
CS8603-DISTRIBUTED SYSTEMS

UNIT-I

S.No.

PART-A

1 Define distributed system.

A distributed system is a collection of independent computers that appears to its

users as a single coherent system. A distributed system is one in which components located

at networked communicate and coordinate their actions only by passing message.

2 List the characteristics of distributed system?

 Programs are executed concurrently, support for resource sharing.

 Openness

 Concurrency

 Scalability

 Fault Tolerance (Reliability)

 Transparency

 Components can fail independently (isolation, crash)

3 Mention the examples of distributed system.

 The internet, intranet.

 Department computing cluster

 Corporate systems

 Cloud systems (e.g. Google, Microsoft, etc.)

 Mobile and ubiquitous computing

5 Mention the challenges in distributed system.

1. Heterogeneity

2. Openness

3. Security
4. Scalability
5. Failure handling

6. Concurrency

7.Transparency

6 What are the Advantages of Distributed Systems?

1. Performance 2.Distribution

3.Reliability (fault tolerance) 4.Incremental growth 5.Sharing of

data/resources
6.Communication

7 What are the Disadvantages of Distributed Systems? MAY/JUNE 2016,

NOV/DEC 2016

1.Difficulties of developing distributed software 2.Networking problems

3.Security problems

Software

Little software exists compared to PCs (for example) but the situation is improving with

the cloud.

Networking

Still slow and can cause other problems (e.g., when disconnected)

Security

Data may be accessed by unauthorized users through network interfaces

Privacy

Data may be accessed securely but without the

owner’s consent (significant issue in modern systems)

8 What are the Applications of Distributed system?

 Email

 News

 Multimedia information systems - video conferencing

 Airline reservation system

 BanKing system

 File downloads (BitTorrent)

 Messaging

9 Write the different trends in distributed systems?

 The emergence of pervasive networking technology;

 The emergence of ubiquitous computing coupled with the desire to

support user mobility in distributed
systems;

10 Advantages of Distributed Systems vs. Centralized

 Economics

 Speed

 Geographic and Responsibility Distribution

 Reliability

 Extendibility

11 Write the Resource Sharing of Distributed system? NOV/DEC 2017
1.Share hardware, 2.software, 3.data and information

Hardware Devices

Printers, disks, memory, sensors

Software Sharing
Compilers, libraries, toolkits, computational
Kernels

Data
Databases, files

12 What are the Design issues of Distributed system?

 Openness

 Resource Sharing

 Concurrency

 Scalability

 Fault-Tolerance

 Transparency

 High-Performance

13 Write the issues arising from Distributed Systems?

 Naming - How to uniquely identify resources.

 Communication - How to exchange data and information reliably with good

performance.

 Software Structure - How to make software open, extensible, scalable, with

high-performance.

 Workload Allocation - Where to perform computations and various services.

 Consistency Maintenance - How to Keep consistency at a reasonable cost.

14 What is Communication in Distributed Systems? Communication is an essential part of

distributed systems - e.g., clients and servers must communicate for request and response.

Communication normally involved - transfer of data from sender to receiver -

synchronization among processes.

15 What are types of Communication in Distributed Systems

 Client-Server

 Group Multicast

 Function Shipping

 Performance of distributed systems depends critically on communication

performance

16 Distributed System Software Structure

 It must be easy to add new services (flexibility, extensibility, openness requirements)

 Kernel is normally restricted to

 memory allocation
 process creation and scheduling
 interposes communication

17 List any two resources of hardware and software, which can be shared in

distributed systems with example. (NOV 2017)

Hardware – Printer, Disks, Fax machine, Router, Modem.

Software – Application Programs, Shared Files, Shared Databases, Documents, Services.

18 State the objectives of resurce sharing model APRIL/MAY 2018

 resources are made available

 resources can be used

 service provider and user interact with each other

 accessing remote resources

 sharing them in a controlled and efficient way

19 Write down the Principles of distributed systems APRIL/MAY 2018

The principles of distributed computing, emphasizing the fundamental issues underlying

the design of distributed systems and networks: communication, coordination, fault-

tolerance, locality, parallelism, self-organization,

synchronization, uncertainty

20 What is clock skew and clock drift? APRIL/MAY 2018

The instantaneous difference between the readings of any two clocks is called their skew.

Clock drift means that they count time at different rates, and so diverge

21 What is clocks drift rate?

A clock’s driftrate is the change in the offset (difference in reading) between the clock and

a nominal

perfect reference clock per unit of time measured by the reference clock.

22 What are the two modes of synchronization? Write their format?

The two modes are:

External synchronization:

In order to Know at what time of day events occur at the processes in our distributed

system – for example, for accountancy purposes – it is necessary to synchronize the

processes’ clocks, Ci , with an authoritative, external source of time. This is

externalsynchronization

For a synchronization bound D>0, and for a source S of UTC time,|S(t) –Ci(t)|<T, for

i=1,2,…N and for all real times t in I. Internal synchronization:

If the clocks Ci are synchronized with one another to a Known degree of accuracy, then

we can measure the interval between two events occurring at different computers by

appealing to their local clocks, even though they are not

necessarily synchronized to an external source of time. This is internal synchronization. For
a synchronization bound D>0,|Ci(t)-Cj(t)|<D,

for i,j=1,2,…N. and for all real times t in I.

23 Explain Faultry and Crash Failure.

A clock that does not Keep to whatever correctness conditions apply is defined to be

faulty.

A clock’s crash failure is said to occur when the clock stops ticKing altogether;any other

clock failure is an arbitrary failure. A historical example of an arbitrary failure is that of a
clock with the ‘Y2K bug’, which broKe the monotonicity condition by registering the date

after 31 December 1999 as 1 January 1900 instead of 2000; another example is a clock

whose batteries are very low and whose drift rate suddenly becomes very large

24 How the clock synchronization done in

Cristian’s method?

A single time server might fail, so they suggest the use of a group of synchronized servers

It does not deal with faulty servers

25 Explain Logical time and logical clocks. MAY/JUNE 2016

Logical time

Lamport proposed a model of logical time that can be used to provide an ordering among

the events at processes running in different computers in a distributed system.Logical time

allows the order in which the messages are presented to be inferred without recourse to

clocks.

Logical clocks • Lamport invented a simple mechanism by which the happenedbefore

ordering can be captured numerically, called a logical clock. A Lamport logical clock is a

monotonically increasing software counter, whose value need bear no particular

relationship to any physical clock. Each process pi Keeps its own logical clock, Li , which

it uses to apply so- called Lamport timestamps to events. We denote the timestamp of event

e at pi by Li(e) , and by L(e) we denote the timestamp of event e at
whatever process it occurred at.

26 What is vector clock? Explain.

Vector clocks • Mattern and Fidge developed vector clocks to overcome the shortcoming

of Lamport’s clocks: the fact that from L(e)<L(e’)we cannot conclude that e ->e’

A vector clock for a system of N processes is an array of Nintegers. Each process Keeps

its own vector clock, Vi , which it uses to timestamp local events. Like Lamport

timestamps, processes piggybacK vector timestamps on the messages they send to one

another, and there are simple rules for updating the clocks:

TaKing the componentwise maximum of two vector timestamps in this way is Known as a

merge operation.

27 Explain global states and consistent cuts with example.

Global state of a distributed system consists of

–Local stateof each process: messages sent and messages received

–State of each channel:messages sent but not
received

28 State the issues in Clocks. NOV/DEC 2018

The Importance of Accurate Time on Computer Networks. The synchronization of time on

computers and networks is often vitally important. Without it, the time on individual

computers will slowly drift away from each other

at varying degrees until potentially each has a significantly different time

 PART B

1 Define distributed systems. What are the significant issues and challenges of the

distributed systems? NOV/DEC 2017, APRIL/MAY 2018

Designing a distributed system does not come as easy and straight forward. A number of

challenges need to be overcome in order to get the ideal system. The major challenges in

distributed systems are listed below:

1. Heterogeneity:

The Internet enables users to access services and run applications over a heterogeneous

collection of computers and networks. Heterogeneity (that is, variety and difference) applies to

all of the following:

 Hardware devices: computers, tablets, mobile phones, embedded devices, etc.

 Operating System: Ms Windows, Linux, Mac, Unix, etc.

 Network: Local network, the Internet, wireless network, satellite links, etc.

 Programming languages: Java, C/C++, Python, PHP, etc.

 Different roles of software developers, designers, system managers

Different programming languages use different representations for characters and data

structures such as arrays and records. These differences must be addressed if programs written

in different languages are to be able to communicate with one another. Programs written by

different developers cannot communicate with one another unless they use common standards,

for example, for network communication and the

representation of primitive data items and data structures in messages. For this to happen,

standards need to be agreed and adopted – as have the Internet protocols.

Middleware : The term middleware applies to a software layer that provides a programming

abstraction as well as masking the heterogeneity of the underlying networks, hardware,

operating systems and programming languages. Most middleware is implemented over the

Internet protocols, which themselves mask the differences of the underlying networks, but all

middleware deals with the differences in operating systems

and hardware

Heterogeneity and mobile code : The term mobile code is used to refer to program code that

can be transferred from one computer to another and run at the destination – Java applets are an

example. Code suitable for running on one computer is not necessarily suitable for running on

another because executable programs are normally specific both to the instruction set and to

the host operating system.

2. Transparency:

Transparency is defined as the concealment from the user and the application programmer of

the separation of components in a distributed system, so that the system is perceived as a whole

rather than as a collection of independent components. In other words, distributed systems

designers must hide the complexity of the systems as much as they can. Some terms of

transparency in distributed systems are:

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use

Replication Hide that a resource may be copied in several places

Concurrency Hide that a resource may be shared by several competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or a disk

3. Openness

The openness of a computer system is the characteristic that determines whether the system

can be extended and reimplemented in various ways. The openness of distributed systems is

determined primarily by the degree to which new resource-sharing services can be added and

be made available for use by a variety of client programs. If the well-defined interfaces for a

system are published, it is easier for developers to add new features or replace sub-systems in

the future. Example: Twitter and Facebook have API that allows developers to develop theirs

own software interactively.

4. Concurrency

Both services and applications provide resources that can be shared by clients in a distributed

system. There is therefore a possibility that several clients will attempt to access a shared

resource at the same time. For example, a data structure that records bids for an auction may be

accessed very frequently when it gets close to the deadline time. For an object to be safe in a

concurrent environment, its operations must be synchronized in such a way that its data

remains consistent. This can be achieved by standard techniques such as semaphores, which

are used in most operating systems.

5. Security

Many of the information resources that are made available and maintained in distributed

systems have a high intrinsic value to their users. Their security is therefore of considerable

importance. Security for information resources has three components:

confidentiality (protection against disclosure to unauthorized individuals)

 integrity (protection against alteration or corruption),

availability for the authorized (protection against interference with the means to access the

resources).

