2018)

The tester should record in attest incident report (sometimes called a problem report) any event

that occurs during the execution of the tests that is unexpected, unexplainable, and that requires a

follow- up investigation.

35.Mention the duties of component - wise test teams.(Nov/Dec 2018)

Duties of component wise testing teams (Nov/Dec – 2018)

69

 Features to be tested

 Approach

 Pass/fail criteria

 Suspension and resumption criteria

eeds

36.Outline the need for a test plan.(Apr/May 2019)

 It is the guide book for the testing process.

 It contains details of the testing scope which prevents team from putting any

efforts in testing 'Out of scope' functionalities.

 It helps to determine the time and effort required for testing the product.

37. What is Test Log ? (Apr/May 2019)

The test log should be prepared by the person executing the tests. It is a diary of the

events that take place during the test.

Part B

1. Briefly explain about Organization structure for testing teams. .(Nov/Dec 2013) ,(Nov/Dec

2016), (Apr/May 2018), (Apr/May 2019)

Organization structures directly relate to some of the people issues.

In addition, the study of organization structures is important from the point of view of

effectiveness because an appropriately designed organization structure can provide accountability

to results.

This accountability can promote better teamwork among the different constituents and create in

better focus in the work.

In addition, organization structures provide a road map for the team members to envision their

career paths.

Structures for Multi-Product Companies:
When a company becomes successful as a single-product company, it may decide to diversify

into other products. In such a case, each of the products is considered as a separate business unit,

responsible for all activities of a product. In addition, as before, there will be common roles like

the CTO.

70

Effects of Globalization and Geographically Distribute Teams on Product Testing:

Business Impact of Globalization:
Globalization has revolutionized the way we produce and maintain software products.

1. Markets for software products are becoming global. Hence, a global distribution of production

of software becomes necessary to exploit the knowledge of the local conditions.

2. Since the markets are global, the needs that a product must satisfy are increasing exponentially.

Hence, it is impossible to meet all the demands from resources from just one location.

3. Several countries around the globe have a rich supply of talented people and these needs to be

utilized effectively.

4. Some countries offer not only a rich supply of talent pool but also offer cost advantages that

makes them a compelling business proposition.

2. Explain about Test plan components in detail. (Nov/Dec 2016),(Nov/Dec 2017), (Apr/May

2018), (Nov/Dec 2018), (Apr/May 2019),(Nov/Dec 2019).

1. Test Plan Identifier:
Each test plan should have a unique identifier so that it can be associated with a specific project

and become a part of the project history. The project history and all project-related items should

be stored in a project database or come under the control of a configuration management system.

2. Introduction

The test planner gives an overall description of the project, the software system being developed

or maintained, and the software items and or features to be tested. It is useful to include a high-

level description of testing goals and the testing approaches to be used.

3. Items to Be Tested
This is a listing of the entities to be tested and should include names, identifiers, and

version/revision numbers for each entity. The items listed could include procedures, classes,

modules, libraries, subsystems, and systems.

4. Features to Be Tested:
In this component of the test plan the tester gives another view of the entities to be tested by

describing them in terms of the features they encompass.

5. Approach

71

The planner should also include for each feature or combination of features, the approach that

will be taken to ensure that each is adequately tested. Tools and techniques necessary for the tests

should be included. Expectations for test completeness and how the degree of completeness

will be determined should be described.

6. Item Pass/Fail Criteria
Given a test item and a test case, the tester must have a set of criteria to decide on whether the test

has been passed or failed upon execution. The master test plan should provide a general

description of these criteria. In the test design specification section more specific details are given

for each item or group of items under test with that specification

7. Suspension and Resumption Criteria
Testing is suspended at the end of a working day and resumed the following morning.

For some test items this condition may not apply and additional details need to be provided by the

test planner.

The test plan should also specify conditions to suspend testing based on the effects or criticality

level of the failures/defects observed.

8. Test Deliverables
Execution-based testing has a set of deliverables that includes the test plan along with its

associated test design specifications, test procedures, and test cases

9. Testing Tasks
Using a Work Breakdown Structure (WBS) is useful here. A Work Breakdown Structure is a

hierarchical or treelike representation of all the tasks that are required to complete a project.

10. The Testing Environment
Here the test planner describes the software and hardware needs for the testing effort. For

example, any special equipment or hardware needed such as emulators, telecommunication

equipment, or other devices should be noted.

11. Responsibilities
The staff who will be responsible for test-related tasks should be identified.

This includes personnel who will be:

 transmitting the software-under-test;

 developing test design specifications, and test cases;

 executing the tests and recording results;

 tracking and monitoring the test efforts;

 checking results;

 interacting with developers;

 managing and providing equipment;

 developing the test harnesses;

 interacting with the users/customers.

12. Scheduling
Task durations should be established and recorded with the aid of a task networking tool. Test

milestones should be established, recorded, and Scheduled. These milestones usually appear in

the project plan as well as the test plan. They are necessary for tracking testing efforts to ensure

that Actual testing is proceeding as planned.

13. Risks and Contingencies
Every testing effort has risks associated with it. Testing software with a high degree of criticality,

complexity, or a tight delivery deadline all impose risks that may have negative impacts on

project goals.

These risks should be

(i) Identified,

(ii) Evaluated in terms of their probability of occurrence,

(iii) Prioritized, and

(iv) Contingency plans should be developed that can be activated if the risk occurs.

14. Testing Costs

72

The IEEE standard for test plan documentation does not include a separate cost component in its

specification of a test plan.

Test costs that should include in the plan are:

 Costs of planning and designing the tests;

 Costs of acquiring the hardware and software necessary for the tests

 Costs of executing the tests;

 Costs of recording and analyzing test results;

 Tear-down costs to restore the environment.

Test planners often borrow cost estimation techniques and models from project planners and

apply them to testing.

3. Discuss on test plan attachments.

The reader may be puzzled as to where in the test plan are the details needed for organizing and

executing the tests.

For example, what are the required inputs, outputs, and procedural steps for each test; where will

the tests be stored for each item or feature; will it be tested using a black box, white box, or

functional approach?

The following components of the test plan contain this detailed information. These documents are

generally attached to the test plan.

Requirement

Identifier

Requirement

Description

Priority Status Test ID

SR-25-13.5 Displays opening

screens

8 Yes TC-25-2

TC-25-5

SR-25-52.2 Checks the

validity of user

password

9 Yes TC-25-18

TC-25-23

Test Design Specification:
It is used to identify the features covered by this design and associated tests for the features.

The test design specification also has links to the associated test cases and test procedures needed

to test the features, and also describes in detail pass/fail criteria for the features.

The test design specification helps to organize the tests and provides the connection to the actual

test inputs/outputs and test steps.

Test design specification should have the following components according to the IEEE standard

Test Design Specification Identifier

Give each test design specification a unique identifier and a reference to its associated test plan.

Features to Be Tested

Test items, features, and combination of features covered by this test design specification are

listed. References to the items in the requirements and/or design document should be included.

Approach Refinements

In the test plan a general description of the approach to be used to test each item was described.

In this document the necessary details are added.

For example, the specific test techniques to be used to generate test cases are described, and the

rational is given for the choices. The test plane also describes how test results will be analyzed.

For example, will an automated comparator be used to compare actual and expected results?

Test Case Identification

73

Each test design specification is associated with a set of test cases and a set of set procedures.

The test cases contain input/output information, and the test procedures contain the steps

necessary to execute the tests.

A test case may be associated with more than one test design specification.

Pass/Fail Criteria

In this section the specific criteria to be used for determining whether the item has passed/failed

a test are given.

Test Procedure Specification:
Procedure Steps

(i) Setup: to prepare for execution of the procedure;

(ii) Start: to begin execution of the procedure;

(iii) Proceed: to continue the execution of the procedure;

(iv) Measure: to describe how test measurements related to outputs will be made;

(v) Shut down: to describe actions needed to suspend the test when unexpected events occur;

(vi) Restart: to describe restart points and actions needed to restart the procedure from these

points;

(vii) Stop: to describe actions needed to bring the procedure to an orderly halt;

(viii) Wrap up: to describe actions necessary to restore the environment;

(ix) Contingencies: plans for handling anomalous events if they occur during execution of this

procedure.

4. How will you report the test result? Explain in detail. (May/June 2013), (Nov/Dec 2013),

(Apr/May 2018), (Apr/May 2019)

The test plan and its attachments are test-related documents that are prepared prior to test

execution.

There are additional documents related to testing that are prepared during and after execution of

the tests.

The IEEE Standard for Software Test Documentation describes the following documents

Test Log
The test log should be prepared by the person executing the tests. It is a diary of the events that

take place during the test.

Test Log Identifier
Each test log should have a unique identifier

 Description,

 Activity and Event Entries,

 Execution description,

 Procedure results,

 Environmental information,

 Anomalous events,

 Incident report identifiers.

