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PART-A 

1 Define distributed system. 

 

A distributed system is a collection of independent computers that appears to its 

users as a single coherent system. A distributed system is one in which components located 

at networked communicate and coordinate their actions only by passing message. 

2 List the characteristics of distributed system? 

 Programs are executed concurrently, support for resource sharing. 

 Openness 

 Concurrency 

 Scalability 

 Fault Tolerance (Reliability) 

 Transparency 

 Components can fail independently (isolation, crash) 

3 Mention the examples of distributed system. 

 The internet, intranet. 

 Department computing cluster 

 Corporate systems 

 Cloud systems (e.g. Google, Microsoft, etc.) 

 Mobile and ubiquitous computing 

5 Mention the challenges in distributed system. 

1. Heterogeneity 

2. Openness 

3. Security 
4. Scalability 
5. Failure handling 

6. Concurrency 

7.Transparency 

6 What are the Advantages of Distributed Systems? 

1. Performance 2.Distribution 

3.Reliability (fault tolerance) 4.Incremental growth 5.Sharing of 

data/resources 
6.Communication 



7 What are the Disadvantages of Distributed Systems? MAY/JUNE 2016, 

NOV/DEC 2016 

1.Difficulties of developing distributed software 2.Networking problems 

3.Security problems 

Software 

Little software exists compared to PCs (for example) but the situation is improving with 

the cloud. 

Networking 

Still slow and can cause other problems (e.g., when disconnected) 

Security 

Data may be accessed by unauthorized users through network interfaces 

Privacy 

Data may be accessed securely but without the 

owner’s consent (significant issue in modern systems) 

8 What are the Applications of Distributed system? 

 Email 

 News 

 Multimedia information systems - video conferencing 

 Airline reservation system 

 BanKing system 

 File downloads (BitTorrent) 

 Messaging 

9 Write the different trends in distributed systems? 

 The emergence of pervasive networking technology; 

 The emergence of ubiquitous computing coupled with the desire to 

support user mobility in distributed 
systems; 

10 Advantages of Distributed Systems vs. Centralized 

 Economics 

 Speed 

 Geographic and Responsibility Distribution 

 Reliability 

 Extendibility 

11 Write the Resource Sharing of Distributed system? NOV/DEC 2017 
1.Share hardware, 2.software, 3.data and information 

Hardware Devices 

Printers, disks, memory, sensors 

Software Sharing 
Compilers, libraries, toolkits, computational 
Kernels 

Data 
Databases, files 



12 What are the Design issues of Distributed system? 

 Openness 

 Resource Sharing 

 Concurrency 

 Scalability 

 Fault-Tolerance 

 Transparency 

 High-Performance 

13 Write the issues arising from Distributed Systems? 

 Naming - How to uniquely identify resources. 

 Communication - How to exchange data and information reliably with good 

performance. 

 Software Structure - How to make software open, extensible, scalable, with 

high-performance. 

 Workload Allocation - Where to perform computations and various services. 

 Consistency Maintenance - How to Keep consistency at a reasonable cost. 

14 What is Communication in Distributed Systems? Communication is an essential part of 

distributed systems - e.g., clients and servers must communicate for request and response. 

Communication normally involved - transfer of data from sender to receiver - 

synchronization among processes. 

15 What are types of Communication in Distributed Systems 

 Client-Server 

 Group Multicast 

 Function Shipping 

 Performance of distributed systems depends critically on communication 

performance 

16 Distributed System Software Structure 

 It must be easy to add new services (flexibility, extensibility, openness requirements) 

 Kernel is normally restricted to 

 memory allocation 
 process creation and scheduling 
 interposes communication 

 

17 List any two resources of hardware and software, which can be shared in 

distributed systems with example. (NOV 2017) 

Hardware – Printer, Disks, Fax machine, Router, Modem. 

Software – Application Programs, Shared Files, Shared Databases, Documents, Services. 

18 State the objectives of resurce sharing model APRIL/MAY 2018 

 resources are made available 

 resources can be used 

 service provider and user interact with each other 

 accessing remote resources 

 sharing them in a controlled and efficient way 



19 Write down the Principles of distributed systems APRIL/MAY 2018 

The principles of distributed computing, emphasizing the fundamental issues underlying 

the design of distributed systems and networks: communication, coordination, fault-

tolerance, locality, parallelism, self-organization, 

synchronization, uncertainty 

20 What is clock skew and clock drift? APRIL/MAY 2018 

The instantaneous difference between the readings of any two clocks is called their skew. 

Clock drift means that they count time at different rates, and so diverge 

21 What is clocks drift rate? 

A clock’s driftrate is the change in the offset (difference in reading) between the clock and 

a nominal 

perfect reference clock per unit of time measured by the reference clock. 

22 What are the two modes of synchronization? Write their format? 

The two modes are: 

External synchronization: 

In order to Know at what time of day events occur at the processes in our distributed 

system – for example, for accountancy purposes – it is necessary to synchronize the 

processes’ clocks, Ci , with an authoritative, external source of time. This is 

externalsynchronization 

 

For a synchronization bound D>0, and for a source S of UTC time,|S(t) –Ci(t)|<T, for 

i=1,2,…N and for all real times t in I. Internal synchronization: 

If the clocks Ci are synchronized with one another to a Known degree of accuracy, then 

we can measure the interval between two events occurring at different computers by 

appealing to their local clocks, even though they are not 

necessarily synchronized to an external source of time. This is internal synchronization. For 
a synchronization bound D>0,|Ci(t)-Cj(t)|<D, 

for i,j=1,2,…N. and for all real times t in I. 

23 Explain Faultry and Crash Failure. 

A clock that does not Keep to whatever correctness conditions apply is defined to be 

faulty. 

A clock’s crash failure is said to occur when the clock stops ticKing altogether;any other 

clock failure is an arbitrary failure. A historical example of an arbitrary failure is that of a 
clock with the ‘Y2K bug’, which broKe the monotonicity condition by registering the date 

after 31 December 1999 as 1 January 1900 instead of 2000; another example is a clock  

whose batteries are very low and whose drift rate suddenly becomes very large 

24 How the clock synchronization done in 

Cristian’s method? 

A single time server might fail, so they suggest the use of a group of synchronized servers  

It does not deal with faulty servers 

25 Explain Logical time and logical clocks. MAY/JUNE 2016 

Logical time 

Lamport proposed a model of logical time that can be used to provide an ordering among 

the events at processes running in different  computers in a distributed system.Logical time 

allows the order in which the messages are presented to be inferred without recourse to 

clocks. 

Logical clocks • Lamport invented a simple mechanism by which the happenedbefore 

ordering can be captured numerically, called a logical clock. A Lamport logical clock is a 

monotonically increasing software  counter, whose value need bear no particular 



relationship to any physical clock. Each process pi Keeps its own logical clock, Li , which 

it uses to apply so- called Lamport timestamps to events. We denote the timestamp of event 

e at pi by Li(e) , and by L(e) we denote the timestamp of event e at 
whatever process it occurred at. 

26 What is vector clock? Explain. 

Vector clocks • Mattern and Fidge developed vector clocks to overcome the shortcoming 

of Lamport’s clocks: the fact that from L(e)<L(e’)we cannot conclude that e ->e’ 

A vector clock for a system of N processes is an array of Nintegers. Each process Keeps 

its own vector clock, Vi , which it uses to timestamp local events. Like Lamport 

timestamps, processes piggybacK vector timestamps on the messages they send to one 

another, and there are simple rules for updating the clocks: 

 

TaKing the componentwise maximum of two vector timestamps in this way is Known as a 

merge operation. 

27 Explain global states and consistent cuts with example. 

Global state of a distributed system consists of 

–Local stateof each process: messages sent and messages received 

–State of each channel:messages sent but not 
received 

28 State the issues in Clocks. NOV/DEC 2018 

The Importance of Accurate Time on Computer Networks. The synchronization of time on 

computers and networks is often vitally important. Without it, the time on individual 

computers will slowly drift away from each other 

at  varying  degrees  until  potentially  each  has a significantly different time 



 PART B 

1 Define distributed systems. What are the significant issues and challenges of the 

distributed systems? NOV/DEC 2017, APRIL/MAY 2018  

Designing a distributed system does not come as easy and straight forward. A number of  

challenges need to be overcome in order to get the ideal system. The major challenges in 

distributed systems are listed below: 

 

1. Heterogeneity: 

The Internet enables users to access services and run applications over a heterogeneous 

collection of computers and networks. Heterogeneity (that is, variety and difference) applies to 

all of the following: 

 Hardware devices: computers, tablets, mobile phones, embedded devices, etc. 

 Operating System: Ms Windows, Linux, Mac, Unix, etc. 

 Network: Local network, the Internet, wireless network, satellite links, etc. 

 Programming languages: Java, C/C++, Python, PHP, etc. 

 Different roles of software developers, designers, system managers 

Different programming languages use different representations for characters and data 

structures such as arrays and records. These differences must be addressed if programs written 

in different languages are to be able to communicate with one another. Programs written by 

different developers cannot communicate with one another unless they use common standards, 

for example, for network communication and the 

representation of primitive data items and data structures in messages. For this to happen, 

standards need to be agreed and adopted – as have the Internet protocols. 

Middleware : The term middleware applies to a software layer that provides a programming 

abstraction as well as masking the heterogeneity of the underlying networks, hardware, 

operating systems and programming languages.  Most middleware is implemented over the 



Internet protocols, which themselves mask the differences of the underlying networks, but all 

middleware deals with the differences in operating systems 

and hardware 

Heterogeneity and mobile code : The term mobile code is used to refer to program code that 

can be transferred from one computer to another and run at the destination – Java applets are an 

example. Code suitable for running on one computer is not necessarily suitable for running on 

another because executable programs are normally specific both to the instruction set and to 

the host operating system. 

2. Transparency: 

Transparency is defined as the concealment from the user and the application programmer of 

the separation of components in a distributed system, so that the system is perceived as a whole 

rather than as a collection of independent components. In other words, distributed systems 

designers must hide the complexity of the systems as much as they can.  Some terms of 

transparency in distributed systems are: 

Access     Hide differences in data representation and how a resource is accessed 

Location     Hide where a resource is located 

Migration     Hide that a resource may move to another location 

Relocation     Hide that a resource may be moved to another location while in use 

Replication     Hide that a resource may be copied in several places 

Concurrency     Hide that a resource may be shared by several competitive users 

Failure     Hide the failure and recovery of a resource 

Persistence     Hide whether a (software) resource is in memory or a disk 

3. Openness 

The openness of a computer system is the characteristic that determines whether the system 

can be extended and reimplemented in various ways. The openness of distributed systems is 

determined primarily by the degree to which new resource-sharing services can be added and 

be made available for use by a variety of client programs. If the well-defined interfaces for a 

system are published, it is easier for developers to add new features or replace sub-systems in 

the future. Example: Twitter and Facebook have API that allows developers to develop theirs 

own software interactively. 

4. Concurrency 

Both services and applications provide resources that can be shared by clients in a distributed 

system. There is therefore a possibility that several clients will attempt to access a shared 

resource at the same time. For example, a data structure that records bids for an auction may be 

accessed very frequently when it gets close to the deadline time. For an object to be safe in a 

concurrent environment, its operations must be synchronized in such a way that its data 

remains consistent. This can be achieved by standard techniques such as semaphores, which 

are used in most operating systems. 

5. Security 

Many of the information resources that are made available and maintained in distributed 

systems have a high intrinsic value to their users. Their security is therefore of considerable 

importance. Security for information resources has three components: 

confidentiality (protection against disclosure to unauthorized individuals) 

   integrity (protection against alteration or corruption), 



availability for the authorized (protection against interference with the means to access the 

resources). 