6. Scalability

Distributed systems must be scalable as the number of user increases. The scalability is defined

by B. Clifford Neuman as A system is said to be scalable if it can handle the addition of users

and resources without suffering a noticeable loss of performance or increase in administrative

complexity

Scalability has 3 dimensions:

 Size

o Number of users and resources to be processed. Problem associated is

overloading

 Geography

o Distance between users and resources. Problem associated is communication

reliability

 Administration

o As the size of distributed systems increases, many of the system needs to be

controlled. Problem associated is administrative mess

7. Failure Handling

Computer systems sometimes fail. When faults occur in hardware or software, programs may

produce incorrect results or may stop before they have completed the intended computation.

The handling of failures is particularly difficult.

2 Enlighten the examples of distributed systems.MAY/JUNE 2016

Examples of Distributed Systems

The goal of this section is to provide motivational examples of contemporary distributed

systems and the great diversity of the associated applications.

As mentioned in the introduction, networks are everywhere and underpin many everyday

services that we now take for granted: the Internet and he associated World Wide Web, web

search, online gaming, email, social networks, eCommerce, etc. To illustrate this point further,

consider Figure1.1, which describes a selected range of key commercial or social application

sectors highlighting some of the associated established or emerging uses of distributed systems

technology.

As can be seen, distributed systems encompass many of the most significant technological

developments of recent years and hence an understanding of the underlying technology is

absolutely central to a knowledge of modern computing. The figure also provides an initial

insight into the wide range of applications in use today, from relatively localized systems (as

found, for example, in a car or aircraft) toglobalscale systems involving millions of nodes,

from data-centric services to processor-intensive tasks, from systems built from very small and

relatively primitive sensors to those incorporating powerful computational elements, from

embedded systems to ones that support a sophisticated interactive user experience, and so on.

We now look at more specific examples of distributed systems to further illustrate the diversity

and indeed complexity of distributed systems provision today.

 Web search

Web search has emerged as a major growth industry in the last decade, with recent figures

indicating that the global number of searches has risen to over 10 billion per calendar month.

The task of a web search engine is to index the entire contents of the World Wide Web,

encompassing a wide range of information styles including web pages, multimedia sources and

(scanned) books. This is a very complex task, as current estimates state that the Web consists

of over 63 billion pages and one trillion unique web

 Finance and commerce - The growth of eCommerce as exemplified by companies such as

Amazon and eBay, and underlying payments technologies such as PayPal; the associated

emergence of online banking and trading and also complex information dissemination systems

for financial markets.

The information society - The growth of the World Wide Web as a repository of information

and knowledge; the development of web search engines such as Google and Yahoo to search

this vast repository; the emergence of digital libraries and the large-scale digitization of legacy

information sources such as books (for example, Google Books); the increasing significance of

user-generated content through sites such as YouTube, Wikipedia and Flickr; the emergence of

social networking through services such as Facebook and MySpace.

Creative industries and entertainment - The emergence of online gaming as a novel and

highly interactive form of entertainment; the availability of music and film in the home through

networked media centres and more widely in the Internet via downloadable or streaming

content; the role of user-generated content (as mentioned above) as a new form of creativity,

for example via services such as YouTube; the creation of new forms of art and entertainment

enabled by emergent (including networked) technologies.

Healthcare - The growth of health informatics as a discipline with its emphasis on online

electronic patient records and related issues of privacy; the increasing role of telemedicine in

supporting remote diagnosis or more advanced services such as remote surgery (including

collaborative working between healthcare teams); the increasing application of networking and

embedded systems technology in assisted living, for example for monitoring the elderly in their

own homes.

Education - The emergence of e-learning through for example web-based tools such as virtual

learning environments; associated support for distance learning; support for collaborative or

community-based learning.

Transport and logistics - The use of location technologies such as GPS in route finding

systems and more general traffic management systems; the modern car itself as an example of

a complex distributed system (also applies to other forms of transport such as aircraft); the

development of web-based map services such as MapQuest, Google Maps and Google Earth.

3 Discuss the different trends in distributed systems.

MAY/JUNE 2016, NOV/DEC 2016, NOV/DEC

2017, APRIL MAY 2018,

Trends in distributed systems

1. Trends in distributed systems • Significant changes in current distributed systems: –

The emergence of pervasive technology – The emergence of ubiquitous & mobile

computing – The increasing demand of multimedia technology – The view of

distributed systems as a utility

2. Trends in distributed systems • Pervasive technology – Modern Internet – Collection of

internetworked devices- wired & wireless – Pervasive resources and devices can be

connected at any time and in any place

3. Trends in distributed systems intranet ISP desktop computer: backbone satellite link

server: ☎ network link: ☎ ☎ ☎ A typical portion of the Internet

4. Trends in distributed systems • Mobile & ubiquitous computing – Small and portable

devices are possible to be used within distributed systems • E.g. laptop computers,

handheld devices, wearable devices, devices embedded in appliances – Mobile

computing: portability of the devices and the ability to connect to networks in different

places – Ubiquitous computing: small computing devices that available everywhere and

are easily attached to networks

5. Trends in distributed systems Portable & handheld devices in a distributed system

6. Trends in distributed systems • Distributed multimedia systems – The use of

multimedia contents in distributed systems • Multimedia support – Major benefits of

multimedia support • Distributed multimedia computing can be accessed through

desktop or mobile devices. E.g. live tv broadcast, video-on-demand, IP telephony,

webcasting, etc.

7. Trends in distributed systems • Distributed computing as a utility – distributed

resources as commodity or utility in similar as water and power. – Physical and logical

service resources are rented rather than owned by the end users. • Physical resources:

e.g. : storage and processing • Logical services: e.g. email, calendars – Cloud

computing: distributed computing utility. A cloud is a set of internet-based application,

storage and computing services sufficient to support most users’ needs

8. Trends in distributed systems Cloud computing

9. Trends in distributed systems • Cloud are implemented on cluster computers to provide

the appropriate scale and performance required by such services – A cluster computer:

a set of interconnected computers that cooperate closely to provide a single integrated

high-performance computing capability – A blade server: a computer server that has

been designed to minimize the use of physical space and energy

10. Trends in distributed systems • Grid Computing – Is a form of cloud computing –

Authorized users share processing power, memory and data storage – Use to support

scientific applications

8 What are the different ways of synchronizing physical clocks? Explain

Physical clock synchronization algorithm

Every computer contains a clock which is an electronic device that counts the oscillations in a

crystal at a particular frequency. Synchronization of these physical clocks to some known high

degree of accuracy is needed. This helps to measure the time relative to each local clock to

determine order between events.

Physical clock synchronization algorithms can be classified as centralized and distributed.

1.Centralized clock synchronization algorithms

These have one node with a real-time receiver and are called time server node. The clock time

of this node is regarded as correct and used as reference time.

The goal of this algorithm is to keep the clocks of all other nodes synchronized with time

server node.

i. Cristian’s Algorithm

 In this method each node periodically sends a message to the server. When the time

server receives the message it responds with a message T, where T is the current time

of server node.

 Assume the clock time of client be To when it sends the message and T1 when it

receives the message from server. To and T1 are measured using same clock so best

estimate of time for propagation is (T1-To)/2.

 When the reply is received at clients node, its clock is readjusted to T+(T1-T0)/2. There

can be unpredictable variation in the message propagation time between the nodes

hence (T1-T0)/2 is not good to be added to T for calculating current time.

 For this several measurements of T1-To are made and if these measurements exceed

some threshold value then they are unreliable and discarded. The average of the

remaining measurements is calculated and the minimum value is considered accurate

and half of the calculated value is added to T.

 Advantage-It assumes that no additional information is available.

 Disadvantage- It restricts the number of measurements for estimating the value.

ii.The Berkley Algorithm

 This is an active time server approach where the time server periodically broadcasts its

clock time and the other nodes receive the message to correct their own clocks.

 In this algorithm the time server periodically sends a message to all the computers in

the group of computers. When this message is received each computer sends back its

own clock value to the time server. The time server has a prior knowledge of the

approximate time required for propagation of a message which is used to readjust the

clock values. It then takes a fault tolerant average of clock values of all the computers.

The calculated average is the current time to which all clocks should be readjusted.

 The time server readjusts its own clock to this value and instead of sending the current

time to other computers it sends the amount of time each computer needs for

readjustment. This can be positive or negative value and is calculated based on the

knowledge the time server has about the propagation of message.

2.Distributed algorithms

Distributed algorithms overcome the problems of centralized by internally synchronizing for

better accuracy. One of the two approaches can be used:

i.Global Averaging Distributed Algorithms

 In this approach the clock process at each node broadcasts its local clock time in the

form of a “resync” message at the beginning of every fixed-length resynchronization

interval. This is done when its local time equals To+iR for some integer i, where To is a

fixed time agreed by all nodes and R is a system parameter that depends on total nodes

in a system.

 After broadcasting the clock value, the clock process of a node waits for time T which

is determined by the algorithm.

 During this waiting the clock process collects the resync messages and the clock

process records the time when the message is received which estimates the skew after

the waiting is done. It then computes a fault-tolerant average of the estimated skew and

uses it to correct the clocks.

ii.Localized Averaging Distributes Algorithms

 The global averaging algorithms do not scale as they need a network to support

broadcast facility and a lot of message traffic is generated.

 Localized averaging algorithms overcome these drawbacks as the nodes in distributed

systems are logically arranged in a pattern or ring.

 Each node exchanges its clock time with its neighbors and then sets its clock time to the

average of its own clock time and of its neighbors.

9 Explain Christian’s method for synchronizing Clocks

Cristian’s Algorithm

Cristian’s Algorithm is a clock synchronization algorithm is used to synchronize time with a

time server by client processes. This algorithm works well with low-latency networks where

Round Trip Time is short as compared to accuracy while redundancy prone distributed

systems/applications do not go hand in hand with this algorithm. Here Round Trip Time refers

to the time duration between start of a Request and end of corresponding Response.

Below is an illustration imitating working of cristian’s algorithm:

https://en.wikipedia.org/wiki/Round-trip_delay_time

Algorithm:

1) The process on the client machine sends the request for fetching clock time(time at server)

to the Clock Server at time.

2) The Clock Server listens to the request made by the client process and returns the response

in form of clock server time.

3) The client process fetches the response from the Clock Server at time and calculates the

synchronised client clock time

Python Codes below illustrate the working of Cristian’s algorithm:

Code below is used to initiate a prototype of a clock server on local machine:

filter_none

brightness_4

Python3 program imitating a clock server

import socket

import datetime

function used to initiate the Clock Server

def initiateClockServer():

 s = socket.socket()

 print("Socket successfully created")

 # Server port

 port = 8000

 s.bind(('', port))

 # Start listening to requests

 s.listen(5)

 print("Socket is listening...")

 # Clock Server Running forever

 while True:

 # Establish connection with client

 connection, address = s.accept()

 print('Server connected to', address)

 # Respond the client with server clock time

 connection.send(str(

 datetime.datetime.now()).encode())

 # Close the connection with the client process

 connection.close()

Driver function

if __name__ == '__main__':

 # Trigger the Clock Server

 initiateClockServer()

Output:

Socket successfully created

Socket is listening...