Test Incident Report
The IEEE Standard for Software Test Documentation recommends the following sections in the

report

1. Test Incident Report identifier

2. Summary

3. Incident

4. Impact

Test Summary Report

74

This report is prepared when testing is complete. It is a summary of the results of the testing

efforts. It also becomes a part of the project‘s historical database and provides a basis for lessons

learned as applied to future projects

 Test Summary Report identifier Variances:

 Comprehensiveness assessment

 Summary of results

 Evaluation

 Summary of activities

 Approvals

The Role of the Three Critical Groups in Testing Planning and Test Policy Development
For the TMM maturity goal, Develop Testing and Debugging Goals

75

The TMM recommends that project and upper management:

 Provide access to existing organizational goal/policy statements and sample testing

policies

 Provide adequate resources and funding to form the committees (team or task force) on

testing and debugging. Committee makeup is managerial, with technical staff serving as

co members.

 Support the recommendations and policies of the committee by: distributing

testing/debugging goal/policy documents to project managers, developers, and other

interested staff, appointing a permanent team to oversee compliance and policy change

making.

 Ensure that the necessary training, education, and tools to carry out defined

testing/debugging goals is made available.

 Assign responsibilities for testing and debugging.

5. Discuss on the different skills needed by the test specialist. .(Nov/Dec 2013), (Nov/Dec 2016)

& (Nov/Dec 2017), (Apr/May 2018), (Nov/Dec 2019)

Managerial and personal skills are necessary for success in the area of work. On the personal and

Managerial level a test specialist must have:

 Organizational, and planning skills;

 The ability to keep track of, and pay attention to, details;

 The determination to discover and solve problems;

 The ability to work with others and be able to resolve conflicts;

 The ability to mentor and train others;

 The ability to work with users and clients;

 Strong written and oral communication skills;

76

On the technical level testers need to have:

 an education that includes an understanding of general software engineering

principles, practices, and methodologies;

 strong coding skills and an understanding of code structure and behavior;

 a good understanding of testing principles and practices;

 a good understanding of basic testing strategies, methods, and techniques;

 the ability and experience to plan, design, and execute test cases and test procedures

on multiple levels (unit, integration, etc.);

 a knowledge of process issues;

 knowledge of how networks, databases, and operating systems are

 organized and how they work;

 a knowledge of configuration management;

 a knowledge of test-related documents and the role each documents

 plays in the testing process;

 the ability to define, collect, and analyze test-related measurements;

 the ability, training, and motivation to work with testing tools and equipment;

 a knowledge of quality issues.

6. Explain about people and organizational issues in testing. (Nov/Dec 2013)

Common People Issues:
Perceptions and misconceptions about testing:

Look at “heard in the street” statements about the testing profession. These statements are

sometimes made by testing professionals, by the management team, and by academicians.

Where these statements come from, the fallacy in the statements, and what can be given as

arguments to counter these perceptions.

“Testing is not Technically Challenging”

77

If you are conducting interviews to hire people for performing testing functions, you will

generally observe a very bipolar behavior among the candidates.

There will be the first set of people—usually a minority—who will approach testing with

tremendous pride, commitment, and enjoyment.

The second set—unfortunately, a majority—will be those who get into testing, ―because they

have no choice.

Functions in development Corresponding functions in

testing projects

Similarities

Requirement specification Test specification Both requires a thorough

understanding of the domain

Design Test Design Test design carries with it all

attributes of product design in

terms of architecting the test

system

Development/coding Test script development Involves the using of test

development and test

automation tool

Testing Making tests operational This would involve well-knit

teamwork between the

development and testing team

to ensure that the correct

result are captured

Maintenance Test maintenance Keep the test current with

changes from maintenance

Comparison between Testing and Development Functions:

 Testing is often a crunch time function.

 Generally more ―elasticity‖ is allowed in projects in earlier phases.

 Testing functions are arguably the most difficult ones to staff.

 Testing functions usually carry more external dependencies than development functions.

Providing Career Paths For Testing Professionals:
When people look for a career path in testing (or for that matter in any chosen profession), some

of the areas of progression they look for are

 Technical Challenge.

 Learning opportunities.

 Increasing responsibility and authority.

 Increasing Independence.

 Organizations Success.

 Rewards and Recognition.

The Role of the Ecosystem and a Call for Action:
The perceptions, misconceptions, and issues discussed so far cannot all be corrected by each and

every organization individually.

There are collective and much higher-level actions that need to be done.

These actions pertain to the entire ecosystem covering the education system, senior management,

and the community as a whole.

Role of Education System:

78

The education system does not place sufficient emphasis on testing. Consider some of these facts

about what prevails in most universities.

7. Brief on test planning concepts.(Nov/Dec 2018)

A plan is a document that provides a framework or approach for achieving a set of goals. In the

software domain, plans can be strictly business oriented,

For example, Long-term plans to support the economic growth of an organization, or they can be

more technical in nature, for example, a plan to develop a specific software product.

Test planning is an essential practice for any organization that wishes

To develop a test process that is repeatable and manageable. Pursuing the Maturity goals

embedded in the TMM structure is not a necessary precondition for initiating a test-planning

process.

However, a test process Improvement effort does provide a good framework for adopting this

essential practice.

Test planning should begin early in the software life Cycle; Milestones are tangible events that

are expected to occur at a certain time in the project‘s lifetime. Managers use them to determine

project status.

The planner usually includes the following essential high-level items.

1. Overall test objectives. As testers, why are we testing, what is to be achieved by the tests, and

what are the risks associated with testing this product?

2. What to test (scope of the tests). What items, features, procedures, functions, objects, clusters,

and subsystems will be tested?

3. Who will test? Who are the personnel responsible for the tests?

4. How to test. What strategies, methods, hardware, software tools, and techniques are going to

be applied? What test documents and deliverable should be produced?

5. When to test. What are the schedules for tests? What items need to be available?

6. When to stop testing. It is not economically feasible or practical to plan to test until all defects

have been revealed. This is a goal that testers can never be sure they have reached. Because of

budgets, scheduling, and customer deadlines, specific conditions must be outlined in the test

plan that allow testers/managers to decide when testing is considered to be complete.

79

8. How will you build a test group? Explain it. (Nov/Dec 2017), (Nov/Dec 2018)

Staffing activities include filling positions, assimilating new personnel, education and training,

and staff evaluation.

To initiate the process, upper management must support the decision to establish a test group and commit

resources to the group. Decisions must be made on how the testing group will be organized, what career

paths are available, and how the group fits into the organizational structure.

When hiring staff to fill test specialist positions, management should have a clear idea of the educational

and skill levels required for ach testing position and develop formal job descriptions to fill the test group

slots.

Dustin describes a typical job requisition for a test specialist. Included on this requisition are the job title,

full time/part time, location, salary, location, qualifications that are required (the applicant must have

these), qualifications that are desired (the recruiter is flexible on these), and a description of the duties.

80

When the job description has been approved and distributed, the interviewing process takes place.

Interviews should be structured and of a problem-solving nature.

The interviewer should prepare an extensive list of questions to determine the interviewee’s technical

background as well as his or her personal skills and motivation.

Zawacki has developed a general guide for selecting technical staff members that can be used by test

managers.

Dustin describes the kinds of questions that an interviewer should ask when selecting a test specialist.

When the team has been selected and is up and working on projects, the team manager is responsible for

keeping the test team positions filled (there are always attrition problems). He must continually evaluate

team member performance.

Bartol and Martin have written a paper that contains guidelines for evaluation of employees that can be

applied to any type of team and organization.

They describe four categories for employees based on their performance:

(i) Retain,

(ii) Likely to retain,

(iii) Likely to release,

(iv) And release.

9. Compare and contrast the debugging goals and policies in testing. (Nov/Dec 2016)

A goal can be described as (i) a statement of intent, or (ii) a statement of a accomplishment that an

individual or an organization wants to achieve.A goal statement relates to an area where an

individual, group, or organization wants to make improvements.

Goal statements can express expectations in quantitative terms or be more general in nature. For

the testing goals below, goals 1 and 2 express what is to be achieved in a more quantitative

manner than goals 3 and 4.

1. One-hundred percent of testing activities are planned.

2. The degree of automation for regression testing is increased from 50% to 80% over the next

3 years.

3. Testing activities are performed by a dedicated testing group.

4. Testing group members have at least a bachelor-level degree and have taken a formal course in

software testing.

A policy can be defined as a high-level statement of principle or course of action that is used to

govern a set of activities in an organization.A policy provides the vision and framework for

decision making, it is important to have the policy formally adopted by the organization,

documented, and available for all interested parties. An intra organizational web site is

suggested as a location for policy statement.Testing policy statements reflect, integrate, and

support achievement of testing goals.

10.How data flow testing aid in identifying defects in variable declaration and its

use?(Apr/May 2017)

81

Data Flow Testing is a specific strategy of software testing that focuses on data

variables and their values. It makes use of the control flow graph. When it comes to

categorization Data flow testing will can be considered as a type of white box testing

and structural types of testing. It keeps a check at the data receiving points by the

variables and its usage points. It is done to cover the path testing and branch testing

gap.

What is Data flow Testing?
 The programmer can perform numerous tests on data values and variables.

This type of testing is referred to as data flow testing.

 It is performed at two abstract levels: static data flow testing and dynamic data

flow testing.

 The static data flow testing process involves analyzing the source code

without executing it.