6. Scalability 

Distributed systems must be scalable as the number of user increases. The scalability is defined 

by B. Clifford Neuman as A system is said to be scalable if it can handle the addition of users 

and resources without suffering a noticeable loss of performance or increase in administrative 

complexity 

Scalability has 3 dimensions: 

 Size  

o Number of users and resources to be processed. Problem associated is 

overloading 

 Geography  

o Distance between users and resources. Problem associated is communication 

reliability 

 Administration  

o As the size of distributed systems increases, many of the system needs to be 

controlled. Problem associated is administrative mess 

7. Failure Handling 

Computer systems sometimes fail. When faults occur in hardware or software, programs may 

produce incorrect results or may stop before they have completed the intended computation. 

The handling of failures is particularly difficult. 

 

2 Enlighten the examples of distributed systems.MAY/JUNE 2016  

Examples of Distributed Systems 

The goal of this section is to provide motivational examples of contemporary distributed 

systems and the great diversity of the associated applications.  

As mentioned in the introduction, networks are everywhere and underpin many everyday 

services that we now take for granted: the Internet and he associated World Wide Web, web 

search, online gaming, email, social networks, eCommerce, etc. To illustrate this point further, 

consider Figure1.1, which describes a selected range of key commercial or social application 

sectors highlighting some of the associated established or emerging uses of distributed systems 

technology. 

As can be seen, distributed systems encompass many of the most significant technological 

developments of recent years and hence an understanding of the underlying technology is 

absolutely central to a knowledge of modern computing. The figure also provides an initial 

insight into the wide range of applications in use today, from relatively localized systems (as 

found, for example, in a car or aircraft) toglobalscale systems involving millions of nodes, 

from data-centric services to processor-intensive tasks, from systems built from very small and 

relatively primitive sensors to those incorporating powerful computational elements, from 

embedded systems to ones that support a sophisticated interactive user experience, and so on. 

We now look at more specific examples of distributed systems to further illustrate the diversity 

and indeed complexity of distributed systems provision today. 



 Web search 

Web search has emerged as a major growth industry in the last decade, with recent figures 

indicating that the global number of searches has risen to over 10 billion per calendar month. 

The task of a web search engine is to index the entire contents of the World Wide Web, 

encompassing a wide range of information styles including web pages, multimedia sources and 

(scanned) books. This is a very complex task, as current estimates state that the Web consists 

of over 63 billion pages and one trillion unique web 

 Finance and commerce  - The growth of eCommerce as exemplified by companies such as 

Amazon and eBay, and underlying payments technologies such as PayPal; the associated 

emergence of online banking and trading and also complex information dissemination systems 

for financial markets. 

The information society  - The growth of the World Wide Web as a repository of information 

and knowledge; the development of web search engines such as Google and Yahoo to search 

this vast repository; the emergence of digital libraries and the large-scale digitization of legacy 

information sources such as books (for example, Google Books); the increasing significance of 

user-generated content through sites such as YouTube, Wikipedia and Flickr; the emergence of 

social networking through services such as Facebook and MySpace. 

Creative industries and entertainment -  The emergence of online gaming as a novel and 

highly interactive form of entertainment; the availability of music and film in the home through 

networked media centres and more widely in the Internet via downloadable or streaming 

content; the role of user-generated content (as mentioned above) as a new form of creativity, 

for example via services such as YouTube; the creation of new forms of art and entertainment 

enabled by emergent (including networked) technologies. 

Healthcare  - The growth of health informatics as a discipline with its emphasis on online 

electronic patient records and related issues of privacy; the increasing role of telemedicine in 

supporting remote diagnosis or more advanced services such as remote surgery (including 

collaborative working between healthcare teams); the increasing application of networking and 

embedded systems technology in assisted living, for example for monitoring the elderly in their 

own homes. 

Education -  The emergence of e-learning through for example web-based tools such as virtual 

learning environments; associated support for distance learning; support for collaborative or 

community-based learning. 

Transport and logistics -  The use of location technologies such as GPS in route finding 

systems and more general traffic management  systems; the modern car itself as an example of 

a complex distributed system (also applies to other forms of transport such as aircraft); the 

development of web-based map services such as MapQuest, Google Maps and Google Earth. 

 

3 Discuss the different  trends  in  distributed systems. 

MAY/JUNE  2016,  NOV/DEC  2016,  NOV/DEC 

2017,  APRIL MAY 2018,  

Trends in distributed systems  

1.  Trends in distributed systems • Significant changes in current distributed systems: – 

The emergence of pervasive technology – The emergence of ubiquitous & mobile 



computing – The increasing demand of multimedia technology – The view of 

distributed systems as a utility  

2. Trends in distributed systems • Pervasive technology – Modern Internet – Collection of 

internetworked devices- wired & wireless – Pervasive resources and devices can be 

connected at any time and in any place  

3. Trends in distributed systems intranet ISP desktop computer: backbone satellite link 

server: ☎ network link: ☎ ☎ ☎ A typical portion of the Internet  

4. Trends in distributed systems • Mobile & ubiquitous computing – Small and portable 

devices are possible to be used within distributed systems • E.g. laptop computers, 

handheld devices, wearable devices, devices embedded in appliances – Mobile 

computing: portability of the devices and the ability to connect to networks in different 

places – Ubiquitous computing: small computing devices that available everywhere and 

are easily attached to networks  

5. Trends in distributed systems Portable & handheld devices in a distributed system  

6. Trends in distributed systems • Distributed multimedia systems – The use of 

multimedia contents in distributed systems • Multimedia support – Major benefits of 

multimedia support • Distributed multimedia computing can be accessed through 

desktop or mobile devices. E.g. live tv broadcast, video-on-demand, IP telephony, 

webcasting, etc.  

7. Trends in distributed systems • Distributed computing as a utility – distributed 

resources as commodity or utility in similar as water and power. – Physical and logical 

service resources are rented rather than owned by the end users. • Physical resources: 

e.g. : storage and processing • Logical services: e.g. email, calendars – Cloud 

computing: distributed computing utility. A cloud is a set of internet-based application, 

storage and computing services sufficient to support most users’ needs  

8. Trends in distributed systems Cloud computing  

9. Trends in distributed systems • Cloud are implemented on cluster computers to provide 

the appropriate scale and performance required by such services – A cluster computer: 

a set of interconnected computers that cooperate closely to provide a single integrated 

high-performance computing capability – A blade server: a computer server that has 

been designed to minimize the use of physical space and energy  

10. Trends in distributed systems • Grid Computing – Is a form of cloud computing – 

Authorized users share processing power, memory and data storage – Use to support 

scientific applications  

 

8 What are the different ways of synchronizing physical clocks? Explain  

Physical clock synchronization algorithm 

Every computer contains a clock which is an electronic device that counts the oscillations in a 

crystal at a particular frequency. Synchronization of these physical clocks to some known high 

degree of accuracy is needed. This helps to measure the time relative to each local clock to 

determine order between events. 

Physical clock synchronization algorithms can be classified as centralized and distributed. 

1.Centralized clock synchronization algorithms 

These have one node with a real-time receiver and are called time server node. The clock time 

of this node is regarded as correct and used as reference time. 



The goal of this algorithm is to keep the clocks of all other nodes synchronized with time 

server node. 

i. Cristian’s Algorithm 

 

 In this method each node periodically sends a message to the server. When the time 

server receives the message it responds with a message T, where T is the current time 

of server node. 

 Assume the clock time of client be To when it sends the message and T1 when it 

receives the message from server. To and T1 are measured using same clock so best 

estimate of time for propagation is (T1-To)/2. 

 When the reply is received at clients node, its clock is readjusted to T+(T1-T0)/2. There 

can be unpredictable variation in the message propagation time between the nodes 

hence (T1-T0)/2 is not good to be added to T for calculating current time. 

 For this several measurements of T1-To are made and if these measurements exceed 

some threshold value then they are unreliable and discarded. The average of the 

remaining measurements is calculated and the minimum value is considered accurate 

and half of the calculated value is added to T.  

 Advantage-It assumes that no additional information is available.  

 Disadvantage- It restricts the number of measurements for estimating the value. 

ii.The Berkley Algorithm 

 This is an active time server approach where the time server periodically broadcasts its 

clock time and the other nodes receive the message to correct their own clocks. 

 In this algorithm the time server periodically sends a message to all the computers in 

the group of computers. When this message is received each computer sends back its 

own clock value to the time server. The time server has a prior knowledge of the 

approximate time required for propagation of a message which is used to readjust the 

clock values. It then takes a fault tolerant average of clock values of all the computers. 

The calculated average is the current time to which all clocks should be readjusted. 

 The time server readjusts its own clock to this value and instead of sending the current 

time to other computers it sends the amount of time each computer needs for 

readjustment. This can be positive or negative value and is calculated based on the 

knowledge the time server has about the propagation of message. 

2.Distributed algorithms 

Distributed algorithms overcome the problems of centralized by internally synchronizing for 

better accuracy. One of the two approaches can be used: 



i.Global Averaging Distributed Algorithms 

 In this approach the clock process at each node broadcasts its local clock time in the 

form of a “resync” message at the beginning of every fixed-length resynchronization 

interval. This is done when its local time equals To+iR for some integer i, where To is a 

fixed time agreed by all nodes and R is a system parameter that depends on total nodes 

in a system. 

 After broadcasting the clock value, the clock process of a node waits for time T which 

is determined by the algorithm. 

 During this waiting the clock process collects the resync messages and the clock 

process records the time when the message is received which estimates the skew after 

the waiting is done. It then computes a fault-tolerant average of the estimated skew and 

uses it to correct the clocks. 

ii.Localized Averaging Distributes Algorithms 

 The global averaging algorithms do not scale as they need a network to support 

broadcast facility and a lot of message traffic is generated. 

 Localized averaging algorithms overcome these drawbacks as the nodes in distributed 

systems are logically arranged in a pattern or ring. 

 Each node exchanges its clock time with its neighbors and then sets its clock time to the 

average of its own clock time and of its neighbors. 

 

9 Explain Christian’s method for synchronizing Clocks 

Cristian’s Algorithm 

Cristian’s Algorithm is a clock synchronization algorithm is used to synchronize time with a 

time server by client processes. This algorithm works well with low-latency networks where 

Round Trip Time is short as compared to accuracy while redundancy prone distributed 

systems/applications do not go hand in hand with this algorithm. Here Round Trip Time refers 

to the time duration between start of a Request and end of corresponding Response. 

Below is an illustration imitating working of cristian’s algorithm:  

https://en.wikipedia.org/wiki/Round-trip_delay_time


 

Algorithm: 

1) The process on the client machine sends the request for fetching clock time(time at server) 

to the Clock Server at time. 

2) The Clock Server listens to the request made by the client process and returns the response 

in form of clock server time. 

3) The client process fetches the response from the Clock Server at time and calculates the 

synchronised client clock time  

Python Codes below illustrate the working of Cristian’s algorithm: 

Code below is used to initiate a prototype of a clock server on local machine: 

filter_none  

brightness_4  

# Python3 program imitating a clock server  

   

import socket  

import datetime  

     

# function used to initiate the Clock Server  

def initiateClockServer():  

   

    s = socket.socket()  

    print("Socket successfully created")  

         

    # Server port  

    port = 8000 

   



    s.bind(('', port))  

        

    # Start listening to requests  

    s.listen(5)        

    print("Socket is listening...")  