10 Explain Logical time and logical clocks.

 Logical time and logical clocks

Instead of synchronizing clocks, event ordering can be used

If two events occurred at the same process pi (i = 1, 2, … N) then theyoccurred in the

order observed by pi, that is order →i

when a message, m is sent between two processes, send(m) happened before receive(m)

Lamport[1978] generalized these two relationships into the happened-before relation: e →i e'

HB1: if e →i e' in process pi, then e → e'

HB2: for any message m, send(m) → receive(m)

HB3: if e → e' and e' → e'', then e → e''

Lamport‘s logical clocks

 Each process pi has a logical clock Li

a monotonically increasing software counter

not related to a physical clock

Apply Lamport timestamps to events with happened-before relation

LC1: Li is incremented by 1 before each event at process pi

LC2:

when process pi sends message m, it piggybacks t = Li

 when pj receives (m,t), it sets Lj := max(Lj, t) and applies LC1 before timestamping the event

receive (m)

 e →e‘ implies L(e)<L(e‘), but L(e)<L(e') does not imply e→e‘

Totally ordered logical clocks

 Some pairs of distinct events, generated by different processes, may have numerically

identical Lamport timestamps

Different processes may have same Lamport time

Totally ordered logical clocks
 If e is an event occurring at pi with local timestamp Ti, and if e‘ is an event occurring at pj

with local timestamp Tj

 Define global logical timestamps for the events to be (Ti, i) and (Tj, j)

Define (Ti, i) < (Tj, j) iff

Ti < Tj orTi = Tj and i < j

No general physical significance since process identifiers are arbitrary

Vector clocks

Shortcoming of Lamport clocks:
 L(e) < L(e') doesn't imply e → e'
 Vector clock: an array of N integers for a system of N processes
 Each process keeps its own vector clock Vi to timestamp local events
 Piggyback vector timestamps on messages
 Rules for updating vector clocks:
 Vi[i]] is the number of events that pi has timestamped
 Viji] (j≠ i) is the number of events at pj that pi has been affected by VC1: Initially, Vi[j] := 0

for pi, j=1.. N (N processes)

 VC2: before pi timestamps an event, Vi[i] := Vi[i]+1 VC3: pi piggybacks t = Vi on every

message it sends
 VC4: when pi receives a timestamp t, it sets Vi[j] := max(Vi[j] , t[j]) for
 j=1..N (merge operation)

Compare vector timestamps

V=V‘ iff V[j] = V‘[j] for j=1..N

V>=V‘ iff V[j] <= V‘[j] for j=1..N

V<V‘ iff V<= V‘ ^ V!=V‘

a→f since V(a) < V(f)

c || e since neither V(c) <= V(e) nor V(e) <= V(c)

11 Explain global states and consistent cuts with example

Time and Global States

Overview

There are two formal models of distributed systems: synchronous and asynchronous.

Synchronous distributed systems have the following characteristics:

 the time to execute each step of a process has known lower and upper bounds;

 each message transmitted over a channel is received within a known bounded time;

 each process has a local clock whose drift rate from real time has a known bound.

Asynchronous distributed systems, in contrast, guarantee no bounds on process execution

speeds, message transmission delays, or clock drift rates. Most distributed systems we discuss,

including the Internet, are asynchronous systems.

Generally, timing is a challenging an important issue in building distributed systems. Consider

a couple of examples:

 Suppose we want to build a distributed system to track the battery usage of a bunch of

laptop computers and we'd like to record the percentage of the battery each has

remaining at exactly 2pm.

 Suppose we want to build a distributed, real time auction and we want to know which

of two bidders submitted their bid first.

 Suppose we want to debug a distributed system and we want to know whether variable

x1 in process p1 ever differs by more than 50 from variable x2 in process p2.

In the first example, we would really like to synchronize the clocks of all participating

computers and take a measurement of absolute time. In the second and third examples,

knowing the absolute time is not as crucial as knowing the order in which events occurred.

Clock Synchronization

Every computer has a physical clock that counts oscillations of a crystal. This hardware clock

is used by the computer's software clock to track the current time. However, the hardware

clock is subject to drift -- the clock's frequency varies and the time becomes inaccurate. As a

result, any two clocks are likely to be slightly different at any given time. The difference

between two clocks is called their skew.

There are several methods for synchronizing physical clocks. External synchronization means

that all computers in the system are synchronized with an external source of time (e.g., a UTC

signal). Internal synchronization means that all computers in the system are synchronized with

one another, but the time is not necessarily accurate with respect to UTC.

In a synchronous system, synchronization is straightforward since upper and lower bounds on

the transmission time for a message are known. One process sends a message to another

process indicating its current time, t. The second process sets its clock to t + (max+min)/2

where max and min are the upper and lower bounds for the message transmission time

respectively. This guarantees that the skew is at most (max-min)/2.

Cristian's method for synchronization in asynchronous systems is similar, but does not rely on

a predetermined max and min transmission time. Instead, a process p1 requests the current time

from another process p2 and measures the RTT (Tround) of the request/reply. Whenp1 receives

the time t from p2 it sets its time to t + Tround/2.

The Berkeley algorithm, developed for collections of computers running Berkeley UNIX, is an

internal synchronization mechanism that works by electing a master to coordinate the

synchronization. The master polls the other computers (called slaves) for their times, computes

an average, and tells each computer by how much it should adjust its clock.

The Network Time Protocol (NTP) is yet another method for synchronizing clocks that uses a

hierarchical architecture where he top level of the hierarchy (stratum 1) are servers connected

to a UTC time source.

Logical Time

Physical time cannot be perfectly synchronized. Logical time provides a mechanism to define

the causal order in which events occur at different processes. The ordering is based on the

following:

 Two events occurring at the same process happen in the order in which they are

observed by the process.

 If a message is sent from one process to another, the sending of the message happened

before the receiving of the message.

 If e occurred before e' and e' occurred before e" then e occurred before e".

"Lamport called the partial ordering obtained by generalizing these two relationships the

happened-before relation." (→)

In the figure, a → b and c → d . Also, b → c and d → f , which means that a → f . However,

we cannot say that a → e or vice versa; we say that they are concurrent

(a || e).

A Lamport logical clock is a monotonically increasing software counter, whose value need

bear no particular relationship to any physical clock. Each process pi keeps its own logical

clock, Li, which it uses to apply so-called Lamport timestamps to events.

Lamport clocks work as follows:

 LC1: Li is incremented before each event is issued at pi.

 LC2:

o When a process pi sends a message m, it piggybacks on m the value t = Li.

o On receiving (m, t), a process pj computes Lj := max(Lj, t) and then applies LC1

before timestamping the event receive(m).

An example is shown below:

If e → e ' then L(e) < L(e'), but the converse is not true. Vector clocks address this problem. "A

vector clock for a system of N processes is an array of N integers." Vector clocks are updated

as follows:

VC1: Initially, Vi[j] = 0 for i, j = 1, 2, ..., N

VC2: Just before pi timestamps an event, it sets Vi[i]:=Vi[i]+1.

VC3: pi includes the value t = Vi in every message it sends.

VC4: When pi receives a timestamp t in a message, it sets Vi[j]:=max(Vi[j], t[j]), for 1, 2, ...N.

Taking the componentwise maximum of two vector timestamps in this way is known as a

merge operation.

An example is shown below:

Vector timestamps are compared as follows:

V=V' iff V[j] = V'[j] for j = 1, 2, ..., N

V <= V' iff V[j] <=V'[j] for j = 1, 2, ..., N

V < V' iff V <= V' and V != V'

If e → e ' then V(e) < V(e') and if V(e) < V(e') then e → e ' .

Global States

It is often desirable to determine whether a particular property is true of a distributed system as

it executes. We'd like to use logical time to construct a global view of the system state and

determine whether a particular property is true. A few examples are as follows:

 Distributed garbage collection: Are there references to an object anywhere in the

system? References may exist at the local process, at another process, or in the

communication channel.

 Distributed deadlock detection: Is there a cycle in the graph of the "waits for"

relationship between processes?

 Distributed termination detection: Has a distributed algorithm terminated?

 Distributed debugging: Example: given two processes p1 and p2 with variables x1 and x2

respectively, can we determine whether the condition |x1-x2| > δ is ever true.

In general, this problem is referred to as Global Predicate Evaluation. "A global state predicate

is a function that maps from the set of global state of processes in the system ρ to {True,

False}."

 Safety - a predicate always evaluates to false. A given undesirable property (e.g.,

deadlock) never occurs.

 Liveness - a predicate eventually evaluates to true. A given desirable property (e.g.,

termination) eventually occurs.

Cuts

Because physical time cannot be perfectly synchronized in a distributed system it is not

possible to gather the global state of the system at a particular time. Cuts provide the ability to

"assemble a meaningful global state from local states recorded at different times".

Definitions:

 ρ is a system of N processes pi (i = 1, 2, ..., N)

 history(pi) = hi = < e i 0 , e i 1 ,...>

 h i k =< e i 0 , e i 1 ,..., e i k > - a finite prefix of the process's history

 s i k is the state of the process pi immediately before the kth event occurs

 All processes record sending and receiving of messages. If a process pi records the

sending of message m to process pj and pj has not recorded receipt of the message, then

m is part of the state of the channel between pi and pj.

 A global history of ρ is the union of the individual process histories: H = h0 ∪ h1 ∪ h2

∪...∪hN-1

 A global state can be formed by taking the set of states of the individual processes: S =

(s1, s2, ..., sN)

 A cut of the system's execution is a subset of its global history that is a union of

prefixes of process histories (see figure below).

 The frontier of the cut is the last state in each process.

 A cut is consistent if, for all events e and e':

o (e ∈ C and e ' → e) ⇒ e ' ∈ C

 A consistent global state is one that corresponds to a consistent cut.

Distributed Debugging

To further examine how you might produce consistent cuts, we'll use the distributed debugging

example. Recall that we have several processes, each with a variable xi. "The safety condition

required in this example is |xi-xj| <= δ (i, j = 1, 2, ..., N)."

The algorithm we'll discuss is a centralized algorithm that determines post hoc whether the

safety condition was ever violated. The processes in the system, p1, p2, ..., pN, send their states

to a passive monitoring process, p0. p0 is not part of the system. Based on the states collected,

p0 can evaluate the safety condition.

Collecting the state: The processes send their initial state to a monitoring process and send

updates whenever relevant state changes, in this case the variable xi. In addition, the processes

need only send the value of xi and a vector timestamp. The monitoring process maintains a an

ordered queue (by the vector timestamps) for each process where it stores the state messages. It

can then create consistent global states which it uses to evaluate the safety condition.

Let S = (s1, s2, ..., SN) be a global state drawn from the state messages that the monitor process

has received. Let V(si) be the vector timestamp of the state si received from pi. Then it can be

shown that S is a consistent global state if and only if:

V(si)[i] >= V(sj)[i] for i, j = 1, 2, ..., N

12 Explain an algorithm using multicast and logical clocks for mutual exclusion.

Mutual exclusion in distributed system

Mutual exclusion is a concurrency control property which is introduced to prevent race

conditions. It is the requirement that a process can not enter its critical section while another

concurrent process is currently present or executing in its critical section i.e only one process is

allowed to execute the critical section at any given instance of time.