 Static data flow testing exposes possible defects known as data flow anomaly.

 Dynamic data flow identifies program paths from source code.

Let us understand this with the help of an example.

There are 8 statements in this code. In this code we cannot cover all 8 statements in a

single path as if 2 is valid then 4, 5, 6, 7 are not traversed, and if 4 is valid then

statement 2 and 3 will not be traversed.

https://www.testbytes.net/blog/types-of-software-testing/
https://www.testbytes.net/blog/software-testing-process/

82

Hence we will consider two paths so that we can cover all the statements.

x= 1
Path – 1, 2, 3, 8

Output = 2
If we consider x = 1, in step 1; x is assigned a value of 1 then we move to step 2

(since, x>0 we will move to statement 3 (a= x+1) and at end, it will go to statement 8

and print x =2.

For the second path, we assign x as 1

Set x= -1
Path = 1, 2, 4, 5, 6, 5, 6, 5, 7, 8

Output = 2
x is set as 1 then it goes to step 1 to assign x as 1 and then moves to step 2 which is

false as x is smaller than 0 (x>0 and here x=-1). It will then move to step 3 and then

jump to step 4; as 4 is true (x<=0 and their x is less than 0) it will jump on 5 (x<1)

which is true and it will move to step 6 (x=x+1) and here x is increased by 1.

So,

x=-1+1

x=0

x become 0 and it goes to step 5(x<1),as it is true it will jump to step

6 (x=x+1)

x=x+1

x= 0+1

x=1

x is now 1 and jump to step 5 (x<1) and now the condition is false and it will jump to

step 7 (a=x+1) and set a=2 as x is 1. At the end the value of a is 2. And on step 8 we

get the output as 2.

Steps of Data Flow Testing
 creation of a data flow graph.

 Selecting the testing criteria.

 Classifying paths that satisfy the selection criteria in the data flow graph.

 Develop path predicate expressions to derive test input.

The life cycle of data in programming code
 Definition: it includes defining, creation and initialization of data variables and

the allocation of the memory to its data object.

 Usage: It refers to the user of the data variable in the code. Data can be used in

two types as a predicate(P) or in the computational form(C).

 Deletion: Deletion of the Memory allocated to the variables.

Types of Data Flow Testing
 Static Data Flow Testing

No actual execution of the code is carried out in Static Data Flow testing. Generally,

the definition, usage and kill pattern of the data variables is scrutinized through a

control flow graph.

83

 Dynamic Data Flow Testing

The code is executed to observe the transitional results. Dynamic data flow testing

includes:
 Identification of definition and usage of data variables.

 Identifying viable paths between definition and usage pairs of data variables.

 Designing & crafting test cases for these paths.

Advantages of Data Flow Testing
 Variables used but never defined,

 Variables defined but never used,

 Variables defined multiple times before actually used,

 DE allocating variables before using.

Data Flow Testing Limitations
 Testers require good knowledge of programming.

 Time-consuming

 Costly process.

11.Explain Mutation testing with an example.(Apr/May 2017), (Nov/Dec 2019)

Mutation testing is a structural testing technique, which uses the structure of the code to guide

the testing process. On a very high level, it is the process of rewriting the source code in small

ways in order to remove the redundancies in the source code

These ambiguities might cause failures in the software if not fixed and can easily pass through

testing phase undetected.

Mutation Testing Benefits:

Following benefits are experienced, if mutation testing is adopted:

 It brings a whole new kind of errors to the developer's attention.

 It is the most powerful method to detect hidden defects, which might be impossible to

identify using the conventional testing techniques.

 Tools such as Insure++ help us to find defects in the code using the state-of-the-art.

 Increased customer satisfaction index as the product would be less buggy.

 Debugging and Maintaining the product would be more easier than ever.

Mutation Testing Types:

 Value Mutations: An attempt to change the values to detect errors in the programs. We

usually change one value to a much larger value or one value to a much smaller value.

The most common strategy is to change the constants.

 Decision Mutations: The decisions/conditions are changed to check for the design

errors. Typically, one changes the arithmetic operators to locate the defects and also we

can consider mutating all relational operators and logical operators (AND, OR , NOT)

84

 Statement Mutations: Changes done to the statements by deleting or duplicating the

line which might arise when a developer is copy pasting the code from somewhere else.

Example:A mutation is nothing but a single syntactic change that is made to the program

statement. Each mutant program should differ from the original program by one mutation.

Original Program Mutant Program
If (x>y)

Print "Hello"

Else

Print "Hi"

If(x<y)

Print "Hello"

Else

Print "Hi"

12.Explain Weyuker’s eleven axioms that allows testers to evaluate test adequacy criteria?

(Apr/May 2017)

As a conscientious tester one might at first reason that his testing goal should be to develop tests

that can satisfy the most stringent criterion. However, one should consider that each adequacy

criterion has both strengths and weaknesses. Each is effective in revealing certain types of

defects. Testing conditions and the nature of the software should guide your choice of a

criterion.

Weyuker presents a set of axioms that allow testers to formalize properties which should be

satisfied by any good program-based test data adequacy criterion.

Testers can use the axioms to,

an effective test data adequacy criterion should exhibit;

with which to evaluate these new criteria.

The axioms are based on the following set of assumptions:

i. programs are written in a structured programming language;

ii. programs are SESE (single entry/single exit);

iii. all input statements appear at the beginning of the program;

iv. all output statements appear at the end of the program.

1 . Applicability Property

“For every program there exists an adequate test set”. For all programs we should be able to

design an adequate test set that properly tests it. If we test on all representable points, that is

called an exhaustive test set. The exhaustive test set will surely be adequate since there will be no

other test data that we can generate. However, exhaustive testing results in too expensive, time

consuming, and impractical.

2 . Nonexhaustive Applicability Property

85

“For a program P and a test set T, P is adequately tested by the test set T, and T is not an

exhaustive test set”. A tester does not need an exhaustive test set in order to adequately test a

program.

3 . Monotonicity Property

“If a test set T is adequate for program P, and if T is equal to, or a subset of T’, then T’ is

adequate for program P.”

4 . Inadequate Empty Set

“An empty test set is not an adequate test for any program”. If a program is not tested at all, a

tester cannot claim it has been adequately tested!

5 . Anti-extensionality Property

“There are programs P and Q such that P is equivalent to Q, and T is adequate for P, but T is not

adequate for Q”. Just because two programs are semantically equivalent does not mean we

should test them the same way. Their implementations (code structure) may be very different.

6 . General Multiple Change Property

“There are programs P and Q that have the syntactic equivalence, and there is a test set T such

that T is adequate for P, but is not adequate for Q”. Two programs are the same shape if one can

be transformed into the other by applying

(i) replace relational operator r1 in a predicate with relational operator r2;

(ii) replace constant c1 in a predicate of an assignment statement with constant c2;

(iii) Replace arithmetic operator a1 in an assignment statement with arithmetic

operator a2.

7 . Anti-decomposition Property

“There is a program P and a component Q such that T is adequate for P, T’ is the set of vectors

of values that variables can assume on entrance to Q for some t in T, and T’ is not adequate for

Q”. Although an encompassing program has been adequately tested, it does not follow that each

of its components parts has been properly tested.

Eg. a routine that has been adequately tested in one environment may not have been adequately

tested to work in another environment, the environment being the enclosing program.

8 . Anti-composition Property

“There are programs P and Q, and test set T, such that T is adequate for P, and the set of vectors

of values that variables can assume on entrance to Q for inputs in T is adequate for Q, but T is

not adequate for P; Q

 (the composition of P and Q)”. Adequately testing each individual program component in

isolation does not necessarily mean that we have adequately tested the entire program (the

program as a whole).

9 . Renaming Property

“If P is a renaming of Q, then T is adequate for P only if T is adequate for Q. An inessential

change in a program such as changing the names of the variables should not change the nature of

the test data that are needed to adequately test the program.

10. Complexity Property

“For every n, there is a program P such that P is adequately tested by a size n test set, but not by

any size n-1 test set.” This means that for every program, there are other programs that require

more testing.

13.Explain Test Case Specification? (Apr/May 2019)

86

A test case is a document, which has a set of test data, preconditions, expected results and

postconditions, developed for a particular test scenario in order to verify compliance against a

specific requirement.

Test Case acts as the starting point for the test execution, and after applying a set of input

values, the application has a definitive outcome and leaves the system at some end point or also

known as execution postcondition.

Typical Test Case Parameters:

 Test Case ID

 Test Scenario

 Test Case Description

 Test Steps

 Prerequisite

 Test Data

 Expected Result

 Test Parameters

 Actual Result

 Environment Information

 Comments

Example:

Let us say that we need to check an input field that can accept maximum of 10 characters.

While developing the test cases for the above scenario, the test cases are documented the

following way. In the below example, the first case is a pass scenario while the second case is a

FAIL.

Scenario Test Step Expected Result Actual Outcome

Verify that the input

field that can accept

maximum of 10

characters

Login to

application and key

in 10 characters

Application should be

able to accept all 10

characters.

Application

accepts all 10

characters.