         

    # Clock Server Running forever  

    while True:   

         

       # Establish connection with client  

       connection, address = s.accept()        

       print('Server connected to', address)  

         

       # Respond the client with server clock time  

       connection.send(str(  

                    datetime.datetime.now()).encode())  

         

       # Close the connection with the client process   

       connection.close()  

   

   

# Driver function  

if __name__ == '__main__':  

   

    # Trigger the Clock Server      

    initiateClockServer()  

Output: 

Socket successfully created 

Socket is listening... 

 

10 Explain Logical time and logical clocks. 

 Logical time and logical clocks 

  

Instead of synchronizing clocks, event ordering can be used 

If two events occurred at the same process pi (i = 1, 2, … N) then theyoccurred in the 

order observed by pi, that is order →i 

when a message, m is sent between two processes, send(m) happened before receive(m) 
  

Lamport[1978] generalized these two relationships into the happened-before relation: e →i e' 
  

HB1: if e →i e' in process pi, then e → e' 
  

HB2: for any message m, send(m) → receive(m) 
  

HB3: if e → e' and e' → e'', then e → e'' 



  

  

Lamport‘s logical clocks 

 Each process pi has a logical clock Li 

a monotonically increasing software counter 

not related to a physical clock 

Apply Lamport timestamps to events with happened-before relation 

LC1: Li is incremented by 1 before each event at process pi 

LC2: 

when process pi sends message m, it piggybacks t = Li 

 when pj receives (m,t), it sets Lj := max(Lj, t) and applies LC1 before timestamping the event 

receive (m) 

 e →e‘ implies L(e)<L(e‘), but L(e)<L(e') does not imply e→e‘ 

 
Totally ordered logical clocks 

 Some pairs of distinct events, generated by different processes, may have numerically 

identical Lamport timestamps 

Different processes may have same Lamport time 
  

Totally ordered logical clocks 
 If e is an event occurring at pi with local timestamp Ti, and if e‘ is an event occurring at pj 

with local timestamp Tj 

 Define global logical timestamps for the events to be (Ti, i ) and (Tj, j)  

Define (Ti, i ) < (Tj, j ) iff 

Ti < Tj orTi = Tj and i < j 

No general physical significance since process identifiers are arbitrary 



  

Vector clocks 

Shortcoming of Lamport clocks: 
 L(e) < L(e') doesn't imply e → e' 
 Vector clock: an array of N integers for a system of N processes 
 Each process keeps its own vector clock Vi to timestamp local events 
 Piggyback vector timestamps on messages 
 Rules for updating vector clocks: 
 Vi[i]] is the number of events that pi has timestamped 
 Viji] ( j≠ i) is the number of events at pj that pi has been affected by VC1: Initially, Vi[ j ] := 0 

for pi, j=1.. N (N processes) 

 VC2: before pi timestamps an event, Vi[ i ] := Vi[ i ]+1 VC3: pi piggybacks t = Vi on every 

message it sends 
 VC4: when pi receives a timestamp t, it sets Vi[ j ] := max(Vi[ j ] , t[ j ]) for 
 j=1..N (merge operation) 

 
Compare vector timestamps 
  

V=V‘ iff V[j] = V‘[j] for j=1..N 
  

V>=V‘ iff V[j] <= V‘[j] for j=1..N 
  

V<V‘ iff V<= V‘ ^ V!=V‘ 
  

a→f since V(a) < V(f) 
  

c || e since neither V(c) <= V(e) nor V(e) <= V(c) 

  

 

11 Explain global states and consistent cuts with example 

Time and Global States 

Overview 

There are two formal models of distributed systems: synchronous and asynchronous. 

Synchronous distributed systems have the following characteristics: 

 the time to execute each step of a process has known lower and upper bounds; 

 each message transmitted over a channel is received within a known bounded time; 

 each process has a local clock whose drift rate from real time has a known bound. 



Asynchronous distributed systems, in contrast, guarantee no bounds on process execution 

speeds, message transmission delays, or clock drift rates. Most distributed systems we discuss, 

including the Internet, are asynchronous systems.  

Generally, timing is a challenging an important issue in building distributed systems. Consider 

a couple of examples: 

 Suppose we want to build a distributed system to track the battery usage of a bunch of 

laptop computers and we'd like to record the percentage of the battery each has 

remaining at exactly 2pm.  

 Suppose we want to build a distributed, real time auction and we want to know which 

of two bidders submitted their bid first. 

 Suppose we want to debug a distributed system and we want to know whether variable 

x1 in process p1 ever differs by more than 50 from variable x2 in process p2. 

In the first example, we would really like to synchronize the clocks of all participating 

computers and take a measurement of absolute time. In the second and third examples, 

knowing the absolute time is not as crucial as knowing the order in which events occurred.  

 

Clock Synchronization 

Every computer has a physical clock that counts oscillations of a crystal. This hardware clock 

is used by the computer's software clock to track the current time. However, the hardware 

clock is subject to drift -- the clock's frequency varies and the time becomes inaccurate. As a 

result, any two clocks are likely to be slightly different at any given time. The difference 

between two clocks is called their skew. 

There are several methods for synchronizing physical clocks. External synchronization means 

that all computers in the system are synchronized with an external source of time (e.g., a UTC 

signal). Internal synchronization means that all computers in the system are synchronized with 

one another, but the time is not necessarily accurate with respect to UTC. 

In a synchronous system, synchronization is straightforward since upper and lower bounds on 

the transmission time for a message are known. One process sends a message to another 

process indicating its current time, t. The second process sets its clock to t + (max+min)/2 

where max and min are the upper and lower bounds for the message transmission time 

respectively. This guarantees that the skew is at most (max-min)/2. 

Cristian's method for synchronization in asynchronous systems is similar, but does not rely on 

a predetermined max and min transmission time. Instead, a process p1 requests the current time 

from another process p2 and measures the RTT (Tround) of the request/reply. Whenp1 receives 

the time t from p2 it sets its time to t + Tround/2. 

The Berkeley algorithm, developed for collections of computers running Berkeley UNIX, is an 

internal synchronization mechanism that works by electing a master to coordinate the 

synchronization. The master polls the other computers (called slaves) for their times, computes 

an average, and tells each computer by how much it should adjust its clock. 

The Network Time Protocol (NTP) is yet another method for synchronizing clocks that uses a 

hierarchical architecture where he top level of the hierarchy (stratum 1) are servers connected 



to a UTC time source.  

 

Logical Time 

Physical time cannot be perfectly synchronized. Logical time provides a mechanism to define 

the causal order in which events occur at different processes. The ordering is based on the 

following: 

 Two events occurring at the same process happen in the order in which they are 

observed by the process. 

 If a message is sent from one process to another, the sending of the message happened 

before the receiving of the message. 

 If e occurred before e' and e' occurred before e" then e occurred before e". 

"Lamport called the partial ordering obtained by generalizing these two relationships the 

happened-before relation." ( → ) 

 

In the figure, a → b and c → d . Also, b → c and d → f , which means that a → f . However, 

we cannot say that a → e or vice versa; we say that they are concurrent  

(a || e). 

A Lamport logical clock is a monotonically increasing software counter, whose value need 

bear no particular relationship to any physical clock. Each process pi keeps its own logical 

clock, Li, which it uses to apply so-called Lamport timestamps to events. 

Lamport clocks work as follows: 

 LC1: Li is incremented before each event is issued at pi. 

 LC2: 

  

o When a process pi sends a message m, it piggybacks on m the value t = Li. 

o On receiving (m, t), a process pj computes Lj := max(Lj, t) and then applies LC1 



before timestamping the event receive(m). 

An example is shown below: 

 

If e → e ' then L(e) < L(e'), but the converse is not true. Vector clocks address this problem. "A 

vector clock for a system of N processes is an array of N integers." Vector clocks are updated 

as follows: 

VC1: Initially, Vi[j] = 0 for i, j = 1, 2, ..., N 

VC2: Just before pi timestamps an event, it sets Vi[i]:=Vi[i]+1. 

VC3: pi includes the value t = Vi in every message it sends. 

VC4: When pi receives a timestamp t in a message, it sets Vi[j]:=max(Vi[j], t[j]), for 1, 2, ...N. 

Taking the componentwise maximum of two vector timestamps in this way is known as a 

merge operation. 

An example is shown below: 

 



Vector timestamps are compared as follows: 

V=V' iff V[j] = V'[j] for j = 1, 2, ..., N 

V <= V' iff V[j] <=V'[j] for j = 1, 2, ..., N 

V < V' iff V <= V' and V != V' 

If e → e ' then V(e) < V(e') and if V(e) < V(e') then e → e ' . 

 

Global States 

It is often desirable to determine whether a particular property is true of a distributed system as 

it executes. We'd like to use logical time to construct a global view of the system state and 

determine whether a particular property is true. A few examples are as follows: 

 Distributed garbage collection: Are there references to an object anywhere in the 

system? References may exist at the local process, at another process, or in the 

communication channel. 

 Distributed deadlock detection: Is there a cycle in the graph of the "waits for" 

relationship between processes? 

 Distributed termination detection: Has a distributed algorithm terminated? 

 Distributed debugging: Example: given two processes p1 and p2 with variables x1 and x2 

respectively, can we determine whether the condition |x1-x2| > δ is ever true. 

In general, this problem is referred to as Global Predicate Evaluation. "A global state predicate 

is a function that maps from the set of global state of processes in the system ρ to {True, 

False}."  

 Safety - a predicate always evaluates to false. A given undesirable property (e.g., 

deadlock) never occurs. 

 Liveness - a predicate eventually evaluates to true. A given desirable property (e.g., 

termination) eventually occurs. 

Cuts 

Because physical time cannot be perfectly synchronized in a distributed system it is not 

possible to gather the global state of the system at a particular time. Cuts provide the ability to 

"assemble a meaningful global state from local states recorded at different times". 

Definitions: 

 ρ is a system of N processes pi (i = 1, 2, ..., N) 

 history(pi) = hi = < e i 0 , e i 1 ,...> 

 h i k =< e i 0 , e i 1 ,..., e i k > - a finite prefix of the process's history 

 s i k is the state of the process pi immediately before the kth event occurs 

 All processes record sending and receiving of messages. If a process pi records the 

sending of message m to process pj and pj has not recorded receipt of the message, then 

m is part of the state of the channel between pi and pj. 

 A global history of ρ is the union of the individual process histories: H = h0 ∪ h1 ∪ h2 

∪...∪hN-1 



 A global state can be formed by taking the set of states of the individual processes: S = 

(s1, s2, ..., sN) 

 A cut of the system's execution is a subset of its global history that is a union of 

prefixes of process histories (see figure below). 

 The frontier of the cut is the last state in each process. 

 A cut is consistent if, for all events e and e':  

o ( e ∈ C and e ' → e ) ⇒ e ' ∈ C  

 A consistent global state is one that corresponds to a consistent cut. 

 

Distributed Debugging 

To further examine how you might produce consistent cuts, we'll use the distributed debugging 

example. Recall that we have several processes, each with a variable xi. "The safety condition 

required in this example is |xi-xj| <= δ (i, j = 1, 2, ..., N)."  

The algorithm we'll discuss is a centralized algorithm that determines post hoc whether the 

safety condition was ever violated. The processes in the system, p1, p2, ..., pN, send their states 

to a passive monitoring process, p0. p0 is not part of the system. Based on the states collected, 

p0 can evaluate the safety condition. 

Collecting the state: The processes send their initial state to a monitoring process and send 

updates whenever relevant state changes, in this case the variable xi. In addition, the processes 

need only send the value of xi and a vector timestamp. The monitoring process maintains a an 

ordered queue (by the vector timestamps) for each process where it stores the state messages. It 

can then create consistent global states which it uses to evaluate the safety condition. 