Mutual exclusion in single computer system Vs. distributed system:
In single computer system, memory and other resources are shared between different

processes. The status of shared resources and the status of users is easily available in the shared

memory so with the help of shared variable (For example: Semaphores) mutual exclusion

problem can be easily solved.

In Distributed systems, we neither have shared memory nor a common physical clock and there

for we can not solve mutual exclusion problem using shared variables. To eliminate the mutual

exclusion problem in distributed system approach based on message passing is used.

A site in distributed system do not have complete information of state of the system due to lack

of shared memory and a common physical clock.

Requirements of Mutual exclusion Algorithm:

 No Deadlock:
Two or more site should not endlessly wait for any message that will never arrive.

 No Starvation:
Every site who wants to execute critical section should get an opportunity to execute it

in finite time. Any site should not wait indefinitely to execute critical section while

other site are repeatedly executing critical section

 Fairness:
Each site should get a fair chance to execute critical section. Any request to execute

critical section must be executed in the order they are made i.e Critical section

execution requests should be executed in the order of their arrival in the system.

 Fault Tolerance:
In case of failure, it should be able to recognize it by itself in order to continue

functioning without any disruption.

Solution to distributed mutual exclusion:

https://www.geeksforgeeks.org/semaphores-operating-system/

As we know shared variables or a local kernel can not be used to implement mutual exclusion

in distributed systems. Message passing is a way to implement mutual exclusion. Below are the

three approaches based on message passing to implement mutual exclusion in distributed

systems:

1. Token Based Algorithm:
o A unique token is shared among all the sites.

o If a site possesses the unique token, it is allowed to enter its critical section

o This approach uses sequence number to order requests for the critical section.

o Each requests for critical section contains a sequence number. This sequence

number is used to distinguish old and current requests.

o This approach insures Mutual exclusion as the token is unique

o Example:

o Suzuki-Kasami’s Broadcast Algorithm

2. Non-token based approach:

o A site communicates with other sites in order to determine which sites should

execute critical section next. This requires exchange of two or more successive

round of messages among sites.

o This approach use timestamps instead of sequence number to order requests for

the critical section.

o When ever a site make request for critical section, it gets a timestamp.

Timestamp is also used to resolve any conflict between critical section requests.

o All algorithm which follows non-token based approach maintains a logical

clock. Logical clocks get updated according to Lamport’s scheme

o Example:

o Lamport's algorithm, Ricart–Agrawala algorithm

3. Quorum based approach:

o Instead of requesting permission to execute the critical section from all other

sites, Each site requests only a subset of sites which is called a quorum.

o Any two subsets of sites or Quorum contains a common site.

o This common site is responsible to ensure mutual exclusion

13 Write short notes on locks with suitable example.

Lock-Based Protocol

In this type of protocol, any transaction cannot read or write data until it acquires an

appropriate lock on it. There are two types of lock:

1. Shared lock:

 It is also known as a Read-only lock. In a shared lock, the data item can only read by

the transaction.

 It can be shared between the transactions because when the transaction holds a lock,

then it can't update the data on the data item.

2. Exclusive lock:

 In the exclusive lock, the data item can be both reads as well as written by the

transaction.

 This lock is exclusive, and in this lock, multiple transactions do not modify the same

data simultaneously.

There are four types of lock protocols available:

1. Simplistic lock protocol

It is the simplest way of locking the data while transaction. Simplistic lock-based protocols

allow all the transactions to get the lock on the data before insert or delete or update on it. It

will unlock the data item after completing the transaction.

2. Pre-claiming Lock Protocol

 Pre-claiming Lock Protocols evaluate the transaction to list all the data items on which

they need locks.

 Before initiating an execution of the transaction, it requests DBMS for all the lock on

all those data items.

 If all the locks are granted then this protocol allows the transaction to begin. When the

transaction is completed then it releases all the lock.

 If all the locks are not granted then this protocol allows the transaction to rolls back and

waits until all the locks are granted.

3. Two-phase locking (2PL)

 The two-phase locking protocol divides the execution phase of the transaction into

three parts.

 In the first part, when the execution of the transaction starts, it seeks permission for the

lock it requires.

 In the second part, the transaction acquires all the locks. The third phase is started as

soon as the transaction releases its first lock.

 In the third phase, the transaction cannot demand any new locks. It only releases the

acquired locks.

There are two phases of 2PL:

Growing phase: In the growing phase, a new lock on the data item may be acquired by the

transaction, but none can be released.

Shrinking phase: In the shrinking phase, existing lock held by the transaction may be

released, but no new locks can be acquired.

In the below example, if lock conversion is allowed then the following phase can happen:

1. Upgrading of lock (from S(a) to X (a)) is allowed in growing phase.

2. Downgrading of lock (from X(a) to S(a)) must be done in shrinking phase.

Example:

The following way shows how unlocking and locking work with 2-PL.

Transaction T1:

 Growing phase: from step 1-3

 Shrinking phase: from step 5-7

 Lock point: at 3

Transaction T2:

 Growing phase: from step 2-6

 Shrinking phase: from step 8-9

 Lock point: at 6

4. Strict Two-phase locking (Strict-2PL)

 The first phase of Strict-2PL is similar to 2PL. In the first phase, after acquiring all the

locks, the transaction continues to execute normally.

 The only difference between 2PL and strict 2PL is that Strict-2PL does not release a

lock after using it.

 Strict-2PL waits until the whole transaction to commit, and then it releases all the locks

at a time.

 Strict-2PL protocol does not have shrinking phase of lock release.

It does not have cascading abort as 2PL does.

S.

No

.

UNIT-II

 PART-A

1 What is meant by group communication? Group communication is a multicast

operation is more appropriate- this is an operation that sends a single message from one

process to each of the members of a group of process, usually in such a way that the

membership of the group is transparent
to the sender.

2 Difference between synchronous and asynchronous communication?

In synchronous form of communication, the sending and receiving processes

synchronize at every message. In this case, both send and receive are blocking

operations. Whenever a send is issued the sending process is blocked until the

corresponding receive is issued. Whenever receive is issued, the process blocks until a

message arrives.

In asynchronous form of communication, the use of the send operation is non-blocking

in that the sending process is allowed to proceed as soon as the message has been copied

to a local buffer and the transmission of the message proceeds in parallel with the

sending process. The receive operation can

have blocking and non-blocking variants.

3 What are the forms of message ordering paradigms?

 FIFO

 non-FIFO

 Casual order

 Synchronous order

4 What are the characterisitics of group communication?

 Fault tolerance based on replicated server

 Finding the discovery servers from spontaneous networks

 Better performance through replicated data

 Propagation of event notification

5. What are the two phases in obtaining a global snapshot?

 First locally recording the snapshot at every process

 Second distributing the resultant global snapshot to all the initiators

6. What are the two optimization techniques are provided to the Chandy-Lamport

algorithm?

 The first optimization combines snap-shots concurrently initiated by multiple

processes into a single snapshot.

 This optimization is linked with the second optimization,which deals with the

efficient distribution of the global snapshot.

7. How a FIFO execution is implemented?

 To implement a FIFO logical channel over a non-FIFO channel,a separate

numbering scheme is used to sequence the messages.

 The sender assigns a sequence number and appends connection_id to each

message and then transimmted then the receiver arranges the incoming messages

according to the sender’s sequence numbers and accepts “next” message s per

sequence.

8. What is Guard?

A Guard Gi is a Boolean expression.If a Guard Gi evaluates to true then CLi is said to be

enabled otherwise it is diabled.

9. List the criteria to be met by a casual ordering protocol.

 Safety

 Liveliness

10. Write the drawback of centralized algorithm.

 Single point of failure

 Congestion

11. List the application of Casual order protocol.

 Updating replicated data,

 Allocating requests in a fair manner

 Synchronizing multimedia streams

12 What is the purpose of Chandy and Lamport algorithm?

 Chandy and Lamport proposed a snapshot algorithm for determining global

states of distributed systems.

 This algorithm records a set of process and channels as a snapshot for the process

set.The recorded global state is consistent.

 PART-B

1 Explain in detail about asynchronous execution with synchronous communication

Synchronous vs. Asynchronous

Definition:

 Synchronous communication: The calling party requests a service, and waits for

the service to complete. Only when it receives the result of the service it continues

with its work. A timeout may be defined, so that if the service does not finish

within the defined period the call is assumed to have failed and the caller continues.

 Asynchronous communication: The calling party initiates a service call, but does

not wait for the result. The caller immediately continues with its work without

caring for the result. If the caller is interested in the result there are mechanisms

which we'll discuss in the next paragraphs.

Be aware that the distinction between synchronous and asynchronous is highly dependent

on the viewpoint. Often asynchronous is used in the sense of “the user interface must stay

responsive all the time”. This interpretation often leads to the wrong conclusion: “…and

therefore every communication must be asynchronous”. A non-blocking GUI usually has

nothing to do with the low-level communication contracts and can be achieved by different

means, e.g. parallel processing of the interactive and communication tasks. The truth is

that synchronous communication on a certain level of abstraction can be implemented with

asynchronous interfaces on another level of abstraction and vice versa, if needed.

File based communication is often considered to be asynchronous. One party writes a file

but does not care if the other party is active, fetches the file or is able to process it.

However it is possible to implement another layer of functionality so that the second

(reading) party gives feedback, e.g. by writing a short result file, so that the first (writing)

party can wait and poll for the result of the file processing. This layer introduces a

synchronous communication over file exchange.

Communication over a database often is implemented by one party writing execution

orders into a special table and the other party reads this table periodically and processes

new entries, marking them as “done” or “failed” after execution. So far this is an

asynchronous communication pattern. As soon as the first party waits for the result of the

execution, this second layer introduces a synchronous communication pattern again.

The following chapters explain synchronous and asynchronous communication patterns in

more detail, using web services as an example. The scenarios can also be used for other

connectivity types.

Synchronous services are easy to implement, since they keep the complexity of the

communication low by providing immediate feedback. They avoid the need to keep the

context of a call on the client and server side, including e.g. the caller’s address or a

message id, beyond the lifetime of the request.

Nevertheless some circumstances may require implementing asynchronous calls:

 Expected round-trip durations are beyond time limits of the connection

infrastructure (e.g. some web proxies close TCP connections after 2 minutes idle

time)

 Connections with a lack of stability (e.g. a dial-in network connection is not

available all the time).

 The caller is not interested in the result of the call or cannot wait for the result for

some reason, e.g. it must free its resources.

In some cases the delivery of the asynchronous request can be assured by some other

mechanism, e.g. message queuing, storing the request in a file system or creation of a T4x

job.

The simplest asynchronous message exchange pattern is called fire-and-forget and means

that a message is sent but no feedback is required (at least on that level of abstraction!).