Verify that the input

field that can accept

maximum of 11

characters

Login to

application and key

in 11 characters

Application should

NOT accept all 11

characters.

Application

accepts all 10

characters.

87

If the expected result doesn't match with the actual result, then we log a defect. The defect goes

through the defect life cycle and the testers address the same after fix.

Unit V

TEST AUTOMATION

Part A

1. What is Test Automation? (April/May 2017)

In software testing, test automation is the use of special software (separate from the software

being tested) to control the execution of tests and the comparison of actual outcomes with

predicted outcomes.

 Automation saves times as software can execute test cases faster than human do

 Test automation can free the test engineers from mundane tasks and make focus on

creative task.

 Automated tests can be more reliable.

 Automation helps in immediate testing

 Automation protect an organization against attrition of test engineers

 Test automation opens up best opportunities for better utilization for global resources

 Certain types of testing cannot be executed without automation.

 Automation means end to end, not test execution alone.

2. Define test data generator.

Automation should have scripts that produce test data to maximize coverage of permutations and

combinations of inputs and expected output or result comparison. They are called test data

generator.

3. What are the different generations of automation?

 First Generation – Record and playback

 Second Generation – Data Driven

 Third Generation – Action driven

4. What are the scopes for automation?

 Identifying the types of testing amenable to automation

 Automating areas less prone to changes

 Automate test that pertain to standards.

 Management aspects in automation.

5. What is configuration file?

 A configuration file contains a set of variables that are used in automation.

 The variables could be for the test framework or for other modules in automation such as

tools and metrics or for the test suite or for a set of test cases or for a particular test case

 A configuration file is important for running the test cases for various execution

conditions and for running test for various input and output conditions.

 The values of these variables in this configuration file can be changed dynamically to

achieve different execution input, output and state condition.

88

6. Define test framework.

A testing framework or more specifically a testing automation framework is an execution

environment for automated tests. It is the overall system in which the tests will be automated.

It is defined as the set of assumptions, concepts, and practices that constitute a work platform or

support for automated testing.

The Testing framework is responsible for:

 Defining the format in which to express expectations.

 Creating a mechanism to hook into or drive the application under test

 Executing the tests

 Reporting results

7. Explain the work of report generator.

 Once the test run result is available, the next step is to prepare the test report and metrics.

Preparing report is a complex and time consuming effort and hence it should be part of

the automation design.

 The module that takes input and prepares a formatted report is a called report generator.

 The periodicity of the report is different such as daily, weekly, monthly or milestones

report.

8. What are the criteria for selecting test tools? (Nov/Dec 2016)

 Meeting requirements

 Technology expectation

 Training/skills

 Management aspects

9. Define instrumented code.

Test tool requires their libraries to be linked with product binaries. When the libraries are linked

with the source code of the product, it is called instruments code.

10. List down the basic concepts of extreme programming.

 Unit test cases are developed before the coding phase starts.

 Code is written for test cases and are written to ensure test cases pass

 All the unit tests must run 100% all the time

 Everyone owns the product; they often cross boundaries.

11. What is metrics program and list down the steps in metrics program?

Metris drive information from raw data with the view to help in decision making.

Steps:

 Identify what to measure

 Transform measurement to metrics

 Decide operational requirements

 Perform metrics analysis

 Take actions and follow up

 Refine

12. List out the different types of metrics.

 Project metrics: A set of metrics that indicate how the project is planned and executed.

 Progress metrics: A set of metrics that tracks how the different activities of the project are

progressing

 Productivity metrics: A set of metrics that helps in planning and estimating of testing

activities.

13. Define effort variance and schedule variance.

Effort variance provides a quantitative measure of the relative difference between the revised and

actual efforts.

Schedule variance is the deviation of the actual schedule from the estimated schedule.

14. What is test defect metrics?

 A set of metrics helps to understand how the defects that are found can be used to

improve testing and product quality.

89

 The defects are classified by defect priority and defect severity.

 Defect priority provides management perspective for the order of defect fixes.

 The severity of defects provides the test team a perspective of the impact of that defect in

product functionality.

15. What do you mean by closed defect distribution?

 The objective of testing is not only to find defects.

 The testing team also has the objective to ensure that all defects fond through testing are

fixed so that the customer gets the benefit of testing and the product quality improves.

 To ensure the most of the defects are fixed, the testing team has to track the defects and

analyze how they are closed. The closed defect distribution helps in this analysis.

16. Define release metrics.

 The decision to release a product would need to consider several perspectives and several

metrics. The release metrics provides the guidelines in making the release decision.

 Some release metrics are test case executed, effort distribution, defect find rate, defect fix

rate, outstanding defect trends, priority outstanding defect trends, weighted defect trends,

defect density and defect removal rate, age analysis of outstanding defects, introduces

and reopened defects, defects per100 hours of testing, test cases executed for 100 hours

of testing, test phase effectiveness, closed defect distribution.

17. What is the different purpose of productivity metrics?

 Estimating for the new release

 Finding out how well the team is progressing, understanding the reason for variation in

result.

 Estimating the number of defects that can be found

 Estimating release date and quality

 Estimating the cost involved in the release

18. What do you mean by defect per 100 Hours of testing?

Defect per 100 hours of testing normalizes the number of defects found in the product with

respect to the effort spend

Defect per 100 hours of testing=(Total defect found in the product for a period/Total hours spend

to get those defects)*100

19. How the defect metrics can be used in improving the development activities?

 Component wise defect distribution

 Defect density and defect removal rate

 Age analysis of outstanding defects

 Introduced

20. What are the different test defect metrics?

 Defect find rate

 Defect fix rate

 Outstanding defects rate

 Priority outstanding rate

 Weighted defects trend

 Defect cause distribution

21. List various measurements for monitoring the testing status.

Coverage measures, Test case development, Test execution, Test harness development

22. What are the various severity level hierarchy?

 Catastrophic, Critical, Marginal, Minor or annoying

23. What are the disadvantages of first generation automation?

 Scripts holds hardcoded values

 Test maintenance cost is maximized

24. What are the types of reports?

 Executive report: gives a very level status

90

 Technical report: moderate level of details of test run

 Detailed or debug report: to debug the failed test case

25. What are the different software automation testing tools?

 Rational functional tester

 Robot framework

 Sahi

 Selenium

26. What are the challenges in test automation? (Nov/Dec 2017), (Apr//May 2017),

(Nov/Dec 2019).

Test automation is an essential subset of software testing. By using automated testing, we

can expedite the process of software validation and increase testing coverage. However,

there are a lot of challenges in applying test automation for Applications Under Test (AUT).

Top 5 Challenges in Test Automation

 Effective Communication and Collaboration

 Selecting the Right Tool

 Demanding Skilled Resources

 Selecting a Proper Testing approach

 High Upfront Investment Cost

27. What are the uses of walkthrough? (Nov/Dec 2017), (Apr/May 2018)

Walkthrough is one the form of Review meeting. Although it is quite different from

Inspection. Like Inspection, it is not a formal process. Usually, it is initiated by the author.

The author reads the document or code under walkthrough and peers note out the defects

and sugges- tions. The moderator is not necessary for the walkthrough, as it is one of the

informal ways of doing the review.

The goal of Walkthrough.

 Learning about the development happens till date.

 Understand the development happen till date

 Finding defects in the development

 Reporting suggestion provided by the peer

28.Distinguish between Milestone and Deliverable.(Nov/Dec 2016)

Milestones are tangible events that are expected to occur at a certain time in the project’s

lifetime. Managers use them to determine project status.

Execution-basedtestinghasasetofdeliverablesthatincludesthetestplan along with its

associated test design specifications, test harness, test procedures, and test cases.

29.Mention the types of testing amenable to automation? (Apr/May 2017)

91

Different types of software testing that can be automated

 Smoke Testing.

 Keyword Testing.

 Regression Testing.

 Data Driven Testing.

 Black Box Testing.

30.What is Walk throughs? (Apr/May 2018)

and actually guides the progression of the review (as a review reader)

nputs may be selected and review participants then literally

walk through the design or code

31. What are the general goals for the reviewers (Apr/May 2018)

The general goals for the reviewers

ify problem components or components in the software artifact that need improvement;

 that the artifact conforms to organizational standards. the many benefits of a review

program are:

-quality software;

ed awareness of quality issues; • teaching tool for junior staff;

fy reusable software artifacts.

32. What is Progress metrics? (Nov/Dec 2018) , (Nov/Dec 2019)

In software testing, Metric is a quantitative measure of the degree to which a system, system

component, or process possesses a given attribute. In other words, metrics helps estimating the

progress, quality and health of a software testing effort.

33.What is the need for automated testing? (Nov/Dec 2018)

 Automated testing can increase the depth and scope of tests to help improve software quality.

Lengthy tests that are often avoided during manual testing can be run unattended. They can even

be run on multiple computers with different configurations.

34. Define Process metrics.(Nov/Dec 2019)

Process metrics are standard measurements that are used to evaluate and benchmark the

performance of business processes. It is common for operational processes to be heavily

optimized in a cycle of measurement, improvement and measurement.