Let S = (s1, s2, ..., SN) be a global state drawn from the state messages that the monitor process 

has received. Let V(si) be the vector timestamp of the state si received from pi. Then it can be 

shown that S is a consistent global state if and only if: 

V(si)[i] >= V(sj)[i] for i, j = 1, 2, ..., N 



 

 
 

12 Explain an algorithm using multicast and logical clocks for mutual exclusion.  

Mutual exclusion in distributed system 

Mutual exclusion is a concurrency control property which is introduced to prevent race 

conditions. It is the requirement that a process can not enter its critical section while another 

concurrent process is currently present or executing in its critical section i.e only one process is 

allowed to execute the critical section at any given instance of time. 

Mutual exclusion in single computer system Vs. distributed system: 
In single computer system, memory and other resources are shared between different 

processes. The status of shared resources and the status of users is easily available in the shared 

memory so with the help of shared variable (For example: Semaphores) mutual exclusion 

problem can be easily solved.  

In Distributed systems, we neither have shared memory nor a common physical clock and there 

for we can not solve mutual exclusion problem using shared variables. To eliminate the mutual 

exclusion problem in distributed system approach based on message passing is used. 

A site in distributed system do not have complete information of state of the system due to lack 

of shared memory and a common physical clock.  

Requirements of Mutual exclusion Algorithm: 

 No Deadlock: 
Two or more site should not endlessly wait for any message that will never arrive. 

 No Starvation: 
Every site who wants to execute critical section should get an opportunity to execute it 

in finite time. Any site should not wait indefinitely to execute critical section while 

other site are repeatedly executing critical section 

 Fairness: 
Each site should get a fair chance to execute critical section. Any request to execute 

critical section must be executed in the order they are made i.e Critical section 

execution requests should be executed in the order of their arrival in the system. 

 Fault Tolerance: 
In case of failure, it should be able to recognize it by itself in order to continue 

functioning without any disruption. 

Solution to distributed mutual exclusion: 

https://www.geeksforgeeks.org/semaphores-operating-system/


As we know shared variables or a local kernel can not be used to implement mutual exclusion 

in distributed systems. Message passing is a way to implement mutual exclusion. Below are the 

three approaches based on message passing to implement mutual exclusion in distributed 

systems: 

1. Token Based Algorithm:  
o A unique token is shared among all the sites. 

o If a site possesses the unique token, it is allowed to enter its critical section  

o This approach uses sequence number to order requests for the critical section. 

o Each requests for critical section contains a sequence number. This sequence 

number is used to distinguish old and current requests. 

o This approach insures Mutual exclusion as the token is unique 

o Example:  

o Suzuki-Kasami’s Broadcast Algorithm 

2. Non-token based approach:  

o A site communicates with other sites in order to determine which sites should 

execute critical section next. This requires exchange of two or more successive 

round of messages among sites. 

o This approach use timestamps instead of sequence number to order requests for 

the critical section. 

o When ever a site make request for critical section, it gets a timestamp. 

Timestamp is also used to resolve any conflict between critical section requests. 

o All algorithm which follows non-token based approach maintains a logical 

clock. Logical clocks get updated according to Lamport’s scheme 

o Example:  

o Lamport's algorithm, Ricart–Agrawala algorithm 

3. Quorum based approach:  

o Instead of requesting permission to execute the critical section from all other 

sites, Each site requests only a subset of sites which is called a quorum.  

o Any two subsets of sites or Quorum contains a common site. 

o This common site is responsible to ensure mutual exclusion 

 

13 Write short notes on locks with suitable example. 

Lock-Based Protocol 

In this type of protocol, any transaction cannot read or write data until it acquires an 

appropriate lock on it. There are two types of lock: 

1. Shared lock: 

 It is also known as a Read-only lock. In a shared lock, the data item can only read by 

the transaction.  

 It can be shared between the transactions because when the transaction holds a lock, 

then it can't update the data on the data item. 

2. Exclusive lock: 

 In the exclusive lock, the data item can be both reads as well as written by the 

transaction.  

 This lock is exclusive, and in this lock, multiple transactions do not modify the same 



data simultaneously. 

There are four types of lock protocols available: 

1. Simplistic lock protocol 

It is the simplest way of locking the data while transaction. Simplistic lock-based protocols 

allow all the transactions to get the lock on the data before insert or delete or update on it. It 

will unlock the data item after completing the transaction. 

2. Pre-claiming Lock Protocol 

 Pre-claiming Lock Protocols evaluate the transaction to list all the data items on which 

they need locks. 

 Before initiating an execution of the transaction, it requests DBMS for all the lock on 

all those data items. 

 If all the locks are granted then this protocol allows the transaction to begin. When the 

transaction is completed then it releases all the lock. 

 If all the locks are not granted then this protocol allows the transaction to rolls back and 

waits until all the locks are granted. 

 

 

3. Two-phase locking (2PL) 

 The two-phase locking protocol divides the execution phase of the transaction into 

three parts.  

 In the first part, when the execution of the transaction starts, it seeks permission for the 

lock it requires.  

 In the second part, the transaction acquires all the locks. The third phase is started as 

soon as the transaction releases its first lock. 

 In the third phase, the transaction cannot demand any new locks. It only releases the 

acquired locks. 

 

 



There are two phases of 2PL: 

Growing phase: In the growing phase, a new lock on the data item may be acquired by the 

transaction, but none can be released. 

Shrinking phase: In the shrinking phase, existing lock held by the transaction may be 

released, but no new locks can be acquired. 

In the below example, if lock conversion is allowed then the following phase can happen: 

1. Upgrading of lock (from S(a) to X (a)) is allowed in growing phase. 

2. Downgrading of lock (from X(a) to S(a)) must be done in shrinking phase.  

Example: 

 

 

The following way shows how unlocking and locking work with 2-PL. 

Transaction T1: 

 Growing phase: from step 1-3 

 Shrinking phase: from step 5-7 

 Lock point: at 3 

Transaction T2: 

 Growing phase: from step 2-6 

 Shrinking phase: from step 8-9 

 Lock point: at 6 

4. Strict Two-phase locking (Strict-2PL) 

 The first phase of Strict-2PL is similar to 2PL. In the first phase, after acquiring all the 



locks, the transaction continues to execute normally. 

 The only difference between 2PL and strict 2PL is that Strict-2PL does not release a 

lock after using it. 

 Strict-2PL waits until the whole transaction to commit, and then it releases all the locks 

at a time. 

 Strict-2PL protocol does not have shrinking phase of lock release. 

 

 

It does not have cascading abort as 2PL does.  
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UNIT-II 

 PART-A 

1 What is meant  by  group  communication? Group communication is a multicast 

operation is more appropriate- this is an operation that sends a single message from one 

process to each of the members of a group of process, usually in such a way that the 

membership of the group is transparent 
to the sender. 

2 Difference between synchronous and asynchronous communication? 

In synchronous form of communication, the sending and receiving processes 

synchronize at every message. In this case, both send and receive are blocking 

operations. Whenever a send is issued the sending process is blocked until the 

corresponding receive is issued. Whenever receive is issued, the process blocks until a 

message arrives. 

In asynchronous form of communication, the use of the send operation is non-blocking 

in that the sending process is allowed to proceed as soon as the message has been copied 

to a local buffer and the transmission of the message proceeds in parallel with the 

sending process. The receive operation can 

have blocking and non-blocking variants. 
 
 

3 What are the forms of message ordering paradigms? 

 FIFO 

 non-FIFO 

 Casual order 

 Synchronous order 

4 What are the characterisitics of group communication? 

 Fault tolerance based on replicated server 

 Finding the discovery servers from spontaneous networks 

 Better performance through replicated data 

 Propagation of event notification 

5. What are the two phases in obtaining a global snapshot? 

 First locally recording the snapshot at every process 

 Second distributing the resultant global snapshot to all the initiators 

6. What are the two optimization techniques are provided to the Chandy-Lamport 

algorithm? 

 The first optimization combines snap-shots concurrently initiated by multiple 

processes into a single snapshot. 

 This optimization is linked with the second optimization,which deals with the 

efficient distribution of the global snapshot. 



7. How a FIFO execution is implemented? 

 To implement a FIFO logical channel over a non-FIFO channel,a separate 

numbering scheme is used to sequence the messages. 

 The sender assigns a sequence number and appends connection_id to each 

message and then transimmted then the receiver arranges the incoming messages 

according to the sender’s sequence numbers and accepts “next” message s per 

sequence. 

8. What is Guard? 

A Guard Gi is a Boolean expression.If a Guard Gi evaluates to true then CLi is said to be 

enabled otherwise it is diabled. 

9. List the criteria to be met by a casual ordering protocol. 

 Safety 

 Liveliness 

10. Write the drawback of centralized algorithm. 

 Single point of failure  

 Congestion 

11. List the application of Casual order protocol. 

 Updating replicated data, 

 Allocating requests in a fair manner 

 Synchronizing multimedia streams 

12 What is the purpose of Chandy and Lamport algorithm? 

 Chandy and Lamport proposed a snapshot algorithm for determining global 

states of distributed systems. 

 This algorithm records a set of process and channels as a snapshot for the process 

set.The recorded global state is consistent. 

 PART-B 

1 Explain in detail about asynchronous execution with synchronous communication 

Synchronous vs. Asynchronous 

Definition: 

 Synchronous communication: The calling party requests a service, and waits for 

the service to complete. Only when it receives the result of the service it continues 

with its work. A timeout may be defined, so that if the service does not finish 

within the defined period the call is assumed to have failed and the caller continues. 

 Asynchronous communication: The calling party initiates a service call, but does 

not wait for the result. The caller immediately continues with its work without 

caring for the result. If the caller is interested in the result there are mechanisms 

which we'll discuss in the next paragraphs. 

Be aware that the distinction between synchronous and asynchronous is highly dependent 

on the viewpoint. Often asynchronous is used in the sense of “the user interface must stay 

responsive all the time”. This interpretation often leads to the wrong conclusion: “…and 

therefore every communication must be asynchronous”. A non-blocking GUI usually has 

nothing to do with the low-level communication contracts and can be achieved by different 

means, e.g. parallel processing of the interactive and communication tasks. The truth is 

that synchronous communication on a certain level of abstraction can be implemented with 

asynchronous interfaces on another level of abstraction and vice versa, if needed. 



File based communication is often considered to be asynchronous. One party writes a file 

but does not care if the other party is active, fetches the file or is able to process it. 

However it is possible to implement another layer of functionality so that the second 

(reading) party gives feedback, e.g. by writing a short result file, so that the first (writing) 

party can wait and poll for the result of the file processing. This layer introduces a 

synchronous communication over file exchange. 

Communication over a database often is implemented by one party writing execution 

orders into a special table and the other party reads this table periodically and processes 

new entries, marking them as “done” or “failed” after execution. So far this is an 

asynchronous communication pattern. As soon as the first party waits for the result of the 

execution, this second layer introduces a synchronous communication pattern again. 

The following chapters explain synchronous and asynchronous communication patterns in 

more detail, using web services as an example. The scenarios can also be used for other 

connectivity types. 

Synchronous services are easy to implement, since they keep the complexity of the 

communication low by providing immediate feedback. They avoid the need to keep the 

context of a call on the client and server side, including e.g. the caller’s address or a 

message id, beyond the lifetime of the request. 

 
Nevertheless some circumstances may require implementing asynchronous calls: 

 Expected round-trip durations are beyond time limits of the connection 

infrastructure (e.g. some web proxies close TCP connections after 2 minutes idle 

time) 

 Connections with a lack of stability (e.g. a dial-in network connection is not 

available all the time). 

 The caller is not interested in the result of the call or cannot wait for the result for 

some reason, e.g. it must free its resources. 