The only possible feedback can come from the communication layer in case of an error in

processing or sending the request, but never from the processing of the server.

If feedback on the server-side processing is required using a fire-and-forget transmission,

some higher level implementation must add the necessary logic and data to establish a kind

of “session” to link the feedback to the request. There are two possible patterns to

implement this: Either the client repeatedly asks for the result of the processing on the

server (polling) or the server calls a service of the client to report the feedback after it has

finished processing (callback).

Polling causes potentially high network loads and is therefore not recommended.

Nevertheless it has the advantage that the service provider (server) does not need to know

about its clients and that no client needs to provide a service by itself.

On the contrary for the callback pattern, the receiver of the request (server) must by some

means know how to send the feedback message and must know how to address the correct

client (this information can be passed in the request or be stored statically). To collect the

feedback some active instance on the caller’s side must listen to receive the feedback

message (which in turn can be a fire-and-forget message). So the caller must become a

service provider (“server”) by itself. Usually the client continues with its work after the

request was fired instead of waiting. So there can be some interaction between the client

and the callback instance to notify the client or the user of the arrival of the feedback. This

interaction happens entirely on the client and is usually not a communication issue (instead

you can imagine sending notification emails, notifying the GUI, push a workflow task to

the user’s inbox or similar actions).

As previously stated the implementation of the message transfer may use synchronous or

asynchronous transfers on a lower level. In the fire-and-forget example, the request might

be transferred via TCP, which implicitly acknowledges each message. Even if the

acknowledgment is being implemented, higher levels might not be interested in it. For the

callback and polling scenarios, each message might be acknowledged, but from a high

level perspective, there are only fire-and-forget messages.

Asynchronous behavior can be implemented for a T4x server by writing the message

(input parameters) to the file system (where the T4x scheduler will poll for it) or by

creating a job at the T4x job server. If the caller wants to be informed about the

execution’s result, the T4x server needs to store the caller’s response address and some

context information to be able to report the result back. This has to be done in the service

implementation. T4x as consumer can handle this by providing a callback service. Another

possibility is the caller periodically polling for the execution result, e.g. by looking for a

result file in the file system or by asking the T4x job server for the result of a job identified

by the job id. This can easily be done by providing an additional service asking for the job

result.

2 How Casual order and Total Order is implemented in Synchronization

Causal ordering

Causal ordering is a vital tool for thinking about distributed systems.

Messages sent between machines may arrive zero or more times at any point after they are

sent

This is the sole reason that building distributed systems is hard.

For example, because of this property it is impossible for two computers communicating

over a network to agree on the exact time. You can send me a message saying "it is now

10:00:00" but I don't know how long it took for that message to arrive. We can send

messages back and forth all day but we will never know for sure that we are synchronised.

If we can't agree on the time then we can't always agree on what order things happen in.

Suppose I say "my user logged on at 10:00:00" and you say "my user logged on at

10:00:01". Maybe mine was first or maybe my clock is just fast relative to yours. The only

way to know for sure is if something connects those two events. For example, if my user

logged on and then sent your user an email and if you received that email before your user

logged on then we know for sure that mine was first.

This concept is called causal ordering and is written like this:

A -> B (event A is causally ordered before event B)

Let's define it a little more formally. We model the world as follows: We have a number of

machines on which we observe a series of events. These events are either specific to one

machine (eg user input) or are communications between machines. We define the causal

ordering of these events by three rules:

If A and B happen on the same machine and A happens before B then A -> B

If I send you some message M and you receive it then (send M) -> (recv M)

If A -> B and B -> C then A -> C

We are used to thinking of ordering by time which is a total order - every pair of events

can be placed in some order. In contrast, causal ordering is only a partial order - sometimes

events happen with no possible causal relationship i.e. not (A -> B or B -> A).

This image shows a nice way to picture these relationships.

On a single machine causal ordering is exactly the same as time ordering (actually, on a

multi-core machine the situation is more complicated, but let's forget about that for now).

Between machines causal ordering is conveyed by messages. Since sending messages is

the only way for machines to affect each other this gives rise to a nice property:

If not(A -> B) then A cannot possibly have caused B

Since we don't have a single global time this is the only thing that allows us to reason

about causality in a distributed system. This is really important so let's say it again:

Communication bounds causality

The lack of a total global order is not just an accidental property of computer systems, it is

a fundamental property of the laws of physics. I claimed that understanding causal order

makes many other concepts much simpler. Let's skim over some examples.

Vector Clocks

Lamport clocks and Vector clocks are data-structures which efficiently approximate the

causal ordering and so can be used by programs to reason about causality.

If A -> B then LC_A < LC_B

http://en.wikipedia.org/wiki/Total_order
http://en.wikipedia.org/wiki/Partially_ordered_set
http://upload.wikimedia.org/wikipedia/commons/5/55/Vector_Clock.svg
http://mechanical-sympathy.blogspot.com/2011/08/inter-thread-latency.html
http://en.wikipedia.org/wiki/Light_cone
http://en.wikipedia.org/wiki/Lamport_timestamps
http://en.wikipedia.org/wiki/Vector_clock

If VC_A < VC_B then A -> B

Different types of vector clock trade-off compression vs accuracy by storing smaller or

larger portions of the causal history of an event.

Consistency

When mutable state is distributed over multiple machines each machine can receive update

events at different times and in different orders. If the final state is dependent on the order

of updates then the system must choose a single serialisation of the events, imposing a

global total order. A distributed system is consistent exactly when the outside world can

never observe two different serialisations.

CAP Theorem

The CAP (Consistency-Availability-Partition) theorem also boils down to causality. When

a machine in a distributed system is asked to perform an action that depends on its current

state it must decide that state by choosing a serialisation of the events it has seen. It has

two options:

 Choose a serialisation of its current events immediately

 Wait until it is sure it has seen all concurrent events before choosing a serialisation

The first choice risks violating consistency if some other machine makes the same choice

with a different set of events. The second violates availability by waiting for every other

machine that could possibly have received a conflicting event before performing the

requested action. There is no need for an actual network partition to happen - the trade-off

between availability and consistency exists whenever communication between components

is not instant. We can state this even more simply:

Ordering requires waiting

Even your hardware cannot escape this law. It provides the illusion of synchronous access

to memory at the cost of availabilty. If you want to write fast parallel programs then you

need to understand the messaging model used by the underlying hardware.

Eventual Consistency

A system is eventually consistent if the final state of each machine is the same regardless

of how we choose to serialise update events. An eventually consistent system allows us to

sacrifice consistency for availability without having the state of different machines diverge

irreparably. It doesn't save us from having the outside world see different serialisations of

update events. It is also difficult to construct eventually consistent data structures and to

reason about their composition.

3 What is group communication? What are the Key areas of applications of group

communication? Explain the programming model for group

communication.APRIL/MAY 2018

http://en.wikipedia.org/wiki/Memory_barrier

Group Communication

A group is an operating system abstraction for a collective of related processes. A set of

cooperative processes may, for example, form a group to provide an extendable, efficient,

available and reliable service. The group abstraction allows member processes to perform

computation on different hosts while providing support for communication and

synchronisation between them.

 The term multicast means the use of a single communication primitive to send a message

to a specific set of processes rather than using a collection of individual point to point

message primitives. This is in contrast with the term broadcast which means the message is

addressed to every host or process.

 A consensus protocol allows a group of participating processes to reach a common

decision, based on their initial inputs, despite failures.

 A reliable multicast protocol allows a group of processes to agree on a set of messages

received by the group. Each message should be received by all members of the group or by

none. The order of these messages may be important for some applications. A reliable

multicast protocol is not concerned with message ordering, only message delivery

guarantees. Ordered delivery protocols can be implemented on top of a reliable multicast

service.

 Multicast algorithms can be built on top of lower-level communication primitives such as

point-to-point sends and receives or perhaps by availing of specific network mechanisms

designed for this purpose.

 The management of a group needs an efficient and reliable multicast communication

mechanism to allow clients obtain services from the group and ensure consistency among

servers in the presence of failures. Consider the following two scenarios:-

 A client wishes to obtain a service which can be performed by any member of the

group without affecting the state of the service.

A client wishes to obtain a service which must be performed by each member of the

group.

In the first case, the client can accept a response to its multicast from any member of the

group as long as at least one responds. The communication system need only guarantee

delivery of the multicast to a nonfaulty process of the group on a best-effort basis. In the

second case, the all-or-none atomic delivery requirements requires that the multicast needs

to be buffered until it is committed and subsequently delivered to the application process,

and so incurs additional latency.

 Failure may occur during a multicast at the recipient processes, the communication links

or the originating process.

 Failures at the recipient processes and on the communication links can be detected by the

originating process using standard time-out mechanisms or message acknowledgements.

The multicast can be aborted by the originator, or the service group membership may be

dynamically adjusted to exclude the failed processes and the multicast can be continued.

If the originator fails during the multicast, there are two possible outcomes. Either the

message has not have arrived at any destination or it has arrived at some. In the first case,

no process can be aware of the originator's intention and so the multicast must be aborted.

In the second case it may be possible to complete the multicast by selecting one of the

recipients as the new originator. The recipients would have to buffer messages until safe

for delivery in case they were called on for this role.

 A reliable multicast protocol imposes no restriction on the order in which messages are

delivered to group processes. Given that multicasts may be in progress by a number of

originators simultaneously, the messages may arrive at different processes in a group in

different orders. Also, a single originator may have a number of simultaneous multicasts in

progress or may have issued a sequence of multicast messages whose ordering we might

like preserved at the recipients. Ideally, multicast messages should be delivered

instantaneously in the real-time order they were sent, but this is unrealistic as there is no

global time and message transmission has a possibly significant and variable latency.

 A number of possible scenarios are given below which may require different levels of

ordering semantics. G and s represent groups and message sources. s may be inside or

outside a group. Note that group membership may overlap with other groups, that is,

processes may be members of more than one group.

Ordered Reliable Multicasts

A FIFO ordered protocol guarantees that messages by the same sender are delivered in the

order that they were sent. That is, if a process multicasts a message m before it multicasts a

message m', then no correct process receives m' unless it has previously received m. To

implement this, messages can be assigned sequence numbers which define an ordering on

messages from a single source. Some applications may require the context of previously

multicast messages from an originator before interpreting the originator's latest message

correctly.

 However, the content of message m may also depend on messages that the sender of m

received from other sources before sending m. The application may require that the context

which could have caused or affected the content of m be delivered at all destinations of m,

before m. For example, in a network news application, user A broadcasts an article. User B

at a different site receives the article and broadcasts a response. User C can only interpret

the response if the original article is delivered first at their site. Two messages are said to

be causally related if one message is generated after receipt of the other. Causal order is a

strengthening of FIFO ordering which ensures that a message is not delivered until all

messages it depends on have been delivered.

 This causal dependence relation is more formally specified as follows:- An execution of a

multicast or receive primitive by a process is called an event.

Event e causally precedes event f (i.e. happened before), (ef), if an only if:

 1. A process executes both e and f in that order, or

 2. e is the multicast of message m and f is the receipt of m, or

 3. there is an event h, such that eh and hf.