35. Outline the need for test metrics.(Apr/May 2019)

92

Software Testing Metrics are useful for evaluating the health, quality, and progress of a software

testing effort. ... Top benefits of tracking software testing metrics include the following: Helps

achieve cost savings by preventing defects. Helps improve overall project planning.

36. Name any two software testing tools?(Apr/May 2019)

1. SoapUI - As the name indicates, SoapUI is a widely used open-source test

automation tool for SOAP and REST APIs.

2. EggPlant - EggPlant is a black-box GUI test automation tool.

Part B

1. Explain the framework for test automation.(Apr/May 2019)

A test case is asset of sequential steps to execute a test operating on a set of predefined inputs

to produce certain expected outputs.

There are two types of test cases

 Automated: An automated test case is executed using automation

 Manual: A manual test case is executed manually

A test case can be represented in many forms. It can be documented as a set of simple steps,

or an assertion or a set of assertions.

Testing involves several phases and several types of testing. Some test cases are repeates

several times during a product release because the product is built several times.

Not only the test cases repetitive in testing, are some operations in the test cases too

repetitive.

For eg; “Log in to the system” ar performed in a large number of test cases for a product.

This presents an opportunity for the automation code to be reused for different purposes and

scenarios

Log in can be tested for different types of testing

S.No Test cases for testing Belongs to what type of

testing

1 Check in whether log in works Functionality

2 Repeat log in operation in a loop for 48 hours Reliability

3 Perform log in from 10000 clients Load/stress testing

4 Measure time taken for log in operations in

different conditions

Performance

5 Run log in operation from a machine running

Japanese language

Internationalization

93

There are two important dimensions: “What operations have to be tested” and “How the

operations have to be tested” The how portion of test case is called scenarios. “what an

operation has to do” is a product specific feature and “how they are to be run” is a framework

specific requirement

The automation is based on the fact that product operation are repetitive in nature and by

automating the basic operations and leaving the different scenarios to the framework tool,

great progress can be made.

This ensures code reuse for automation and draws a clear boundary between “what a test suite

has to do” and “what a framework or a test tool should complement”.

When scenarios are combined by basic operations of the product, they become automated test

cases.

When a set of test cases is combined and associated with a set of scenarios, they are called

test suites.

A test suite is nothing but a set of test cases that are automated and scenarios that are

associated with the test cases.

2.Brief the “Generation of Automation”. (April/May 2017)

The skills required depends on what generation of automation the company is in.

1) Record / playback and test harness tools (first generation).

2) Data driven tools (second generation).

3) Action driven (third generation).

1) Record / Playback and Test Harness Tools:

 One of the most boring and time-consuming activity during testing life cycle is to

rerun manual tests number of times.

 Here, record/playback tools are of great help to the testers. These tools do this by

recording and replaying the test input scripts.

 As a result, tests can be replayed without attendant for long hours specially during

regression testing.

 Also these recorded test scripts can be edited as per need i.e., whenever changes

are made to the software.

 These tools can even capture human operations e.g., mouse activity, keystrokes

etc.

 A record / playback tool can be either intrusive or non-intrusive. Intrusive record /

playback tools are also called native tools as they along with software-under-test

(SUT), reside on the same machine.

94

 Non-intrusive record / playback tools on the other hand, reside on the separate

machine and are connected to the machine containing software to be tested using

special hardware.

 One advantage of these tools is to capture errors which users frequently make and

which developers cannot reproduce.

 Test harness tools are the category of record / playback tools used for capturing

and replaying sequence of tests.

 These tools enable running large volume of tests unattended and help in

generating reports by using comparators.

 These tools are very important at CMM level - 2 and above.

2) Data-driven Tools:

 This method help in developing test scripts that generates the set of input

conditions and corresponding expected output. The approach takes as much time

and effort as the product.

 However, changes to application do not require the automated test cases to be

changed as long as the input conditions and expected output are still valid.

 This generation of automation focuses on input and output conditions using the

black box testing approach.

3) Action-driven Tools:

 This technique enables a layman to create automated tests.

 There are no input and expected output conditions required for running the tests.

 All actions that appear on the application are automatically tested, based on a

generic set of controls defined for automation.

 From the above approaches / generations of automation, it is clear that different

levels of skills are needed based on the generation of automation selected.

Automation – First

generation

Automation – second

generation

Automation – Third generation

Skills for test case

automation

Skills for test case

automation

Skills for test case

automation

Skills for

framework

Scripting languages Scripting languages Scripting languages Programming

languages

Record – playback

tool usage

Programming

languages

Programming

languages

Design and

architecture skills

for framework

creation

 Knowledge of data

generation techniques

Design and

architecture of the

product under test

Generic test

requirements for

multiple products

 Usage of the product

under test

Usage of the

framework

3.Discuss the scope of automation in detail. (Nov/Dec 2018), (Nov/Dec 2019)

The automation requirements define what needs to be automated looking into various aspects.

95

The specific requirement can vary from product to product, from situation to situation, from

time to time.

Identifying the types of testing amenable to automation

Certain types of tests automatically lend themselves to automation.

Stress, reliability, scalability and performance testing

These types of testing require the test cases to be run from large number of different

machines for an extended period of time, such as 24 hours, 48 hours, and so on. It is just not

possible to have hundreds of users trying out the product day in and day out-they may neither

be willing to perform the repetitive tasks, nor will it be possible to find that many people with

the required skill sets. Test cases belonging to these testing types become the first candidates

for automation.

Regression Testing

Regression tests are repetitive in nature. These test cases are executed multiple times during

the product development phases. Given the repetitive nature of the test cases, automation will

save significant time and effort in the long run.

Functional testing

These kind of tests may require a complex set up and thus require specialized skill, which

may not be available on an ongoing basis. Automating these once, using the expert skill sets,

can enable using less-skilled people to run these tests on an ongoing basis. As a thumb rule, if

test cases need to be executed at least ten times in the near future, say , one year, and if the

effort for automation does not exceed ten times of executing those test cases, then they

become candidates for automation.

Automating Areas Less Prone to Change

Automation should consider those areas where requirements go through lesser or no changes.

Normally change in requirements cause scenarios and new features to be impacted, not the

basic functionality of the product. While automating, basic functionality of the product has to

be considered first, so that they can be used for “regression test bed” and “daily builds and

smoke test.”

Automate Tests that Pertain to Standards

Automating for standards provides a dual advantage. Test suites developed for standards are

not only used for product testing but can also be sold as test tools for the market. A large

number of tools available in the commercial market were internally developed for in house

usage.

Hence, automating for standards creates new opportunities for them to be sold as commercial

tools.

In case there are tools already available in the market for checking such standards, then there

is no point in reinventing the wheel and rebuilding these tests. Rather, focus should be

towards other areas for which tools are not available and in providing interfaces to other

tools.

Testing for standards have certain legal and organizational requirements. To certify the

software or hardware, a test suite is developed and handed over to different companies. The

certification suites are executed every time by the supporting organization before the release

of software and hardware.

96

This is called “certification testing” and requires perfectly compliant results every time the

tests are executed. The companies that do certification testing may not know much about the

product and standards but do the majority of this testing. Hence, automation in this area will

go a long way. This is definitely an area of focus for automation.

4.Explain the design and architecture for automation. .(Nov/Dec 2013) ,(May/June 2014), (Nov/Dec

2016) & (Nov/Dec 2017), (Nov/Dec 2019)

 Architecture for test automation involves two major heads: a test infrastructure that

covers a test case database and a defect database or defect repository. Using this

infrastructure, test framework provides a backbone that ties the selection and execution of test

cases.

External modules:

 There are two modules that are external modules to automation – TCDB and defect DB.

All test cases, the steps to execute them, and the history of their execution are stored in

TCDB. The test cases in the TCDB can be manual or automated. The manual test cases do

not need any interaction between the framework and TCDB.

Defect DB or defect database contains details of all the defects that are found in various

products that re tested in a particular organization. It contains defects and all the related

information. Test engineers submit the defects for manual test cases. For automated test

cases, the framework can automatically submit the defects to the defect DB during execution.

Scenario and Configuration File Modules:

 A configuration file contains a set of variables that are used in automation. The variables

could be for the test framework or for other modules in automation such as tools and metrics

or for the test suite or for a set of test cases or for a particular test case. A configuration file is

important for running the test cases of various execution conditions and for running the tests

for various input and output conditions and states.

Test cases and Test framework Modules:

 Test case is an object for execution for the other modules in the architecture and does not

represent any interaction by itself. A test framework is a module that combines “what to

execute” and “how they have to be executed”. It picks up the specific test cases that are

automated from TCDB and picks up the scenarios and executes them. The variables and their

defined values are picked up by the test framework and the test cases are executed for those

values.

The test framework is considered the core of automation design. It subjects the test cases to

different scenarios. The framework monitors the results of every iteration and the results are

stored. The test framework contains the main logic for interaction, initiating and controlling

all modules.

97

Tools and Results Modules:

 When a test framework performs its operations, there are a set of tools that may be

required. In order to run the compiled code, certain runtime tools and utilities may be

required. For example, IP Packet Simulators or User Login Simulators or Machine Simulators

may be needed. In this case, the test framework invokes all these different tools and utilities.