In some cases the delivery of the asynchronous request can be assured by some other 

mechanism, e.g. message queuing, storing the request in a file system or creation of a T4x 

job. 



The simplest asynchronous message exchange pattern is called fire-and-forget and means 

that a message is sent but no feedback is required (at least on that level of abstraction!). 

 
The only possible feedback can come from the communication layer in case of an error in 

processing or sending the request, but never from the processing of the server. 

If feedback on the server-side processing is required using a fire-and-forget transmission, 

some higher level implementation must add the necessary logic and data to establish a kind 

of “session” to link the feedback to the request. There are two possible patterns to 

implement this: Either the client repeatedly asks for the result of the processing on the 

server (polling) or the server calls a service of the client to report the feedback after it has 

finished processing (callback). 

Polling causes potentially high network loads and is therefore not recommended. 

Nevertheless it has the advantage that the service provider (server) does not need to know 

about its clients and that no client needs to provide a service by itself. 

 
On the contrary for the callback pattern, the receiver of the request (server) must by some 

means know how to send the feedback message and must know how to address the correct 

client (this information can be passed in the request or be stored statically). To collect the 

feedback some active instance on the caller’s side must listen to receive the feedback 

message (which in turn can be a fire-and-forget message). So the caller must become a 

service provider (“server”) by itself. Usually the client continues with its work after the 

request was fired instead of waiting. So there can be some interaction between the client 



and the callback instance to notify the client or the user of the arrival of the feedback. This 

interaction happens entirely on the client and is usually not a communication issue (instead 

you can imagine sending notification emails, notifying the GUI, push a workflow task to 

the user’s inbox or similar actions). 

 
As previously stated the implementation of the message transfer may use synchronous or 

asynchronous transfers on a lower level. In the fire-and-forget example, the request might 

be transferred via TCP, which implicitly acknowledges each message. Even if the 

acknowledgment is being implemented, higher levels might not be interested in it. For the 

callback and polling scenarios, each message might be acknowledged, but from a high 

level perspective, there are only fire-and-forget messages. 

Asynchronous behavior can be implemented for a T4x server by writing the message 

(input parameters) to the file system (where the T4x scheduler will poll for it) or by 

creating a job at the T4x job server. If the caller wants to be informed about the 

execution’s result, the T4x server needs to store the caller’s response address and some 

context information to be able to report the result back. This has to be done in the service 

implementation. T4x as consumer can handle this by providing a callback service. Another 

possibility is the caller periodically polling for the execution result, e.g. by looking for a 

result file in the file system or by asking the T4x job server for the result of a job identified 

by the job id. This can easily be done by providing an additional service asking for the job 

result. 

 

2 How Casual order and Total Order is implemented in Synchronization 

Causal ordering 

Causal ordering is a vital tool for thinking about distributed systems.  

Messages sent between machines may arrive zero or more times at any point after they are 

sent 

This is the sole reason that building distributed systems is hard. 

For example, because of this property it is impossible for two computers communicating 

over a network to agree on the exact time. You can send me a message saying "it is now 

10:00:00" but I don't know how long it took for that message to arrive. We can send 



messages back and forth all day but we will never know for sure that we are synchronised. 

If we can't agree on the time then we can't always agree on what order things happen in. 

Suppose I say "my user logged on at 10:00:00" and you say "my user logged on at 

10:00:01". Maybe mine was first or maybe my clock is just fast relative to yours. The only 

way to know for sure is if something connects those two events. For example, if my user 

logged on and then sent your user an email and if you received that email before your user 

logged on then we know for sure that mine was first. 

This concept is called causal ordering and is written like this: 

A -> B (event A is causally ordered before event B) 

Let's define it a little more formally. We model the world as follows: We have a number of 

machines on which we observe a series of events. These events are either specific to one 

machine (eg user input) or are communications between machines. We define the causal 

ordering of these events by three rules: 

If A and B happen on the same machine and A happens before B then A -> B 

 

If I send you some message M and you receive it then (send M) -> (recv M) 

 

If A -> B and B -> C then A -> C 

We are used to thinking of ordering by time which is a total order - every pair of events 

can be placed in some order. In contrast, causal ordering is only a partial order - sometimes 

events happen with no possible causal relationship i.e. not (A -> B or B -> A). 

This image shows a nice way to picture these relationships. 

On a single machine causal ordering is exactly the same as time ordering (actually, on a 

multi-core machine the situation is more complicated, but let's forget about that for now). 

Between machines causal ordering is conveyed by messages. Since sending messages is 

the only way for machines to affect each other this gives rise to a nice property: 

If not(A -> B) then A cannot possibly have caused B 

Since we don't have a single global time this is the only thing that allows us to reason 

about causality in a distributed system. This is really important so let's say it again: 

Communication bounds causality 

The lack of a total global order is not just an accidental property of computer systems, it is 

a fundamental property of the laws of physics. I claimed that understanding causal order 

makes many other concepts much simpler. Let's skim over some examples. 

Vector Clocks 

Lamport clocks and Vector clocks are data-structures which efficiently approximate the 

causal ordering and so can be used by programs to reason about causality. 

If A -> B then LC_A < LC_B 

http://en.wikipedia.org/wiki/Total_order
http://en.wikipedia.org/wiki/Partially_ordered_set
http://upload.wikimedia.org/wikipedia/commons/5/55/Vector_Clock.svg
http://mechanical-sympathy.blogspot.com/2011/08/inter-thread-latency.html
http://en.wikipedia.org/wiki/Light_cone
http://en.wikipedia.org/wiki/Lamport_timestamps
http://en.wikipedia.org/wiki/Vector_clock


 

If VC_A < VC_B then A -> B 

Different types of vector clock trade-off compression vs accuracy by storing smaller or 

larger portions of the causal history of an event. 

Consistency 

When mutable state is distributed over multiple machines each machine can receive update 

events at different times and in different orders. If the final state is dependent on the order 

of updates then the system must choose a single serialisation of the events, imposing a 

global total order. A distributed system is consistent exactly when the outside world can 

never observe two different serialisations. 

CAP Theorem 

The CAP (Consistency-Availability-Partition) theorem also boils down to causality. When 

a machine in a distributed system is asked to perform an action that depends on its current 

state it must decide that state by choosing a serialisation of the events it has seen. It has 

two options: 

 Choose a serialisation of its current events immediately 

 Wait until it is sure it has seen all concurrent events before choosing a serialisation 

The first choice risks violating consistency if some other machine makes the same choice 

with a different set of events. The second violates availability by waiting for every other 

machine that could possibly have received a conflicting event before performing the 

requested action. There is no need for an actual network partition to happen - the trade-off 

between availability and consistency exists whenever communication between components 

is not instant. We can state this even more simply: 

Ordering requires waiting 

Even your hardware cannot escape this law. It provides the illusion of synchronous access 

to memory at the cost of availabilty. If you want to write fast parallel programs then you 

need to understand the messaging model used by the underlying hardware. 

Eventual Consistency 

A system is eventually consistent if the final state of each machine is the same regardless 

of how we choose to serialise update events. An eventually consistent system allows us to 

sacrifice consistency for availability without having the state of different machines diverge 

irreparably. It doesn't save us from having the outside world see different serialisations of 

update events. It is also difficult to construct eventually consistent data structures and to 

reason about their composition. 

 

3 What is group communication? What are the Key areas of applications of group 

communication? Explain the programming model for group 

communication.APRIL/MAY 2018 

http://en.wikipedia.org/wiki/Memory_barrier


Group Communication 

A group is an operating system abstraction for a collective of related processes. A set of 

cooperative processes may, for example, form a group to provide an extendable, efficient, 

available and reliable service. The group abstraction allows member processes to perform 

computation on different hosts while providing support for communication and 

synchronisation between them. 

 The term multicast means the use of a single communication primitive to send a message 

to a specific set of processes rather than using a collection of individual point to point 

message primitives. This is in contrast with the term broadcast which means the message is 

addressed to every host or process. 

 A consensus protocol allows a group of participating processes to reach a common 

decision, based on their initial inputs, despite failures. 

 A reliable multicast protocol allows a group of processes to agree on a set of messages 

received by the group. Each message should be received by all members of the group or by 

none. The order of these messages may be important for some applications. A reliable 

multicast protocol is not concerned with message ordering, only message delivery 

guarantees. Ordered delivery protocols can be implemented on top of a reliable multicast 

service. 

 Multicast algorithms can be built on top of lower-level communication primitives such as 

point-to-point sends and receives or perhaps by availing of specific network mechanisms 

designed for this purpose. 

 The management of a group needs an efficient and reliable multicast communication 

mechanism to allow clients obtain services from the group and ensure consistency among 

servers in the presence of failures. Consider the following two scenarios:-  

       A client wishes to obtain a service which can be performed by any member of the               

group without affecting the state of the service. 

A client wishes to obtain a service which must be performed by each member of the 

group. 

In the first case, the client can accept a response to its multicast from any member of the 

group as long as at least one responds. The communication system need only guarantee 

delivery of the multicast to a nonfaulty process of the group on a best-effort basis. In the 

second case, the all-or-none atomic delivery requirements requires that the multicast needs 

to be buffered until it is committed and subsequently delivered to the application process, 

and so incurs additional latency. 

 Failure may occur during a multicast at the recipient processes, the communication links 

or the originating process. 

 Failures at the recipient processes and on the communication links can be detected by the 

originating process using standard time-out mechanisms or message acknowledgements. 

The multicast can be aborted by the originator, or the service group membership may be 



dynamically adjusted to exclude the failed processes and the multicast can be continued. 

If the originator fails during the multicast, there are two possible outcomes. Either the 

message has not have arrived at any destination or it has arrived at some. In the first case, 

no process can be aware of the originator's intention and so the multicast must be aborted. 

In the second case it may be possible to complete the multicast by selecting one of the 

recipients as the new originator. The recipients would have to buffer messages until safe 

for delivery in case they were called on for this role. 

 A reliable multicast protocol imposes no restriction on the order in which messages are 

delivered to group processes. Given that multicasts may be in progress by a number of 

originators simultaneously, the messages may arrive at different processes in a group in 

different orders. Also, a single originator may have a number of simultaneous multicasts in 

progress or may have issued a sequence of multicast messages whose ordering we might 

like preserved at the recipients. Ideally, multicast messages should be delivered 

instantaneously in the real-time order they were sent, but this is unrealistic as there is no 

global time and message transmission has a possibly significant and variable latency.  

 A number of possible scenarios are given below which may require different levels of 

ordering semantics. G and s represent groups and message sources. s may be inside or 

outside a group. Note that group membership may overlap with other groups, that is, 

processes may be members of more than one group. 

 

Ordered Reliable Multicasts 

A FIFO ordered protocol guarantees that messages by the same sender are delivered in the 

order that they were sent. That is, if a process multicasts a message m before it multicasts a 

message m', then no correct process receives m' unless it has previously received m. To 

implement this, messages can be assigned sequence numbers which define an ordering on 

messages from a single source. Some applications may require the context of previously 

multicast messages from an originator before interpreting the originator's latest message 

correctly. 

 However, the content of message m may also depend on messages that the sender of m 

received from other sources before sending m. The application may require that the context 

which could have caused or affected the content of m be delivered at all destinations of m, 

before m. For example, in a network news application, user A broadcasts an article. User B 

at a different site receives the article and broadcasts a response. User C can only interpret 

the response if the original article is delivered first at their site. Two messages are said to 

be causally related if one message is generated after receipt of the other. Causal order is a 

strengthening of FIFO ordering which ensures that a message is not delivered until all 

messages it depends on have been delivered. 

 This causal dependence relation is more formally specified as follows:- An execution of a 

multicast or receive primitive by a process is called an event.  