A causal protocol then guarantees that if the broadcast of message m causally precedes the

broadcast of m', then no correct process receives m' unless it has previously received m.

 The definition of causal ordering does not determine the delivery order of messages which

are not causally related. Consider a replicated database application with two copies of a

bank account x residing at different sites. A client side process at one site sends a multicast

to the database to lodge £100 to account x. At another site simultaneously, a client side

process initiates a multicast to add 10% interest to the current balance of x. For

consistency, all database replicas should apply the two updates in the same sequence. As

these two messages are not causally related, a causal broadcast would allow the update

messages to x to be delivered in different sequences at the replicas.

 Total Ordering guarantees that all correct processes receive all messages in the same order.

That is, if correct processes p and q both receive messages m and m', then p receives m

before m' if and only if q receives m before m'. The multicast is atomic across all members

of the group.

Note that this definition of a totally ordered broadcast does not require that messages be

delivered in Causal Order or even FIFO Order, so it is not stronger than these orderings.

For example, if a process suffers a transient failure during the broadcast of message m, and

subsequently broadcasts m', a totally ordered protocol will guarantee only that processes

receive m'.

FIFO or Causal Ordering can be combined with Total Ordering if required.

All reliable multicasts have the following three properties.

Validity: If a correct process multicasts a message m, then all correct processes

eventually receive m.

Agreement: If a correct process receives a message m, then all correct processes

eventually receive m.

Integrity: For any message m, every correct process receives m at most once and

only if m was multicast by the sender of m.

The protocols only differ in the strength of their message delivery order requirements.

 Multicast Algorithms

 In the algorithms to follow, R stands for Reliable Multicast, F for FIFO, C for Causal and

A for Atomic.

In an asynchronous system where a reliable link exists between every pair of processes, the

algorithm below demonstrates how a Reliable multicast can be achieved.

 Every process p executes the following:-

multicast(R, m):

 tag m with sender(m) and seq#(m)

 send(m) to all group including p

 The receive(R, m) occurs as follows:

 upon arrival(m) do

 if p has not previously executed receive(R, m) then

 if sender(m) <> p then

 send(m) to all group

 receive(R, m)

 It is easy to use Reliable Multicast to build a FIFO Multicast algorithm. To F-multicast a

message m, a process q simply R-multicasts m. The difference is at the receiver which

orders the delivery.

 multicast(F, m):

 multicast(R, m)

 If m is the ith message from q, then m is tagged sender(m)=q and seq#(m)=i.

For each q, every process p maintains a counter next[q] that indicates the sequence number

of the next F-multicast from q that p is willing to F-deliver. Incoming messages are placed

in a message bag from which messages that can be FIFO delivered (according to the value

of next[q]) are removed.

 Every process p initialises:-

 msgbag =

 next[q] = 1 for all q

 The receive(R, m) occurs as follows:

 upon arrival(R, m) do

 q := sender(m);

 msgbag := msgbag {m};

 while (m' msgbag: sender(m')=q and seq#(m')=next[q]) do

 receive(F, m')

 next[q] = next[q]+1;

 msgbag := msgbag - {m'}

 A Causal multicast algorithm can be constructed on top of a FIFO multicast.

To C-multicast a message m, a process p uses the FIFO multicast algorithm to F-multicast

the sequence of messages that p has causally received since its previous C-broadcast

followed by the message m. A process q receives all of the messages in the sequence only

which it previously has not received.

 Initialisation:

 prevReceives =

multicast(C, m):

 multicast(F, <prevReceives || m>) /* || is list concatenation operator */

 prevReceives =

 The receive(C, m) occurs as follows:

 upon arrival(F, <m1,m2,…mn>) do

 for i := 1 to n do

 if p has not received mi then

 receive(C, mi)

 prevReceives := prevReceives || mi;

 One of the fundamental results about fault-tolerant distributed computing is the

impossibility of achieving consensus in asynchronous systems which suffer crash failures.

This is primarily due to the fact that it is impossible to distinguish between a process that

has crashed and one that is extremely slow. The consensus problem can be easily reduced

to implementing atomic multicast. For example, to propose a value, a process A-multicasts

it. To decide on a value, each process picks the value of the first message that is A-

received. By total order of atomic broadcasts, all processes agree on the same value.

Consensus and Atomic Multicast are therefore equivalent in asynchronous systems with

crash failures and so there are no deterministic Atomic Multicast protocols (total ordering

protocols) for such systems.

Atomic multicast can be deterministically implemented in synchronous systems where

upper bounds on message latency exist.

 If we assume no failures, the algorithm given below can be used to implement a totally

ordered multicast.

 Each site maintains a 'local clock'. A clock doesn't necessarily have to supply the exact

time, but could be implemented simply by a counter which is incremented after each send

or receive event that occurs at the site, so that successive events have different 'times'. The

algorithm executes in two phases. During the first phase the originator multicasts the

message to all destinations and awaits a reply from each. Each receiver queues the message

and assigns it a proposed timestamp based on the value of its local clock. This timestamp is

returned to the originator. The originator collects all the proposed timestamps for the

multicast and selects the highest. During the second phase of the algorithm, the originator

commits the multicast by sending the final chosen timestamp to all destinations. Each

receiver then marks the message as deliverable in its queue. The message queue is ordered

on the value of the timestamps associated with each message each time a timestamp is

updated. When a message gets to the top of the queue and is deliverable it may be

delivered immediately to the application.

UNIT-III

 PART-A

1 What is distributed deadlock? Explain with example. With deadlock detection schemes,

a transaction is aborted only when it is involved in a deadlock. Most deadlock detection

schemes operate by finding cycles in the transaction wait- for graph. In a distributedsystem

involving multiple servers being accessed by multiple transactions, a global wait-for graph

can in theory be constructed from the local ones. There can be a cycle in the global wait-for

graph that is not in any single local one – that is, there can be a distributed deadlock

2 Explain the ‘snapshot’ algorithm of Lamport.

The ‘snapshot’ algorithm of Chandy and Lamport describe a ‘snapshot’ algorithm for

determining global states of distributed systems, which we now present. The goal of the

algorithm is to record a set of process and channel states (a ‘snapshot’) for a set of processes

pi(i = 1,2,.N) such that, even though the combination of recorded states may never have

occurred at the same time, the recorded global state is consistent

3 Explain phantom deadlocks.

A deadlock that is 'detected' but is not really a deadlock is called phantom deadlock. In

distributed deadlock detection, information about wait-for relationships between transactions

is transmitted from on server to another. If there is a deadlock, the necessary information

will eventually be collected in one place and a cycle will be detected. Ja this procedure will

take some time, there is a chance that one of the transactions

that Holds a lock will meanwhile have released it, in which case the deadlock will no longer

exist.

4 Explain edge chasing deadlock detection technique in distributed systems.

A distributed approach to deadlock detection uses a technique called edge chasing or path

pushing. In this approach, the global wait-for graph is not constructed, but each of the

servers involved has Knowledge about some of its edges.

The servers attempt to find cycles by forwarding messages called probes, which follow the

edges of the graph throughout the distributed system. A probe message consists of

transaction wait-for relationships representing a path in the global
wait-for graph.

5. Define Distributed Mutual Exclusion.

A condition in which there is a set of processes ,only one of which is able to access a given

resource or perform a given function at a time.

6. Compare Deadlock and Starvation

 Deadlock happens when two or more process indefinitely gets stopped when it

attempts to enter or exit the critical section

 Starvation is the indefinite postponement of entry for a process that has requested

it.Without Deadlock Starvation may also occur. No starvation leads to fairness

condition.

7. What are the approaches to implement distributed mutual exclusion.

 Token based approach

 Non Token based approach

 Quorum based approach

8. What are the three states of Mutual Exclusion?

It is of three states

1.Requesting Control Section

2.Executing Control Section

3.Or Neither requesting nor executing control section(idle)

9. Define Throughput.

The rate at which the system executes request for the critical section if synchronization delay

is SD and E is the average critical section execution time,then the throughput is given by the

equation

System Throughput=1/(SD+E)

10 Define Response time.

The time interval is the request wait for its control section execution to be over after its

request message have been sent out .It does not include the time request waits at a site before

its request message have been sent out.

 PART-B

1 Explain the ‘snapshot’ algorithm of Lamport. APRIL/MAY 2017, APRIL/MAY

2018

Chandy–Lamport’s global state recording algorithm

Each distributed system has a number of processes running on a number of different physical

servers. These processes communicate with each other via communication channels using

text messaging. These processes neither have a shared memory nor a common physical clock,

this makes the process of determining the instantaneous global state difficult.

A process could record it own local state at a given time but the messages that are in transit

(on its way to be delivered) would not be included in the recorded state and hence the actual

state of the system would be incorrect after the time in transit message is delivered.

Chandy and Lamport were the first to propose a algorithm to capture consistent global state

of a distributed system. The main idea behind proposed algorithm is that if we know that all

message that hat have been sent by one process have been received by another then we can

record the global state of the system.

Any process in the distributed system can initiate this global state recording algorithm using a

special message called MARKER. This marker traverse the distributed system across all

communication channel and cause each process to record its own state. In the end, the state of

entire system (Global state) is recorded. This algorithm does not interfere with normal

execution of processes.

Assumptions of the algorithm:

 There are finite number of processes in the distributed system and they do not share

memory and clocks.

 There are finite number of communication channels and they are unidirectional and

FIFO ordered.

 There exists a communication path between any two processes in the system

 On a channel, messages are received in the same order as they are sent.

Algorithm:

 Marker sending rule for a process P :
o Process p records its own local state

o For each outgoing channel C from process P, P sends marker along C before

sending any other messages along C.

(Note: Process Q will receive this marker on his incoming channel C1.)

 Marker receiving rule for a process Q :

o If process Q has not yet recorded its own local state then

 Record the state of incoming channel C1 as an empty sequence or null.

 After recording the state of incoming channel C1, process Q Follows

the marker sending rule

o If process Q has already recorded its state

 Record the state of incoming channel C1 as the sequence of messages

received along channel C1 after the state of Q was recorded and before

Q received the marker along C1 from process P.

Need of taking snapshot or recording global state of the system:

 Checkpointing: It helps in creating checkpoint. If somehow application fails, this

checkpoint can be used re

 Garbage collection: It can be used to remove objects that do not have any references.

 It can be used in deadlock and termination detection.

 It is also helpful in other debugging.

2 Explain the bully algorithm

Bully Algorithm

This algorithm has three main components given below.

 Coordinator – Announce about himself.

 Election – Announces the election.

 Reply – Acknowledge the request.

Let’s say the scenario is, we have 6 process numbered as 1, 2, 3, 4, 5, 6 and also, the priority

or process number are also in the same order, therefore the process 6 is the highest process

number. The process are shown below; Circles are the processes and the square boxes are

their numbers.

Now, suppose the case is Process 6 has crashed and other processes are active. The crashing

has been noticed by process 2. It finds out that the Process 6 is longer responding to the

request. In this case, Process 2 will start a fresh election.