Report Generator and Reports/ Metrics Modules:

 Preparing reports is a complex and time consuming effort and hence it should be part of

the automation design. There should be customized reports such as an executive report, which

gives very high level status; technical reports, which give a moderate level of detail of the test

run. And detailed or debug reports which are generated for developers to debug the failed test

cases and the product. The periodicity of the reports is different, such as daily, weekly,

monthly, and milestone reports. Having reports of different levels of details and different

periodicities can address the needs of multiple constituents and thus provide significant

returns.

The module that takes the necessary inputs and prepares a formatted report is called a

report generator. Once the results are available, the report generator can generate metrics.

5.Discuss the challenges in automation. (Nov/Dec 2016)

1) Testing the complete application:

There are millions of test combinations. It’s not possible to test each and every

combination both in manual as well as in automation testing. If you try all these

combinations you will never ship the product

2) Misunderstanding of company processes:

Sometimes you just don’t pay proper attention what the company-defined processes are

and these are for what purposes. There are some myths in testers that they should only go

with company processes even these processes are not applicable for their current testing

scenario. This results in incomplete and inappropriate application testing.

3) Relationship with developers:

Big challenge. Requires very skilled tester to handle this relation positively and even by

completing the work in testers way. There are simply hundreds of excuses developers or

testers can make when they are not agree with some points. For this tester also requires

good communication, troubleshooting and analyzing skill.

4) Regression testing:

When project goes on expanding the regression testing work simply becomes

uncontrolled. Pressure to handle the current functionality changes, previous working

functionality checks and bug tracking.

5) Lack of skilled testers:

I will call this as ‘wrong management decision’ while selecting or training testers for their

project task in hand. These unskilled fellows may add more chaos than simplifying the

testing work. This results into incomplete, insufficient and ad-hoc testing throughout the

testing life cycle.

http://www.softwaretestinghelp.com/how-to-improve-communication-skill/
http://www.softwaretestinghelp.com/how-to-get-your-all-bugs-resolved/
http://www.softwaretestinghelp.com/regression-testing-tools-and-methods/
http://www.softwaretestinghelp.com/need-of-skilled-testers/
http://www.softwaretestinghelp.com/what-is-actual-testing-process-in-practical-or-company-environment/

98

6) Testing always under time constraint:

Hey tester, we want to ship this product by this weekend, are you ready for completion?

When this order comes from boss, tester simply focuses on task completion and not on the

test coverage and quality of work. There is huge list of tasks that you need to complete

within specified time. This includes writing, executing, automating and reviewing the test

cases.

7) Which tests to execute first?

If you are facing the challenge stated in point no 6, then how will you take decision which

test cases should be executed and with what priority? Which tests are important over

others? This requires good experience to work under pressure.

8) Understanding the requirements:

Sometimes testers are responsible for communicating with customers for understanding

the requirements. What if tester fails to understand the requirements? Will he be able to

test the application properly? Definitely No! Testers require good listening and

understanding capabilities.

9) Automation testing:

Many sub challenges – Should automate the testing work? Till what level automation

should be done? Do you have sufficient and skilled resources for automation? Is time

permissible for automating the test cases? Decision of automation or manual testing will

need to address the pros and cons of each process.

10) Decision to stop the testing:

When to stop testing? Very difficult decision. Requires core judgment of testing processes

and importance of each process. Also requires ‘on the fly’ decision ability.

11) One test team under multiple projects:

Challenging to keep track of each task. Communication challenges. Many times results in

failure of one or both the projects.

12) Reuse of Test scripts:

Application development methods are changing rapidly, making it difficult to manage the

test tools and test scripts. Test script migration or reuse is very essential but difficult task.

13) Testers focusing on finding easy bugs:

If organization is rewarding testers based on number of bugs (very bad approach to judge

testers performance) then some testers only concentrate on finding easy bugs those don’t

require deep understanding and testing. A hard or subtle bug remains unnoticed in such

testing approach.

14) To cope with attrition:

http://www.softwaretestinghelp.com/what-if-there-isnt-enough-time-for-thorough-testing/
http://www.softwaretestinghelp.com/10-tips-you-should-read-before-automating-your-testing-work/
http://www.softwaretestinghelp.com/how-to-improve-tester-performance/

99

Increasing salaries and benefits making many employees leave the company at very short

career intervals. Managements are facing hard problems to cope with attrition rate.

Challenges – New testers require project training from the beginning, complex projects are

difficult to understand, delay in shipping date!

6.How to select the test tool and also discuss the criteria and steps in selecting the tool? (Nov/Dec

2018)

Selecting the test tool is an important aspect of test automation for several reasons as given

below:

a. Free tools are not well supported and get phased out soon.

b. Developing in-house tools takes time.

c. Test tools sold by vendors are expensive

d. Test tools require strong training

e. Test tools generally do not meet all the requirements for automation

f. Not all test tools run on all platforms.

Criteria for selecting Test tools:

 The criteria for selecting tools are classified into four categories. They are

a. Meeting requirements

b. Technology expectations

c. Training/skills; and

d. Management aspects

Steps for tool selection and deployment

 Identify your test suite requirements among the generic requirements discussed. Add

other requirements

 Make sure experiences discussed are taken care of

 Collect the experiences of other organizations which used similar test tools

 Keep a checklist of questions to be asked to the vendors on cost/effort/support

 Identify list of tools that meet the above requirements

 Evaluate and shortlist one/set of tools and train all test developers on the tool

 Deploy the tool across test teams after training all potential users of the tool.

7.Explain in detail about the steps in metrics program.

100

The first step involved is to decide what measurements are important and collect data

accordingly. The effort spent on testing, number of defects, and number of test cases, are

some examples of measurements. Depending on what the data is used for, the granularity of

measurement will vary.

The second step involved in metrics collection is defining how to combine data points or

measurements to provide meaningful metrics.

The third step in the metrics program is deciding the operational requirements for the

measurements. The operational requirement for a metrics plan should lay down not only the

periodicity but also other operational issues such as who should collect measurements, who

should receive the analysis, and so on.

The fourth step involved in a metrics program is to analyze the metrics to identify both

positive areas and improvement areas on product quality

The final step involved in a metrics plan is to take necessary action and follow up on the

action. The purpose of the metrics program is defeated if the action items are not followed

through to completion.

Any metrics program is a continuous and ongoing process. As we make measurement s,

transform the measurements into metrics, analyze the metrics, and take corrective action, the

issues for which the measurements were made in the first place will become resolved. The

metrics programs continually go through the steps described above with different

measurements or metrics.

8. Discuss on different project metrics.(Nov/Dec 2017), (Apr/May 2019)

 Effort and schedule are the two factors to be tracked for any phase or activity. The effort

is tracked closely and met, then the schedule can be met. The schedule can also be met by

adding more effort to the project.

 The basic measurements that are very natural, simple to capture and form the inputs to

the metrics are

a. The different activities and the initial base lined effort and schedule for each

of the activities; this is input at the beginning of the project/phase

101

b. The actual effort and time taken for the various activities; this is entered as

and when the activities take place

c. The revised estimate of effort and schedule; these are re-calculated at

appropriate times in the project life.

Effort variance (EV) calculates variance of actual effort versus planned effort. The

formula for effort variance is:

Effort variance = [(Actual effort - Planned Effort)/Planned effort] * 100

The effort variance may be greater than expected.

For example, we estimated 100 hours but actual work took 110 hours.

In this case, there would be a +10% effort variance. Some of the causes why this positive

variance might have occurred are:

- Estimation parameters were wrong.

- Test scope was not understood in totality.

- Underestimated the test group's inefficient process.

- The estimate was changed without changing scope just to make the numbers match the

preferred schedule.

- Added functionalities that were not in the customer requirements.

The effort variance may be less than expected.

For example, we estimated that the test project will take 100 hours to complete but it

actually took 90 hours.

This results in a -10% effort variance. Some of the causes why this negative variance might

have occurred are:

- Estimation parameters were wrong.

- There was an improvement in the process

- Team performed much better than expected

- Testing was not finished and one or more of the requirements was missed.

Schedule Variance

Schedule Variance= Earned Value - Planned Value

Earned Value-> Budget value of the work completed in specified time

Planned Value -> Budget value of the work that was planned to be completed in specific

time

The difference reflects the amount of budget that could not be completed or that was

excessively done in specific time.

Effort Distribution across phase

From an estimate of the number of person-days required for the programming effort, and an

estimate of the relative distribution of the effort by phase, it is possible to estimate the

number of person-days of effort required for the total software development project.

102

From past project experience, the standard distribution of effort for large-scale software

development is approximately:

Analysis 10 %

Design 15 %

Programming/unit testing 30 %

System test 10 %

Acceptance test 5 %

Manual procedures 5 % *

User training 5 % *

Conversion 5 % *

Technical support 5 % *

Project management 10 % **

As an example, if the estimate assumes 75,000 lines of code and a productivity rate of 30

lines/day from analysis through to implementation, the total effort would be calculated as

2,500 person-days (75,000/30). The corresponding effort by phase would be:

Analysis 10 % 250 days

Design 15 % 375 days

Programming/unit testing 30 % 750 days

System test 10 % 250 days

Acceptance test 5 % 125 days

Manual procedures 5 % 125 days

User training 5 % 125 days

Conversion 5 % 125 days

Technical support 5 % 125 days

Project management 10 % 250 days

Extending the estimated days by the projected daily rate would provide a ball-park cost for

each phase.