Event e causally precedes event f (i.e. happened before), (ef), if an only if: 

 1. A process executes both e and f in that order, or 



 2. e is the multicast of message m and f is the receipt of m, or 

 3. there is an event h, such that eh and hf. 

A causal protocol then guarantees that if the broadcast of message m causally precedes the 

broadcast of m', then no correct process receives m' unless it has previously received m.  

 The definition of causal ordering does not determine the delivery order of messages which 

are not causally related. Consider a replicated database application with two copies of a 

bank account x residing at different sites. A client side process at one site sends a multicast 

to the database to lodge £100 to account x. At another site simultaneously, a client side 

process initiates a multicast to add 10% interest to the current balance of x. For 

consistency, all database replicas should apply the two updates in the same sequence. As 

these two messages are not causally related, a causal broadcast would allow the update 

messages to x to be delivered in different sequences at the replicas. 

 Total Ordering guarantees that all correct processes receive all messages in the same order. 

That is, if correct processes p and q both receive messages m and m', then p receives m 

before m' if and only if q receives m before m'. The multicast is atomic across all members 

of the group. 

  

Note that this definition of a totally ordered broadcast does not require that messages be 

delivered in Causal Order or even FIFO Order, so it is not stronger than these orderings. 

For example, if a process suffers a transient failure during the broadcast of message m, and 

subsequently broadcasts m', a totally ordered protocol will guarantee only that processes 

receive m'. 

FIFO or Causal Ordering can be combined with Total Ordering if required. 

  

All reliable multicasts have the following three properties. 

Validity: If a correct process multicasts a message m, then all correct processes 

eventually receive m. 

Agreement: If a correct process receives a message m, then all correct processes 

eventually receive m. 

Integrity: For any message m, every correct  process receives m at most once and 

only if m was multicast by the sender of m. 

The protocols only differ in the strength of their message delivery order requirements. 

 Multicast Algorithms 

 In the algorithms to follow, R stands for Reliable Multicast, F for FIFO, C for Causal and 

A for Atomic. 



In an asynchronous system where a reliable link exists between every pair of processes, the 

algorithm below demonstrates how a Reliable multicast can be achieved. 

 Every process p executes the following:- 

multicast(R, m): 

 tag m with sender(m) and seq#(m) 

 send(m) to all group including p 

 The receive(R, m) occurs as follows: 

 upon arrival(m) do 

  if p has not previously executed receive(R, m) then 

   if sender(m) <> p then 

    send(m) to all group 

    receive(R, m) 

 It is easy to use Reliable Multicast to build a FIFO Multicast algorithm. To F-multicast a 

message m, a process q simply R-multicasts m. The difference is at the receiver which 

orders the delivery. 

 multicast(F, m): 

 multicast(R, m) 

 If m is the ith message from q, then m is tagged sender(m)=q and seq#(m)=i. 

For each q, every process p maintains a counter next[q] that indicates the sequence number 

of the next F-multicast from q that p is willing to F-deliver. Incoming messages are placed 

in a message bag from which messages that can be FIFO delivered (according to the value 

of next[q]) are removed. 

 Every process p initialises:- 

 msgbag =  

 next[q] = 1 for all q 

 The receive(R, m) occurs as follows: 

 upon arrival(R, m) do 

  q := sender(m); 

  msgbag := msgbag  {m}; 



  while ( m' msgbag: sender(m')=q and seq#(m')=next[q]) do 

   receive(F, m') 

   next[q] = next[q]+1; 

   msgbag := msgbag - {m'} 

 A Causal multicast algorithm can be constructed on top of a FIFO multicast. 

To C-multicast a message m, a process p uses the FIFO multicast algorithm to F-multicast 

the sequence of messages that p has causally received since its previous C-broadcast 

followed by the message m. A process q receives all of the messages in the sequence only 

which it previously has not received. 

 Initialisation: 

 prevReceives =  

  

multicast(C, m): 

 multicast(F, <prevReceives || m>)   /* || is list concatenation operator */ 

 prevReceives =  

 The receive(C, m) occurs as follows: 

 upon arrival(F, <m1,m2,…mn>) do 

  for i := 1 to n do 

   if p has not received mi then 

    receive(C, mi) 

    prevReceives := prevReceives || mi; 

 One of the fundamental results about fault-tolerant distributed computing is the 

impossibility of achieving consensus in asynchronous systems which suffer crash failures. 

This is primarily due to the fact that it is impossible to distinguish between a process that 

has crashed and one that is extremely slow. The consensus problem can be easily reduced 

to implementing atomic multicast. For example, to propose a value, a process A-multicasts 

it. To decide on a value, each process picks the value of the first message that is A-

received. By total order of atomic broadcasts, all processes agree on the same value. 

Consensus and Atomic Multicast are therefore equivalent in asynchronous systems with 

crash failures and so there are no deterministic Atomic Multicast protocols (total ordering 

protocols) for such systems.  

Atomic multicast can be deterministically implemented in synchronous systems where 



upper bounds on message latency exist. 

 If we assume no failures, the algorithm given below can be used to implement a totally 

ordered multicast. 

 Each site maintains a 'local clock'. A clock doesn't necessarily have to supply the exact 

time, but could be implemented simply by a counter which is incremented after each send 

or receive event that occurs at the site, so that successive events have different 'times'. The 

algorithm executes in two phases. During the first phase the originator multicasts the 

message to all destinations and awaits a reply from each. Each receiver queues the message 

and assigns it a proposed timestamp based on the value of its local clock. This timestamp is 

returned to the originator. The originator collects all the proposed timestamps for the 

multicast and selects the highest. During the second phase of the algorithm, the originator 

commits the multicast by sending the final chosen timestamp to all destinations. Each 

receiver then marks the message as deliverable in its queue. The message queue is ordered 

on the value of the timestamps associated with each message each time a timestamp is 

updated. When a message gets to the top of the queue and is deliverable it may be 

delivered immediately to the application.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

UNIT-III 

 PART-A 

1 What is distributed deadlock? Explain with example. With deadlock detection schemes, 

a transaction is aborted only when it is involved in a deadlock. Most deadlock detection 

schemes operate by finding cycles in the transaction wait- for graph. In a distributedsystem 

involving multiple servers being accessed by multiple transactions, a global wait-for graph 

can in theory be constructed from the local ones. There can be a cycle in the global wait-for 

graph that is not in any single local one – that is, there can be a distributed deadlock 

2 Explain the ‘snapshot’ algorithm of Lamport. 

The ‘snapshot’ algorithm of Chandy and Lamport describe a ‘snapshot’ algorithm for 

determining global states of distributed systems, which we now present. The goal of the 

algorithm is to record a set of process and channel states (a ‘snapshot’) for a set of processes 

pi( i = 1,2,.N ) such that, even though the combination of recorded states may never have 

occurred at the same time, the recorded global state is consistent 

3 Explain phantom deadlocks. 

 

A deadlock that is 'detected' but is not really a deadlock is called phantom deadlock. In 

distributed deadlock detection, information about wait-for relationships between transactions 

is transmitted from on server to another. If there is a deadlock, the necessary information 

will eventually be collected in one place and a cycle will be detected. Ja this procedure will 

take some time, there is a chance that one of the transactions 

that Holds a lock will meanwhile have released it, in which case the deadlock will no longer 

exist. 

4 Explain edge chasing deadlock detection technique in distributed systems. 

A distributed approach to deadlock detection uses a technique called edge chasing or path 

pushing. In this approach, the global wait-for graph is not constructed, but each of the 

servers involved has Knowledge about some of its edges. 

The servers attempt to find cycles by forwarding messages called probes, which follow the 

edges of the graph throughout the distributed system. A probe message consists of 

transaction wait-for relationships representing a path in the global 
wait-for graph. 



5. Define Distributed Mutual Exclusion. 

A condition in which there is a set of processes ,only one of which is able to access a given 

resource or perform a given function at a time. 

6. Compare Deadlock and Starvation 

 Deadlock happens when two or more process indefinitely gets stopped when it 

attempts to enter or exit the critical section 

 Starvation is the indefinite postponement of entry for a process that has requested 

it.Without Deadlock Starvation may also occur. No starvation leads to fairness 

condition. 

7. What are the approaches to implement distributed mutual exclusion. 

 Token based approach  

 Non Token based approach  

 Quorum based approach  

 

8. What are the three states of Mutual Exclusion? 

It is of three states 

1.Requesting Control Section 

2.Executing Control Section 

3.Or Neither requesting nor executing control section(idle) 

9. Define Throughput. 

The rate at which the system executes request for the critical section if synchronization delay 

is SD and E is the average critical section execution time,then the throughput is given by the 

equation  

System Throughput=1/(SD+E) 

10 Define Response time. 

The time interval is the request wait for its control section execution to be over after its 

request message have been sent out .It does not include the time request waits at a site before 

its request message have been sent out. 

 

 PART-B 

1 Explain  the  ‘snapshot’  algorithm of  Lamport. APRIL/MAY 2017, APRIL/MAY 

2018  

Chandy–Lamport’s global state recording algorithm 

Each distributed system has a number of processes running on a number of different physical 

servers. These processes communicate with each other via communication channels using 

text messaging. These processes neither have a shared memory nor a common physical clock, 

this makes the process of determining the instantaneous global state difficult.  

A process could record it own local state at a given time but the messages that are in transit 

(on its way to be delivered) would not be included in the recorded state and hence the actual 

state of the system would be incorrect after the time in transit message is delivered.  

Chandy and Lamport were the first to propose a algorithm to capture consistent global state 

of a distributed system. The main idea behind proposed algorithm is that if we know that all 



message that hat have been sent by one process have been received by another then we can 

record the global state of the system.  

Any process in the distributed system can initiate this global state recording algorithm using a 

special message called MARKER. This marker traverse the distributed system across all 

communication channel and cause each process to record its own state. In the end, the state of 

entire system (Global state) is recorded. This algorithm does not interfere with normal 

execution of processes. 

Assumptions of the algorithm: 

 There are finite number of processes in the distributed system and they do not share 

memory and clocks. 

 There are finite number of communication channels and they are unidirectional and 

FIFO ordered. 

 There exists a communication path between any two processes in the system 

 On a channel, messages are received in the same order as they are sent. 

Algorithm: 

 Marker sending rule for a process P :  
o Process p records its own local state 

o For each outgoing channel C from process P, P sends marker along C before 

sending any other messages along C. 

(Note: Process Q will receive this marker on his incoming channel C1.)  

 Marker receiving rule for a process Q :  

o If process Q has not yet recorded its own local state then  

 Record the state of incoming channel C1 as an empty sequence or null. 

 After recording the state of incoming channel C1, process Q Follows 

the marker sending rule 

o If process Q has already recorded its state  

 Record the state of incoming channel C1 as the sequence of messages 

received along channel C1 after the state of Q was recorded and before 

Q received the marker along C1 from process P. 

Need of taking snapshot or recording global state of the system: 

 Checkpointing: It helps in creating checkpoint. If somehow application fails, this 

checkpoint can be used re 

 Garbage collection: It can be used to remove objects that do not have any references. 

 It can be used in deadlock and termination detection. 

 It is also helpful in other debugging. 

 

2 Explain the bully algorithm 

Bully Algorithm 

This algorithm has three main components given below. 

 Coordinator – Announce about himself. 

 Election – Announces the election. 



 Reply – Acknowledge the request. 

Let’s say the scenario is, we have 6 process numbered as 1, 2, 3, 4, 5, 6 and also, the priority 

or process number are also in the same order, therefore the process 6 is the highest process 

number. The process are shown below; Circles are the processes and the square boxes are 

their numbers. 