Process 2 sends an election message to the process, which has the highest number. In our

case, the processes are 3, 4, 5, 6. Now, as Process 6 is down or fails, it will definitely not

respond to the election message.

Process 3, 4, 5 are active and therefore they respond with a reply or acknowledgement

message to Process 2.

If no one will respond to the request message by Process 2, it will win the election. Now, the

election will be initiated by the next highest number. In our case, it is Process 3, which will

send the election message to Process 4, 5 and 6. As Process 6 is down, it will again not

respond to the request message. Again, if no one will respond, then Process 3 will win the

election.

It will be the same process for Process 4 and it will be the next initiator to conduct the

election. Now, the chance came to Process 5, as it is the highest in all processes. Also,

because Process 6 is down. In this case, Process 5 will win the election and will send this

victory message to all.

Meanwhile, Process 6 came back from the down state to active state. It will definitely hold

the election, as it is the highest among the processes in the system. It will win the election,

which is based on the highest number and control over the Coordinator job.

Whenever the highest number process is recovered from the down state, it holds the election

and win the election. Also, it bullies the other process to get in submission.

The complexity of this algorithm is given below.

 Best Case - n-2

 Worst Case - 0(n^2)

3 What is a deadlock? How deadlock can be recovered? Explain distributed dead locks.

Deadlock Detection

1. If resources have single instance:

In this case for Deadlock detection we can run an algorithm to check for cycle in the

Resource Allocation Graph. Presence of cycle in the graph is the sufficient condition

for deadlock.

In the above diagram, resource 1 and resource 2 have single instances. There is a

cycle R1 → P1 → R2 → P2. So, Deadlock is Confirmed.

2. If there are multiple instances of resources:

https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2015/06/deadlock.png

Detection of the cycle is necessary but not sufficient condition for deadlock detection,

in this case, the system may or may not be in deadlock varies according to different

situations.

DeadlockRecovery

A traditional operating system such as Windows doesn’t deal with deadlock recovery as it is

time and space consuming process. Real-time operating systems use Deadlock recovery.

Recovery method

1. Killing the process: killing all the process involved in the deadlock. Killing process

one by one. After killing each process check for deadlock again keep repeating the

process till system recover from deadlock.

2. Resource Preemption: Resources are preempted from the processes involved in the

deadlock, preempted resources are allocated to other processes so that there is a

possibility of recovering the system from deadlock. In this case, the system goes into

starvation.

S.

No
.

UNIT-IV

 PART-A

1 Define Roll back recovery?

Roll back recovery is defines as a system recovers correctly if its internal state is consistent

with the observable behavior of the system before the failure.

2 What is a local checkpoint?

A local checkpoint is a snapshot of the state of the process at a given instance and the event of

recording the state of a process is called local check pointing.

3 What are the types of messages in recovery?

In-transit messages

Lost messages

Delayed messages

Orphan messages

Duplicate messages

4 What is an Orphan message?

Messages with receive recorded but message send not recorded are called orphan messages.

5 Classify the checkpoint-based rollback recovery techniques.

 Uncoordinated check pointing

 Coordinated check pointing

 Communication induced check pointing

6 What is the necessity of Uncoordinated check pointing?

Each process takes its checkpoints independently. This eliminates the synchronization

overhead.

7 What are the types of communication-induced check pointing?

 Model-based check pointing

 Index-based check pointing

8 What are the advantages of pessimistic logging?

 Immediate output commit

 Restart from most recent checkpoint

 Recovery limited to failed process

 Simple garbage collection

9 State the role of Index-based checkpointing.

Index based communication-induced check pointing assigns monotonically increasing indexes

to checkpoints, such that the checkpoints having the same index at different processes from a

consistent state.

10 What are the types of rollback-recovery protocols?

 Pessimistic logging,

 Optimistic logging

 Causal logging protocols

11 Compare agreement problem and the consensus problem

The difference between the agreement problem and the consensus problem is that in the

agreement problem, a single process has the initial value, whereas in the consensus

problem,all processes have an initial value.

12 Write about Reliable Broadcast (RTB)

 RTB requires recognition of a failure,even if no message is sent.

 It is required to distinguish between a failed process and a slow process

 RTB requires eventual delivery of messages, even if sender fails before sending.

In this case, a null message needs to get sent. In RB, this condition is not there.

 PART-B

1 Explain about the checkpoint based recovery.

Introduction

Checkpoint-Recovery is a common technique for imbuing a program or system with fault

tolerant qualities, and grew from the ideas used in systems which employ transaction processing

. It allows systems to recover after some fault interrupts the system, and causes the task to fail,

or be aborted in some way. While many systems employ the technique to minimize lost

processing time, it can be used more broadly to tolerate and recover from faults in a critical

application or task.

The basic idea behind checkpoint-recover is the saving and restoration of system state. By

saving the current state of the system periodically or before critical code sections, it provides the

baseline information needed for the restoration of lost state in the event of a system failure.

While the cost of checkpoint-recovery can be high, by using techniques like memory exclusion,

and by designing a system to have as small a critical state as possible may minimize the cost of

checkpointing enough to be useful in even cost sensitive embedded applications.

When a system is checkpointed, the state of the entire system is saved to non-volatile storage.

The checkpointing mechanism takes a snapshot of the system state and stores the data on some

non-volatile storage medium. Clearly, the cost of a checkpoint will vary with the amount of

state required to be saved and the bandwidth available to the storage mechanism being used to

save the state.

In the event of a system failure, the internal state of the system can be restored, and it can

continue service from the point at which its state was last saved. Typically this involves

restarting the failed task or system, and providing some parameter indicating that there is state

to be recovered. Depending on the task complexity, the amount of state, and the bandwidth to

the storage device this process could take from a fraction of a second to many seconds.

This technique provides protection against the transient fault model. Typically upon state

restoration the system will continue processing in an identical manner as it did previously. This

will tolerate any transient fault, however if the fault was caused by a design error, then the

system will continue to fail and recover endlessly. In some cases, this may be the most

important type of fault to guard against, but not in every case.

Unfortunately, it has only limited utility in the presence of a software design fault. Consider for

instance a system which performs control calculations, one of which is to divide a temperature

reading into some value. Since the specification requires the instrument to read out in degrees

Kelvin (absolute temperature), a temperature of 0 is not possible. In this case the programmer

(realizing this) fails to check for zero prior to performing the divide. The system works well for

a few months, but then the temperature gauge fails. The manufacturer realizes that a 0K

temperature is not possible, and decides that the gauge should fail low, since a result of 0 is

obviously indicative of a failure. The system faults, and attempts to recover its state.

Unfortunately, it reaches the divide instruction and faults, and continues to recover and fault

until some human intervention occurs. The point here is not that there should be redundant

temperature sensors, but that the most common forms of checkpoint and recovery are not

effective against some classes of failures.

 KeyConcepts

 The basic mechanism of checkpoint-recovery consists of three key ideas - the saving and

restoration of executive state, and the detection of the need to restore system state. Additionally,

for more complex distributed embedded systems, the checkpoint-recovery mechanism can be

used to migrate processes off individual nodes

 Saving executive state

A snapshot of the complete program state may be scheduled periodically during program

execution. Typically this is accomplished by pausing the operation of the process whose state is

to be saved, and copying the memory pages into non-volatile storage. While this can be

accomplished by using freely available checkpoint-recovery libraries, it may be more efficient

to build a customized mechanism into the system to be protected.

Between full snapshots, or even in place of all but the first complete shot, only that state which

has changed may be saved. This is known as incremental checkpointing, and can be thought of

in the same way as incremental backups of hard disks. The basic idea here is to minimize the

cost of checkpointing, both in terms of the time required and the space (on non-volatile storage).

Not all program state may need to be saved. System designers may find it more efficient to build

in mechanisms to regenerate state internally, based on a smaller set of saved state. Although this

technique might be difficult for some applications, it has the benefit of having the potential to

save both time and space during both the checkpoint and recovery operations.

A technique known as memory exclusion allows a program to notify the checkpoint algorithm

which memory areas are state critical and which are not. This technique is similar to that of

rebuilding state discussed above, in that it facilitates saving only the information most critical to

program state. The designer can exclude large working set arrays, string constants, and other

similar memory areas from being checkpointed.

When these techniques are combined, the cost of checkpointing can be reduced by factors of 3-

4. Checkpointing, like any fault tolerant computing technique, does require additional resources.

Whether or not it will work well, is high dependant on both the target system design, and the

application. Typically those systems which must meet hard real-time deadlines will have the

most difficulty implementing any type of checkpoint-recovery system

RestoringExecutivestate

 When a failure has occurred, the recovery mechanism restores system state to the last

checkpointed value. This is the fundamental idea in the tolerance of a fault within a system

employing checkpoint-recovery. Ideally, the state will be restored to a condition before the fault

occurred within the system. After the state has been restored, the system can continue normal

execution.

State is restored directly from the last complete snapshot, or reconstructed from the last

snapshot and the incremental checkpoints. The concept is similar to that of a journaled file

system, or even RCS(revision control system), in that only the changes to a file are recorded.

Thus when the file is to be loaded or restored, the original document is loaded, and then the

specified changes are made to it. In a similar fashion, when the state is restored to a system

which has undergone one or more incremental checkpoints, the last full checkpoint is loaded,

and then modified according to the state changes indicated by the incremental checkpoint data.

If the root cause of the failure did not manifest until after a checkpoint, and that cause is part of

the state or input data, the restored system is likely to fail again. In such a case the error in the

system may be latent through several checkpoint cycles. When the it finally activates and causes

a system failure, the recovery mechanism will restore the state (including the error!) and

execution will begin again, most likely triggering the same activation and failure. Thus it is in

the system designers best interest to ensure that any checkpoint-recovery based system is fail

fast - meaning errors are either tolerated, or case the system to fail immediately, with little or no

incubation period.

Such recurring failures might be addressed through multi-level rollbacks and/or algorithmic

diversity. Such a system would detect multiple failures as described above, and recover state

from checkpoint data previous to the last recovery point. Additionally, when the system detects

such multiple failures it might switch to a different algorithm to perform its functionality, which

may not be susceptible to the same failure modes. The system might degrade its performance by

using a more robust, but less efficient algorithm in an attempt to provide base level functionality

to get past the fault before switching back to the more efficient routines.

 Failure Detection

Failure detection can be a tricky part of any fault tolerant design. Sometimes the line between an

unexpected (but correct) result, and garbage out is difficult to discern. In traditional checkpoint-

recovery failure detection is somewhat simplistic. If the process or system terminates, there is a

failure. Additionally, some systems will recover state if they attempted a non-transactional

operation that failed and returned. The discussion of failure detection, and especially how it

impacts embedded systems is left to the chapters on fault tolerance, reliability, dependability,

and architecture.