Typically unbounded tasks with less correlation to lines of code.

Refers only to the time of the Project Manager and is typically determined

by the overall elapsed time of the project. Project leaders' time is included

in the time for program/unit testing.

9.What are the different progress metrics? Brief. (April/May 2017)

(OR)

 Discuss various metrics and measurements in software testing. Explain various

 types of progress metrics. (Nov/Dec 2017)

Progress Metrics

Defects get detected by the testing team and get fixed by the development team.

Defect metrics are classified into test

 Defect metrics: Which helps the testing team in analysis of product quality and

testing

 Development defect metrics: This helps the development team in analysis of

development activities.

103

A set of metrics that tracks how the different activities of the project are progressing

Test progress metrics capture the progress of defects found with time.

Test defect metrics

 A set of metrics helps to understand how the defects that are found can be used to

improve testing and product quality.

 The defects are classified by defect priority and defect severity.

 Defect priority provides management perspective for the order of defect fixes.

 The severity of defects provides the test team a perspective of the impact of that defect in

product functionality.

Defect priority and defect severity

Priority What it means

1 Fix the defect on highest priority; fix it before the next built

2 Fix the defect on high priority before next test cycle

3 Fix the defect on moderate priority when time permits before the release

4 Postpone this defect for next release or live with this defects

Severity What it means

1 The basic product functionality failing or product crashes

2 Unexpected error condition

3 A minor functionality is failing or behaves differently than expected

4 Cosmetic issue and no impact on the users

Defect Classification

Defect

classification

What it means

Extreme Product crashes or unusable.

Need to be fixed immediately.

Critical Basic functionality of the product not working.

Need to be fixed before next cycle starts.

Important Extended functionality of the product not working.

Does not affect the progress of testing.

104

Fix it before release

Minor Product behaves differently.

No impact on the team.

Fix it when time permits.

Cosmetics Minor irritant.

Need not be fixed for this release

 Defect find rate

 Defect fix rate

 Outstanding defects rate

 Priority outstanding rate

 Defect trend

 Defect classification trend

 Weighted defects trend

 Defect cause distribution

Development Defect Metrics

While the defect metrics focuses on the number of defects, development defect metrics try to

map those defects to different components of the product and to some of the parameters of

development such as line of code.

 Component-wise defect distribution

 Defect density

 Defect removal rate

 Age analysis of outstanding defects

 Introduced and reopened defects trend

10.Explain the various productivity metrics.(Nov/Dec 2016), (Apr/May 2019)

Productivity Metrics

Productivity metrics combine several measurements and parameters with effort spent on the

product. They help in finding out the capability of the team as well as for other purposes,

such as,

 Estimating for the new release

 Finding out how well the team is progressing, understanding the reason for variation

in results.

 Estimating the number of defects that can be found

 Estimating the release date and quality

 Estimating the cost involved in the release.

Defect per 100 hours of testing

More testing reveals more defects. But there may be a point of diminishing returns when

further testing may not reveal any defects.

If incoming defects in the product are reducing, it may mean various things.

105

 Testing is not effective

 The quality of the product is improving

 Effort spent in testing is falling

The metric defect per 100 hours of testing covers the third point and normalizes the

number of defects found in the product with respect to the effort spent.

Defect per 100 hours of testing=(Total defect found in the product for a period/Total

hours

spend to get those defects)*100

Test cases executed per 100 hours of testing

The number of test cases executed by the test team for a particular duration depends on

team productivity and quality of the product.

If the quality of the product is good, more test cases can be executed, as there may not be

defects blocking the tests.

Test cases executed per 100 hours of testing helps in tracking productivity and also in

judging the product quality.

Tets cases executed per 100 hours of testing = (Total test cases executed for a

period/Total hours spent in test execution) * 100

Teat cases developed per 100 hours of testing

In a product scenario, not all the test cases are written afresh for every release. New test

cases are added to address new functionality and for testing features that were not tested

earlier.

Existing test cases are modified to reflect changes in the product. Some test cases are

deleted if they are no longer useful or if corresponding features are removed from the

product.

The formula for test cases developed uses the count corresponding to added/modified and

deleted test cases.

Test cases developed per 100 hours of testing = (Total test cases developed for a

period/Total hours spent in test case development) *100

Defects per 100 test cases

The goal of testing is find out as many defects as possible. This is a function of two

parameters,

 The effectiveness of the tests in uncovering defects

 The effectiveness of choosing tests that are capable of uncovering defects

The ability of test cases to uncover defects depends on how well the test cases are

designed and developed. But, in a typical product scenario, not all test cases are executed

for every test cycle. Hence it is better to select that produce defects. A measure that

quantifies these two parameters is defect per 100 test cases.

106

Defects per 100 test cases = (Total defects found for a period/Total test cases executed

for the same period) *100

Defects per 100 failed test cases

Defect per 100 failed test cases is a good measure to find out how granular the test cases

are. It indicates

 How many test cases needed to be executed when a defect is fixed.

 What defects need to be fixed so that an acceptable number of test cases reach

the pass rate

 How the fail rate of test cases and defects affect each other for release readiness

analysis.

Defects per 100 failed test cases = (Test defects found for a period/Total test cases failed

due to those defects) * 100

Test phase effectiveness

 As testing is performed by various teams with objective of finding defects early

at various phases, a metric is needed to compare the defects filled by each phase

in testing.

 The defects found in various phases are, unit testing (UT), component testing

(CT), integration testing (IT) and system testing (ST).

Closed defect Distribution

 The objective of testing is not only to find defects.

 The testing team also has the objective to ensure that all defects fond through

testing are fixed so that the customer gets the benefit of testing and the product

quality improves.

 To ensure the most of the defects are fixed, the testing team has to track the

defects and analyze how they are closed. The closed defect distribution helps in

this analysis.

11.List the requirements for testing tool.

Requirement 1: No hard coding in the test suite

Requirement 2: Test case/ suite expandability

Requirement 3: Reuse of code for different types of testing, test cases

Requirement 4: Automatic setup and cleanup

Requirement 5: Independent test cases

Requirement 6: Test cases dependency

Requirement 7: Insulating test cases during execution

Requirement 8: Coding standards and directory structure

Requirement 9: Selective execution of test cases

Requirement 10: Random execution of test cases

Requirement 11: Parallel execution of test cases

Requirement 12: Looping the test cases

Requirement 13: Grouping of test scenarios

Requirement 14: Test case execution based on previous results

Requirement 15: Remote execution of test cases

107

Requirement 16: Automatic archival of test data

Requirement 17: Reporting scheme

Requirement 18: Independent of languages

Requirement 19: Portability to different platforms

12. Discuss the types of reviews. Explain various components of review plans? (Apr/May 2018)

A review is a systematic examination of a document by one or more people with the main aim
of finding and removing errors early in the software development life cycle. Reviews are used to
verify documents such as requirements, system designs, code, test plans and test cases.

A review is a systematic examination of a document by one or more people with the main aim

of finding and removing errors early in the software development life cycle. Reviews are used

to verify documents such as requirements, system designs, code, test plans and test cases.

Reviews are usually performed manually while static analysis of the tools is performed using

tools.

Importance of Review Process:

 Productivity of Dev team is improved and timescales reduced because the correction of

defects in early stages and work-products will help to ensure that those work-products

are clear and unambiguous.

 Testing costs and time is reduced as there is enough time spent during the initial phase.

 Reduction in costs because fewer defects in the final software.

Objective of Review:

1. To improve the productivity of the development team.

2. To make the testing process time and cost effective.

3. To make the final software with fewer defects.

4. To eliminate the inadequacies.

Types of Software Reviews:
There are mainly 3 types of software reviews:

1. Software Peer Review:
Peer review is the process of assessing the technical content and quality of the product and

it is usually conducted by the author of the work product along with some other developers.

Peer review is performed in order to examine or resolve the defects in the software, whose

quality is also checked by other members of the team.

Peer Review has following types:

 (i) Code Review:
Computer source code is examined in a systematic way.

 (ii) Pair Programming:
It is a code review where two developers develop code together at the same platform.

 (iii) Walkthrough:
Members of the development team is guided bu author and other interested parties

and the participants ask questions and make comments about defects.

 (iv) Technical Review:
A team of highly qualified individuals examines the software product for its client’s

use and identifies technical defects from specifications and standards.

108

 (v) Inspection:
In inspection the reviewers follow a well-defined process to find defects.

2. Software Management Review:
Software Management Review evaluates the work status. In this section decisions

regarding downstream activities are taken.

3. Software Audit Review:
Software Audit Review is a type of external review in which one or more critics, who are

not a part of the development team, organize an independent inspection of the software

product and its processes to assess their compliance with stated specifications and

standards. This is done by managerial level people.

Advantages of Software Review:
 Defects can be identified earlier stage of development (especially in formal review).