 

 

Now, suppose the case is Process 6 has crashed and other processes are active. The crashing 

has been noticed by process 2. It finds out that the Process 6 is longer responding to the 

request. In this case, Process 2 will start a fresh election. 

 

 

Process 2 sends an election message to the process, which has the highest number. In our 

case, the processes are 3, 4, 5, 6. Now, as Process 6 is down or fails, it will definitely not 

respond to the election message. 

 

Process 3, 4, 5 are active and therefore they respond with a reply or acknowledgement 

message to Process 2. 

 



 

If no one will respond to the request message by Process 2, it will win the election. Now, the 

election will be initiated by the next highest number. In our case, it is Process 3, which will 

send the election message to Process 4, 5 and 6. As Process 6 is down, it will again not 

respond to the request message. Again, if no one will respond, then Process 3 will win the 

election. 

 

 

It will be the same process  for Process 4 and it will be the next initiator to conduct the 

election. Now, the chance came to Process 5, as it is the highest in all processes. Also, 

because Process 6 is down. In this case, Process 5 will win the election and will send this 

victory message to all. 

 



 

Meanwhile, Process 6 came back from the down state to active state. It will definitely hold 

the election, as it is the highest among the processes in the system. It will win the election, 

which is based on the highest number and control over the Coordinator job.  

 

Whenever the highest number process is recovered from the down state, it holds the election 

and win the election. Also, it bullies the other process to get in submission. 

The complexity of this algorithm is given below. 

 Best Case - n-2 

 Worst Case - 0(n^2) 

 

3 What is a deadlock? How deadlock can be recovered? Explain distributed dead locks. 

Deadlock Detection 

1. If resources have single instance: 

In this case for Deadlock detection we can run an algorithm to check for cycle in the 

Resource Allocation Graph. Presence of cycle in the graph is the sufficient condition 

for deadlock. 

 

In the above diagram, resource 1 and resource 2 have single instances. There is a 

cycle R1 → P1 → R2 → P2. So, Deadlock is Confirmed.  

2. If there are multiple instances of resources: 

https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2015/06/deadlock.png


Detection of the cycle is necessary but not sufficient condition for deadlock detection, 

in this case, the system may or may not be in deadlock varies according to different 

situations. 

DeadlockRecovery 

A traditional operating system such as Windows doesn’t deal with deadlock recovery as it is 

time and space consuming process. Real-time operating systems use Deadlock recovery. 

Recovery method  

1. Killing the process: killing all the process involved in the deadlock. Killing process 

one by one. After killing each process check for deadlock again keep repeating the 

process till system recover from deadlock. 

2. Resource Preemption: Resources are preempted from the processes involved in the 

deadlock, preempted resources are allocated to other processes so that there is a 

possibility of recovering the system from deadlock. In this case, the system goes into 

starvation. 
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UNIT-IV 

 PART-A 



1 Define Roll back recovery? 

Roll back recovery is defines as a system recovers correctly if its internal state is consistent 

with the observable behavior of the system before the failure. 

2 What is a local checkpoint? 

A local checkpoint is a snapshot of the state of the process at a given instance and the event of 

recording the state of a process is called local check pointing. 

3 What are the types of messages in recovery? 

In-transit messages 

Lost messages 

Delayed messages 

Orphan messages 

Duplicate messages 

4 What is an Orphan message? 

Messages with receive recorded but message send not recorded are called orphan messages. 

5 Classify the checkpoint-based rollback recovery techniques. 

 Uncoordinated check pointing 

 Coordinated check pointing 

 Communication induced check pointing 

 

6 What is the necessity of Uncoordinated check pointing? 

Each process takes its checkpoints independently. This eliminates the synchronization 

overhead. 

 

7 What are the types of communication-induced check pointing? 

 Model-based check pointing 

 Index-based check pointing 

8 What are the advantages of pessimistic logging? 

 Immediate output commit 

 Restart from most recent checkpoint 

 Recovery limited to failed process 

 Simple garbage collection 

9 State the role of Index-based checkpointing. 

Index based communication-induced check pointing assigns monotonically increasing indexes 

to checkpoints, such that the checkpoints having the same index at different processes from a 

consistent state.  

 

10 What are the types of rollback-recovery protocols? 

 Pessimistic logging, 

 Optimistic logging 

 Causal logging protocols 

11 Compare agreement problem and the consensus problem 

The difference between the agreement problem and the consensus problem is that in the 

agreement problem, a single process has the initial value, whereas in the consensus 

problem,all processes have an initial value. 

12 Write about Reliable Broadcast (RTB) 

 RTB requires recognition of a failure,even if no message is sent. 

 It is required to distinguish between a failed process and a slow process 

 RTB requires eventual delivery of messages, even if sender fails before sending. 

In this case, a null message needs to get sent. In RB, this condition is not there. 

 PART-B 



1 Explain about the checkpoint based recovery. 

Introduction 

Checkpoint-Recovery is a common technique for imbuing a program or system with fault 

tolerant qualities, and grew from the ideas used in systems which employ transaction processing 

. It allows systems to recover after some fault interrupts the system, and causes the task to fail, 

or be aborted in some way. While many systems employ the technique to minimize lost 

processing time, it can be used more broadly to tolerate and recover from faults in a critical 

application or task. 

 

The basic idea behind checkpoint-recover is the saving and restoration of system state. By 

saving the current state of the system periodically or before critical code sections, it provides the 

baseline information needed for the restoration of lost state in the event of a system failure. 

While the cost of checkpoint-recovery can be high, by using techniques like memory exclusion, 

and by designing a system to have as small a critical state as possible may minimize the cost of 

checkpointing enough to be useful in even cost sensitive embedded applications. 

When a system is checkpointed, the state of the entire system is saved to non-volatile storage. 

The checkpointing mechanism takes a snapshot of the system state and stores the data on some 

non-volatile storage medium. Clearly, the cost of a checkpoint will vary with the amount of 

state required to be saved and the bandwidth available to the storage mechanism being used to 

save the state. 

In the event of a system failure, the internal state of the system can be restored, and it can 

continue service from the point at which its state was last saved. Typically this involves 

restarting the failed task or system, and providing some parameter indicating that there is state 

to be recovered. Depending on the task complexity, the amount of state, and the bandwidth to 

the storage device this process could take from a fraction of a second to many seconds. 

This technique provides protection against the transient fault model. Typically upon state 

restoration the system will continue processing in an identical manner as it did previously. This 



will tolerate any transient fault, however if the fault was caused by a design error, then the 

system will continue to fail and recover endlessly. In some cases, this may be the most 

important type of fault to guard against, but not in every case. 

Unfortunately, it has only limited utility in the presence of a software design fault. Consider for 

instance a system which performs control calculations, one of which is to divide a temperature 

reading into some value. Since the specification requires the instrument to read out in degrees 

Kelvin (absolute temperature), a temperature of 0 is not possible. In this case the programmer 

(realizing this) fails to check for zero prior to performing the divide. The system works well for 

a few months, but then the temperature gauge fails. The manufacturer realizes that a 0K 

temperature is not possible, and decides that the gauge should fail low, since a result of 0 is 

obviously indicative of a failure. The system faults, and attempts to recover its state. 

Unfortunately, it reaches the divide instruction and faults, and continues to recover and fault 

until some human intervention occurs. The point here is not that there should be redundant 

temperature sensors, but that the most common forms of checkpoint and recovery are not 

effective against some classes of failures.  

  

 KeyConcepts  

  

 The basic mechanism of checkpoint-recovery consists of three key ideas - the saving and 

restoration of executive state, and the detection of the need to restore system state. Additionally, 

for more complex distributed embedded systems, the checkpoint-recovery mechanism can be 

used to migrate processes off individual nodes 

 Saving executive state 

A snapshot of the complete program state may be scheduled periodically during program 

execution. Typically this is accomplished by pausing the operation of the process whose state is 

to be saved, and copying the memory pages into non-volatile storage. While this can be 

accomplished by using freely available checkpoint-recovery libraries, it may be more efficient 

to build a customized mechanism into the system to be protected. 

Between full snapshots, or even in place of all but the first complete shot, only that state which 

has changed may be saved. This is known as incremental checkpointing, and can be thought of 

in the same way as incremental backups of hard disks. The basic idea here is to minimize the 

cost of checkpointing, both in terms of the time required and the space (on non-volatile storage). 

Not all program state may need to be saved. System designers may find it more efficient to build 

in mechanisms to regenerate state internally, based on a smaller set of saved state. Although this 

technique might be difficult for some applications, it has the benefit of having the potential to 

save both time and space during both the checkpoint and recovery operations. 

A technique known as memory exclusion allows a program to notify the checkpoint algorithm 

which memory areas are state critical and which are not. This technique is similar to that of 

rebuilding state discussed above, in that it facilitates saving only the information most critical to 

program state. The designer can exclude large working set arrays, string constants, and other 

similar memory areas from being checkpointed. 

When these techniques are combined, the cost of checkpointing can be reduced by factors of 3-

4. Checkpointing, like any fault tolerant computing technique, does require additional resources. 

Whether or not it will work well, is high dependant on both the target system design, and the 

application. Typically those systems which must meet hard real-time deadlines will have the 



most difficulty implementing any type of checkpoint-recovery system  

  

RestoringExecutivestate  

  

 When a failure has occurred, the recovery mechanism restores system state to the last 

checkpointed value. This is the fundamental idea in the tolerance of a fault within a system 

employing checkpoint-recovery. Ideally, the state will be restored to a condition before the fault 

occurred within the system. After the state has been restored, the system can continue normal 

execution. 

State is restored directly from the last complete snapshot, or reconstructed from the last 

snapshot and the incremental checkpoints. The concept is similar to that of a journaled file 

system, or even RCS(revision control system), in that only the changes to a file are recorded. 

Thus when the file is to be loaded or restored, the original document is loaded, and then the 

specified changes are made to it. In a similar fashion, when the state is restored to a system 

which has undergone one or more incremental checkpoints, the last full checkpoint is loaded, 

and then modified according to the state changes indicated by the incremental checkpoint data. 

If the root cause of the failure did not manifest until after a checkpoint, and that cause is part of 

the state or input data, the restored system is likely to fail again. In such a case the error in the 

system may be latent through several checkpoint cycles. When the it finally activates and causes 

a system failure, the recovery mechanism will restore the state (including the error!) and 

execution will begin again, most likely triggering the same activation and failure. Thus it is in 

the system designers best interest to ensure that any checkpoint-recovery based system is fail 

fast - meaning errors are either tolerated, or case the system to fail immediately, with little or no 

incubation period. 

Such recurring failures might be addressed through multi-level rollbacks and/or algorithmic 

diversity. Such a system would detect multiple failures as described above, and recover state 

from checkpoint data previous to the last recovery point. Additionally, when the system detects 

such multiple failures it might switch to a different algorithm to perform its functionality, which 

may not be susceptible to the same failure modes. The system might degrade its performance by 

using a more robust, but less efficient algorithm in an attempt to provide base level functionality 

to get past the fault before switching back to the more efficient routines.  

  

 Failure Detection 

Failure detection can be a tricky part of any fault tolerant design. Sometimes the line between an 

unexpected (but correct) result, and garbage out is difficult to discern. In traditional checkpoint-

recovery failure detection is somewhat simplistic. If the process or system terminates, there is a 

failure. Additionally, some systems will recover state if they attempted a non-transactional 

operation that failed and returned. The discussion of failure detection, and especially how it 

impacts embedded systems is left to the chapters on fault tolerance, reliability, dependability, 

and architecture.  