2 Explain about the log based rollback recovery.

Log based Recovery

Atomicity property of DBMS states that either all the operations of transactions must be

performed or none. The modifications done by an aborted transaction should not be visible to

https://www.geeksforgeeks.org/acid-properties-in-dbms/

database and the modifications done by committed transaction should be visible.

To achieve our goal of atomicity, user must first output to stable storage information describing

the modifications, without modifying the database itself. This information can help us ensure

that all modifications performed by committed transactions are reflected in the database. This

information can also help us ensure that no modifications made by an aborted transaction persist

in the database.

Log and log records –

The log is a sequence of log records, recording all the update activities in the database. In a

stable storage, logs for each transaction are maintained. Any operation which is performed on

the database is recorded is on the log. Prior to performing any modification to database, an

update log record is created to reflect that modification.

An update log record represented as: <Ti, Xj, V1, V2> has these fields:

1. Transaction identifier: Unique Identifier of the transaction that performed the write

operation.

2. Data item: Unique identifier of the data item written.

3. Old value: Value of data item prior to write.

4. New value: Value of data item after write operation.

Other type of log records are:

1. <Ti start>: It contains information about when a transaction Ti starts.

2. <Ti commit>: It contains information about when a transaction Ti commits.

3. <Ti abort>: It contains information about when a transaction Ti aborts.

Undo and Redo Operations –

Because all database modifications must be preceded by creation of log record, the system has

available both the old value prior to modification of data item and new value that is to be written

for data item. This allows system to perform redo and undo operations as appropriate:

1. Undo: using a log record sets the data item specified in log record to old value.

2. Redo: using a log record sets the data item specified in log record to new value.

The database can be modified using two approaches –

1. Deferred Modification Technique: If the transaction does not modify the database

until it has partially committed, it is said to use deferred modification technique.

2. Immediate Modification Technique: If database modification occur while transaction

is still active, it is said to use immediate modification technique.

Recovery using Log records –

After a system crash has occurred, the system consults the log to determine which transactions

need to be redone and which need to be undone.

1. Transaction Ti needs to be undone if the log contains the record <Ti start> but does not

contain either the record <Ti commit> or the record <Ti abort>.

2. Transaction Ti needs to be redone if log contains record <Ti start> and either the record

<Ti commit> or the record <Ti abort>.

Use of Checkpoints –
When a system crash occurs, user must consult the log. In principle, that need to search the

entire log to determine this information. There are two major difficulties with this approach:

1. The search process is time-consuming.

2. Most of the transactions that, according to our algorithm, need to be redone have already

written their updates into the database. Although redoing them will cause no harm, it

will cause recovery to take longer.

To reduce these types of overhead, user introduce checkpoints. A log record of the form

<checkpoint L> is used to represent a checkpoint in log where L is a list of transactions active at

the time of the checkpoint. When a checkpoint log record is added to log all the transactions that

have committed before this checkpoint have <Ti commit> log record before the checkpoint

record. Any database modifications made by Ti is written to the database either prior to the

checkpoint or as part of the checkpoint itself. Thus, at recovery time, there is no need to perform

a redo operation on Ti.

After a system crash has occurred, the system examines the log to find the last <checkpoint L>

record. The redo or undo operations need to be applied only to transactions in L, and to all

transactions that started execution after the record was written to the log. Let us denote this set

of transactions as T. Same rules of undo and redo are applicable on T as mentioned in Recovery

using Log records part.

Note that user need to only examine the part of the log starting with the last checkpoint log

record to find the set of transactions T, and to find out whether a commit or abort record occurs

in the log for each transaction in T. For example, consider the set of transactions {T0, T1, . . .,

T100}. Suppose that the most recent checkpoint took place during the execution of transaction

T67 and T69, while T68 and all transactions with subscripts lower than 67 completed before the

checkpoint. Thus, only transactions T67, T69, . . ., T100 need to be considered during the

recovery scheme. Each of them needs to be redone if it has completed (that is, either committed

or aborted); otherwise, it was incomplete, and needs to be undone.

S.

No
.

UNIT-V

 PART-A

1 What is peer to peer system?

Peer-to-peer systems aim to support useful distributed services and applications using data

and computing resources available in the personal computers and workstations that are present

in the

Internet and other networks in ever-increasing numbers.

2 What is goal of peer to peer system?

The goal of peer-to-peer systems is to enable the sharing of data and resources on a very large

scale by eliminating any requirement for separately managed servers and their associated

infrastructure.

3 What are the characteristics of peer to peer system? MAY/JUNE 2016

Their design ensures that each user contributes
resources to the system.

• Although they may differ in the resources that they contribute, all the nodes in a

peer-to-peer system have the same functional capabilities and responsibilities.

• Their correct operation does not depend on the existence of any centrally

administered systems.

• They can be designed to offer a limited degree of anonymity to the providers and
users of resources.

5 What is the need of peer to peer middleware system? NOV/DEC 2017

Peer-to-peer middleware systems are designed specifically to meet the need for the automatic

placement and subsequent location of the distributed objects managed by peer-to-peer systems

and applications.

6 Write the Non-functional requirements of peer-to-peer middleware system?

o Global scalability
o Load balancing
o Optimization for local interactions between neighbouring peers

o Accommodating to highly dynamic host availability

7 What is the role of routing overlays in peer to peer system? APR/MAY 2017

Peer-to-peer systems usually store multiple
replicas of objects to ensure availability. In that case, the routing overlay maintains

Knowledge of the location of all the available replicas and delivers requests to the nearest

‘live’ node (i.e. one that has not failed) that has a copy of the relevant object.

8
What are the tasks performed by routing overlay?

o Insertion of objects
o Deletion of objects

o Node addition and removal

9 What are the generations of peer to peer system?

Three generations of peer-to-peer system and application development can be identified.

o The first generation was launched by the Napster music exchange service

[OpenNap 2001].

o A second generation of file sharing applications offering greater scalability,

anonymity and fault tolerance quickly followed including Freenet, Gnutella,

Kazaa and BitTorrent

o The third generation is characterized by the emergence of middleware

layers for the application-independent management of

distributed

o resources on a global scale

10 What are the case studies used in overlay?

NOV/DEC 2017
o Pastry is the message routing infrastructure deployed in several applications

including PAST.

o Tapestry is the basis for the Ocean Store storage system.

11 Difference between Structured versus

 unstructured peer-to-peer systems.

 Structured peer-to-peer Unstructure d peer-to- peer

 Advantages Guaranteed to locate

objects (assuming they

 exist) and can offer

time and complexity

bounds on this operation;

relatively

Self- organizing and

naturally resilient to

node failure.

low message overhead.

 Disadvantage s Need to maintain often

complex overlay structures,

which can be difficult and

costly to achieve,

especially in highly dynamic
environments

Probabilisti c and hence

cannot offer absolute

guarantees on locating

objects; prone

 to excessive

messaging overhead which

 can affect
scalability.

12 Give the characteristics of Peer-to-Peer systems? JUNE 2016, NOV 2017,
APRIL/MAY 2018

Its design ensures that each user contributes resources to the system.

Although they may differ in the resources that they contribute, all the nodes in a

peer-to-peer system have the same functional capabilities and responsibilities.

Its correct operation does not depend on the existence of any centrally

administered systems.

They can be designed to offer a limited degree of anonymity to the providers and

users of resources.

A key issue for their efficient operation is the choice of an algorithm for the

placement of data across many hosts and subsequent access to it in a manner that

balances the workload and ensures availability without adding undue
overheads.

 PART-B

1 With neat sketch explain Routing Overlays in detail. MAY/JUNE 2016, NOV/DEC

2016,APRIL/MAY 2017, APRIL/MAY 2018

Resilient Overlay Networks (RON), an architecture that allows end-to-end communication

across the wide-area Internet to detect and recover from path outages and periods of degraded

performance within several seconds. A RON is an application-layer overlay on top of the

existing Internet routing substrate. The overlay nodes monitor the liveliness and quality of the

Internets paths among themselves, and they use this information to decide whether to route

packets directly over the Internet or by way of the The RON nodes monitor the functioning and

quality of the Internet paths among themselves, and use this information to decide whether to

route packets directly over the Internet or by way of other RON nodes, optimizing application-

specific routing metrics.

- build on the top of another network such as ATM etc.

- IP itself id build on the top of another network.

- The term usually means a network on the top of IP.

Motivation behind Overlay Networks:-

Internet suffers from following four important drawbacks:

1. slow link failure recovery : BGP takes a long time, of the order of several minutes, to

converge to a new valid route after a router or link failure causes a path outage.

2. Inability to detect path or performance failure: BGP cannot detect many problems like

floods, persistent congestion, etc. that can greatly affects the performance. As long as a link is

deemed "live" i.e.. the BGP session is still alive, BGP's AS-path-based routing will continue to

route packets down the fault path.

3. Inability to effectively multi-home end-customer networks: As "solution" to Internet

unreliability (Instability) is to multi-homing. Unfortunately, peering at the network level by

small customers break down wide-area routing scalability.

4. Blunt policy expression: BGP is unable of expressing fine-grained policies aimed at users or

remote hosts; it can only express policies at the granularity of entire remote networks. This

reduces the set of paths in the case of failures.

RON overcome this drawbacks of BGP.

A RON Model:-

 Designate RON nodes for the overlay.

 Exchange of performance and reach ability, and routing based on this.

 2-50 nodes (only) on overlay.

The RON architecture achieves the following benefits:

1. Fault detection: A RON can more efficiently find alternate paths around problems even when

the underlying network layer incorrectly believes that all is well.

2. Better reliability for applications: Each RON can have an independent, application-specific

definition of what constitutes a fault.

3. Better performance: A RON's limited size allows it to use more aggressive path computation

algorithms that the Internet. RON nodes can exchange more complete topologies, collect more

detailed link quality metrics, execute more complex routing algorithms , and respond more

quickly to change.

4. Application-specific routing: Distributed applications can link with the RON library and

choose, or even define, their own routing matrices.

 Software modules at RON node look into the following

- RON client

- Routing

- Data Forwarding

- Bootstrap and Membership management

- Link state based dissemination

- Monitoring Virtual Links.

- Path-Evaluation and Selection

 Full mesh network among members.

Possible Usage Models:-

 A specific application (like Video conferencing) construct and uses RON.

 A network administrator construct an overlay.

 Overlay ISP.

Failure Detection in RON:-

 Uses UDP heartbeat packet

- Failure detection in Overlay is application specific. In multimedia conferencing 5% loss rate

may bark the video whereas a FTP application can still work with lower throughput.

- But one cannot reduce heart beat interval to a very small value. That will give rise to false

alarm.

- Also there is a trade off between overhead vs. detection time.

Matrices:-

 Latency

- RON expects reply of heart beat from which it calculates RTT.

- RTTs are stable over of the order of 15 mints to 1 hr.

- If spikes occur in the middle, then that will be smoothen out by EWMA.

 Packet Loss Rate

- Simply use heart beat and from this measure loss loss rate.

- if p1, p2 are the loss rate of link1 and link2 respectively, then the loss rate of the path using

consisting og link1 and link2 is 1-(1-p1)(1-p2).

.