 Earlier inspection also reduces the maintenance cost of software.

 It can be used to train technical authors.

 It can be used to remove process inadequacies that encourage defects.

Types of Defects during Review Process:

 Deviations from standards either internally defined or defined by regulatory or a trade

organisation.

 Requirements defects.

 Design defects.

 Incorrect interface specifications.

109

Review Stages - Workflow:

13. Narrate about the metrics or parameters to be considered for evaluating the software

quality.(Apr/May 2018)

The various factors, which influence the software, are termed as software factors. They can be

broadly divided into two categories. The first category of the factors is of those that can be

measured directly such as the number of logical errors, and the second category clubs those

factors which can be measured only indirectly. For example, maintainability but each of the

factors is to be measured to check for the content and the quality control.

Several models of software quality factors and their categorization have been suggested over the

years. The classic model of software quality factors, suggested by McCall, consists of 11

factors.

McCall’s Factor Model

This model classifies all software requirements into 11 software quality factors. The 11 factors

are grouped into three categories – product operation, product revision, and product transition

factors.

 Product operation factors − Correctness, Reliability, Efficiency, Integrity, Usability.

 Product revision factors − Maintainability, Flexibility, Testability.

 Product transition factors − Portability, Reusability, Interoperability.

110

Product Operation Software Quality Factors

According to McCall’s model, product operation category includes five software quality factors,

which deal with the requirements that directly affect the daily operation of the software. They

are as follows −

Correctness

These requirements deal with the correctness of the output of the software system. They include

−

 Output mission

 The required accuracy of output that can be negatively affected by inaccurate data or

inaccurate calculations.

 The completeness of the output information, which can be affected by incomplete data.

 The up-to-dateness of the information defined as the time between the event and the

response by the software system.

 The availability of the information.

 The standards for coding and documenting the software system.

Reliability

Reliability requirements deal with service failure. They determine the maximum allowed failure

rate of the software system, and can refer to the entire system or to one or more of its separate

functions.

Efficiency

It deals with the hardware resources needed to perform the different functions of the software

system. It includes processing capabilities (given in MHz), its storage capacity (given in MB or

GB) and the data communication capability (given in MBPS or GBPS).

It also deals with the time between recharging of the system’s portable units, such as,

information system units located in portable computers, or meteorological units placed

outdoors.

Integrity

This factor deals with the software system security, that is, to prevent access to unauthorized

persons, also to distinguish between the group of people to be given read as well as write

permit.

Usability

Usability requirements deal with the staff resources needed to train a new employee and to

operate the software system.

Product Revision Quality Factors

According to McCall’s model, three software quality factors are included in the product revision

category. These factors are as follows −

111

Maintainability

This factor considers the efforts that will be needed by users and maintenance personnel to

identify the reasons for software failures, to correct the failures, and to verify the success of the

corrections.

Flexibility

This factor deals with the capabilities and efforts required to support adaptive maintenance

activities of the software. These include adapting the current software to additional

circumstances and customers without changing the software. This factor’s requirements also

support perfective maintenance activities, such as changes and additions to the software in order

to improve its service and to adapt it to changes in the firm’s technical or commercial

environment.

Testability

Testability requirements deal with the testing of the software system as well as with its

operation. It includes predefined intermediate results, log files, and also the automatic

diagnostics performed by the software system prior to starting the system, to find out whether

all components of the system are in working order and to obtain a report about the detected

faults. Another type of these requirements deals with automatic diagnostic checks applied by the

maintenance technicians to detect the causes of software failures.

Product Transition Software Quality Factor

According to McCall’s model, three software quality factors are included in the product

transition category that deals with the adaptation of software to other environments and its

interaction with other software systems. These factors are as follows −

Portability

Portability requirements tend to the adaptation of a software system to other environments

consisting of different hardware, different operating systems, and so forth. The software should

be possible to continue using the same basic software in diverse situations.

Reusability

This factor deals with the use of software modules originally designed for one project in a new

software project currently being developed. They may also enable future projects to make use of

a given module or a group of modules of the currently developed software. The reuse of

software is expected to save development resources, shorten the development period, and

provide higher quality modules.

Interoperability

Interoperability requirements focus on creating interfaces with other software systems or with

other equipment firmware. For example, the firmware of the production machinery and testing

equipment interfaces with the production control software.

14. Write short notes on Classification of Automation testing? (Nov/Dec 2018), (Nov/Dec

2019).

112

Automation testing can be defined as a way to run a set of tests over and over again without

having to execute them manually. Introducing automation tests in your test strategy is a way to

save money and time.

Classification of Automation testing:

Unit Tests:

Unit Tests are the tests that are built to test the code of an application and are usually built into

the code itself. They target the coding standards like how the methods and functions are written.

These tests are more often written by the developers themselves, however, in today’s world,

automation testers may also be asked to write them.

Executing these tests and getting no bugs from them will mean that your code will compile and

run without any code issues. These tests usually do not target the functional aspects of the

application and as they target code, it is more appropriate to automate them so that they can be

run as and when required by the developer.

Smoke Tests:

The smoke test is a famous test performed in the test life cycle. These are post-build tests, they

are executed immediately after any build is given out of the application to ensure that the

application is still functioning after the build is done.

This is a small test suite and is something that will be executed multiple times and thereby it

makes sense to automate it. These tests will usually be of a functional nature and depending on

the type of application a tool can be picked for them.

API tests:

API testing has become very famous in the past few years. Applications built on the API

architecture can perform this testing.

In API testing, the testers validate the business layer of the application by checking the request-

response combinations for the various API’s on which the application is built. API Tests can also

be done as a part of the integration tests below.

Integration Tests:

Integration test as the name itself suggests means testing the application by integrating all the

modules and checking the functionality of the application.

Integration testing can be done through API testing or can be done through the UI layer of the

application.

UI tests:

UI tests are done from the UI layer or the frontend of the application. These may target testing

the functionality or simply test the UI elements of an application.

113

Automating the UI to test the functionality is a common practice. However, automating the GUI

features is one of the more complicated automation.

Regression tests:

One of the most commonly automated test suites is the regression test suite. Regression, as you

may already know, is the test that is done at the end of testing a new module to ensure that none

of the existing modules have been affected by it.

It is repeated after each new iteration of testing and the main test cases stay fixed with usually a

few new additions after a new iteration. As it is frequently run almost all the test teams try to

automate this pack.

Automation as Continuous integration:

Continuous Integration may again be running on the automated regression tests itself, however,

in achieving CI, we enable the regression or identified test suite to be run every time when a new

deployment is done.

Security Tests:

Security testing can be both functional as well as a non-functional type of testing which involves

testing the application for vulnerabilities. Functional tests will compose of tests related to

authorization etc., whereas non-functional requirements maybe test for SQL injection, cross-site

scripting, etc.

Performance Tests and Quality control:

Performance tests are non-functional tests which target the requirements like testing of load,

stress, scalability of the application.

Acceptance tests:

Acceptance tests again fall under functional tests which are usually done to ensure if the

acceptance criteria given by the client has been fulfilled.

So far, we have described the type of tests that can be automated and various classifications of

the same, all classifications eventually will lead to the same end results of a test suite being

automated. As we said earlier a little understanding is required on how these are different from

frameworks.

Once you have identified the tests that you want to automate from the above classification, then

you will need to design your logic in a manner to execute these tests smoothly, without much

manual intervention. This design of a manual test suite into an automated test suite is where the

frameworks come in.

15. Outline product metrics with an example.(Apr/May 2019)

Product metrics − Describes the characteristics of the product such as size, complexity, design

features, performance, and quality level.

114

Product Quality Metrics

This metrics include the following −

 Mean Time to Failure

 Defect Density

 Customer Problems

 Customer Satisfaction

Mean Time to Failure

It is the time between failures. This metric is mostly used with safety critical systems such as

the airline traffic control systems, avionics, and weapons.

Defect Density

It measures the defects relative to the software size expressed as lines of code or function point,

etc. i.e., it measures code quality per unit. This metric is used in many commercial software

systems.

Customer Problems

It measures the problems that customers encounter when using the product. It contains the

customer’s perspective towards the problem space of the software, which includes the non-

defect oriented problems together with the defect problems.

The problems metric is usually expressed in terms of Problems per User-Month (PUM).

PUM = Total Problems that customers reported (true defect and non-defect oriented

problems) for a time period + Total number of license months of the software during

the period

Where,

Number of license-month of the software = Number of install license of the software ×

Number of months in the calculation period

PUM is usually calculated for each month after the software is released to the market, and also

for monthly averages by year.

Customer Satisfaction

Customer satisfaction is often measured by customer survey data through the five-point scale −

 Very satisfied

 Satisfied

 Neutral

 Dissatisfied

 Very dissatisfied

Satisfaction with the overall quality of the product and its specific dimensions is usually

obtained through various methods of customer surveys. Based on the five-point-scale data,

several metrics with slight variations can be constructed and used, depending on the purpose of

analysis. For example −

115

 Percent of completely satisfied customers

 Percent of satisfied customers

 Percent of dis-satisfied customers

 Percent of non-satisfied customers

Usually, this percent satisfaction is used.