 

2 Explain about the log based rollback recovery. 

Log based Recovery  

Atomicity property of DBMS states that either all the operations of transactions must be 

performed or none. The modifications done by an aborted transaction should not be visible to 

https://www.geeksforgeeks.org/acid-properties-in-dbms/


database and the modifications done by committed transaction should be visible. 

To achieve our goal of atomicity, user must first output to stable storage information describing 

the modifications, without modifying the database itself. This information can help us ensure 

that all modifications performed by committed transactions are reflected in the database. This 

information can also help us ensure that no modifications made by an aborted transaction persist 

in the database. 

Log and log records – 

The log is a sequence of log records, recording all the update activities in the database. In a 

stable storage, logs for each transaction are maintained. Any operation which is performed on 

the database is recorded is on the log. Prior to performing any modification to database, an 

update log record is created to reflect that modification.  

An update log record represented as: <Ti, Xj, V1, V2> has these fields: 

1. Transaction identifier: Unique Identifier of the transaction that performed the write 

operation. 

2. Data item: Unique identifier of the data item written. 

3. Old value: Value of data item prior to write. 

4. New value: Value of data item after write operation. 

Other type of log records are: 

1. <Ti start>: It contains information about when a transaction Ti starts. 

2. <Ti commit>: It contains information about when a transaction Ti commits. 

3. <Ti abort>: It contains information about when a transaction Ti aborts. 

Undo and Redo Operations – 

Because all database modifications must be preceded by creation of log record, the system has 

available both the old value prior to modification of data item and new value that is to be written 

for data item. This allows system to perform redo and undo operations as appropriate: 

1. Undo: using a log record sets the data item specified in log record to old value. 

2. Redo: using a log record sets the data item specified in log record to new value.  

The database can be modified using two approaches – 

1. Deferred Modification Technique: If the transaction does not modify the database 

until it has partially committed, it is said to use deferred modification technique. 

2. Immediate Modification Technique: If database modification occur while transaction 

is still active, it is said to use immediate modification technique. 

Recovery using Log records – 

After a system crash has occurred, the system consults the log to determine which transactions 

need to be redone and which need to be undone. 

1. Transaction Ti needs to be undone if the log contains the record <Ti start> but does not 

contain either the record <Ti commit> or the record <Ti abort>. 

2. Transaction Ti needs to be redone if log contains record <Ti start> and either the record 

<Ti commit> or the record <Ti abort>. 



Use of Checkpoints – 
When a system crash occurs, user must consult the log. In principle, that need to search the 

entire log to determine this information. There are two major difficulties with this approach: 

1. The search process is time-consuming. 

2. Most of the transactions that, according to our algorithm, need to be redone have already 

written their updates into the database. Although redoing them will cause no harm, it 

will cause recovery to take longer. 

To reduce these types of overhead, user introduce checkpoints. A log record of the form 

<checkpoint L> is used to represent a checkpoint in log where L is a list of transactions active at 

the time of the checkpoint. When a checkpoint log record is added to log all the transactions that 

have committed before this checkpoint have <Ti commit> log record before the checkpoint 

record. Any database modifications made by Ti is written to the database either prior to the 

checkpoint or as part of the checkpoint itself. Thus, at recovery time, there is no need to perform 

a redo operation on Ti. 

After a system crash has occurred, the system examines the log to find the last <checkpoint L> 

record. The redo or undo operations need to be applied only to transactions in L, and to all 

transactions that started execution after the record was written to the log. Let us denote this set 

of transactions as T. Same rules of undo and redo are applicable on T as mentioned in Recovery 

using Log records part. 

Note that user need to only examine the part of the log starting with the last checkpoint log 

record to find the set of transactions T, and to find out whether a commit or abort record occurs 

in the log for each transaction in T. For example, consider the set of transactions {T0, T1, . . ., 

T100}. Suppose that the most recent checkpoint took place during the execution of transaction 

T67 and T69, while T68 and all transactions with subscripts lower than 67 completed before the 

checkpoint. Thus, only transactions T67, T69, . . ., T100 need to be considered during the 

recovery scheme. Each of them needs to be redone if it has completed (that is, either committed 

or aborted); otherwise, it was incomplete, and needs to be undone. 
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UNIT-V 

 PART-A 

1 What is peer to peer system? 

Peer-to-peer systems aim to support useful distributed services and applications using data 

and computing resources available in the personal computers and workstations that are present 

in the 

Internet and other networks in ever-increasing numbers. 

2 What is goal of peer to peer system? 

The goal of peer-to-peer systems is to enable the sharing of data and resources on a very large 

scale by eliminating any requirement for separately managed servers and their associated 

infrastructure. 

3 What are the characteristics of peer to peer system? MAY/JUNE 2016 

Their design ensures that each user contributes 
resources to the system. 

• Although they may differ in the resources that they contribute, all the nodes in a 

peer-to-peer system have the same functional capabilities and responsibilities. 



• Their correct operation does not depend on the existence of any centrally 

administered systems. 

• They can be designed to offer a limited degree of anonymity to the providers and 
users of resources. 

5 What is the need of peer to peer middleware system? NOV/DEC 2017 

Peer-to-peer middleware systems are designed specifically to meet the need for the automatic 

placement and subsequent location of the distributed objects managed by peer-to-peer systems 

and applications. 

6 Write the Non-functional requirements of peer-to-peer middleware system? 

o Global scalability 
o Load balancing 
o Optimization for local interactions between neighbouring peers 

o Accommodating to highly dynamic host availability 

7 What is the role of routing overlays in peer to peer system? APR/MAY 2017 

Peer-to-peer systems usually store multiple 
replicas of objects to ensure availability. In that case, the routing overlay maintains 

Knowledge of the location of all the available replicas and delivers requests to the nearest 

‘live’ node (i.e. one that has not failed) that has a copy of the relevant object. 

 

8 
What are the tasks performed by routing overlay? 

o Insertion of objects 
o Deletion of objects 

o Node addition and removal 

9 What are the generations of peer to peer system? 

Three generations of peer-to-peer system and application development can be identified. 

o The first generation was launched by the Napster music exchange service 

[OpenNap 2001]. 

o A second generation of file sharing applications offering greater scalability, 

anonymity and fault tolerance quickly followed including Freenet, Gnutella, 

Kazaa and BitTorrent 

o The third generation is characterized by the emergence of middleware

layers  for the application-independent management  of

distributed 

o resources on a global scale 

10 What are the case studies used in overlay? 

NOV/DEC 2017 
o Pastry is the message routing infrastructure deployed in several applications 

including PAST. 

o Tapestry is the basis for the Ocean Store storage system. 

11 Difference between Structured versus 

 unstructured peer-to-peer systems. 

 

   Structured peer-to-peer Unstructure d peer-to- peer  

 Advantages Guaranteed to locate 

objects (assuming they 

 exist) and can offer 

time   and complexity 

bounds    on this operation; 

relatively 

Self- organizing and 

naturally resilient to 

node failure. 



low message overhead. 

 Disadvantage s Need to maintain often 

complex overlay structures, 

which can be difficult and 

costly to achieve, 

especially in highly dynamic 
environments 

Probabilisti c and hence 

cannot offer absolute 

guarantees on locating 

objects; prone 

 to excessive 

messaging overhead which

 can affect 
scalability. 

12 Give the characteristics of Peer-to-Peer systems? JUNE 2016, NOV 2017, 
APRIL/MAY 2018 

Its design ensures that each user contributes resources to the system. 

Although they may differ in the resources that they contribute, all the nodes in a 

peer-to-peer system have the same functional capabilities and responsibilities. 

Its correct operation does not depend on the existence of any centrally 

administered systems. 

They can be designed to offer a limited degree of anonymity to the providers and 

users of resources. 

A key issue for their efficient operation is the choice of an algorithm for the 

placement of data across many hosts and subsequent access to it in a manner that 

balances the workload and ensures availability without adding undue 
overheads. 

 PART-B 

1 With neat sketch explain Routing Overlays in detail.   MAY/JUNE   2016,   NOV/DEC   

2016,APRIL/MAY 2017, APRIL/MAY 2018 

Resilient Overlay Networks (RON), an architecture that allows end-to-end communication 

across the wide-area Internet to detect and recover from path outages and periods of degraded 

performance within several seconds. A RON is an application-layer overlay on top of the 

existing Internet routing substrate. The overlay nodes monitor the liveliness and quality of the 

Internets paths among themselves, and they use this information to decide whether to route 

packets directly over the Internet or by way of the The RON nodes monitor the functioning and 

quality of the Internet paths among themselves, and use this information to decide whether to 

route packets directly over the Internet or by way of other RON nodes, optimizing application-

specific routing metrics. 

- build on the top of another network such as ATM etc. 

- IP itself id build on the top of another network. 

- The term usually means a network on the top of IP. 

 

Motivation behind Overlay Networks:- 
 

Internet suffers from following four important drawbacks: 

1. slow link failure recovery : BGP takes a long time, of the order of several minutes, to 



converge to a new valid route after a router or link failure causes a path outage. 

2. Inability to detect path or performance failure: BGP cannot detect many problems like 

floods, persistent congestion, etc. that can greatly affects the performance. As long as a link is 

deemed "live" i.e.. the BGP session is still alive, BGP's AS-path-based routing will continue to 

route packets down the fault path. 

3. Inability to effectively multi-home end-customer networks: As "solution" to Internet 

unreliability (Instability) is to multi-homing. Unfortunately, peering at the network level by 

small customers break down wide-area routing scalability. 

4. Blunt policy expression: BGP is unable of expressing fine-grained policies aimed at users or 

remote hosts; it can only express policies at the granularity of entire remote networks. This 

reduces the set of paths in the case of failures. 

 

RON overcome this drawbacks of BGP. 

 

A RON Model:-  

  Designate RON nodes for the overlay.  

  Exchange of performance and reach ability, and routing based on this.  

  2-50 nodes (only) on overlay.  

The RON architecture achieves the following benefits: 

1. Fault detection: A RON can more efficiently find alternate paths around problems even when 

the underlying network layer incorrectly believes that all is well. 

2. Better reliability for applications: Each RON can have an independent, application-specific 

definition of what constitutes a fault. 

3. Better performance: A RON's limited size allows it to use more aggressive path computation 

algorithms that the Internet. RON nodes can exchange more complete topologies, collect more 

detailed link quality metrics, execute more complex routing algorithms , and respond more 

quickly to change. 

4. Application-specific routing: Distributed applications can link with the RON library and 

choose, or even define, their own routing matrices. 

  Software modules at RON node look into the following 

- RON client 

- Routing 

- Data Forwarding 

- Bootstrap and Membership management 

- Link state based dissemination 

- Monitoring Virtual Links. 

- Path-Evaluation and Selection 

  Full mesh network among members.  

 

Possible Usage Models:- 

  A specific application (like Video conferencing) construct and uses RON.  

  A network administrator construct an overlay.  

  Overlay ISP.  

 

Failure Detection in RON:- 

  Uses UDP heartbeat packet  

- Failure detection in Overlay is application specific. In multimedia conferencing 5% loss rate 

may bark the video whereas a FTP application can still work with lower throughput. 

- But one cannot reduce heart beat interval to a very small value. That will give rise to false 

alarm. 



- Also there is a trade off between overhead vs. detection time. 

 

Matrices:- 

  Latency  

- RON expects reply of heart beat from which it calculates RTT.  

- RTTs are stable over of the order of 15 mints to 1 hr. 

- If spikes occur in the middle, then that will be smoothen out by EWMA.  

  Packet Loss Rate  

- Simply use heart beat and from this measure loss loss rate. 

- if p1, p2 are the loss rate of link1 and link2 respectively, then the loss rate of the path using 

consisting og link1 and link2 is 1-(1-p1)(1-p2). 

.  

 


