1101 AMSCE - DEPARTMENT OF IT

1.

UNIT -1
UML DIAGRAMS

PART - A

What is UML? (MAY/JUNE 2012)
Unified Modeling Language is a visual language for specifying, con-
structing and documenting the artifacts of system.

UML is the standard diagrammatic notation for drawing picture related
to software.

UML defines UML profiles that specialize subsets of the notation for
common subject areas.

List the Relationships used in Use cases.
% Generalization

¥ Extend
#* Include

What is Object Oriented Analysis and Design?
(APRIL/MAY-2011)(APRIL/MAY-2017)
* During object-oriented analysis, there is an emphasis on finding and
describing the objects—or concepts—in the problem domain.

% For example, in the case of the library information system, some of
the concepts include Book, Library, and Patron.

* During object-oriented design, there is an emphasis on defining
software objects and how they collaborate to fulfill the requirements

% For example, in the library system, a Book software object may
have a title attribute and a get Chapter method

Define the inception step.
* Inception is the initial short step to establish a common vision and
basic scope for the project.

1101 AMSCE - DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

It will include analysis of perhaps 10% of the use cases, analysis of
the critical non-functional requirement, creation of a business case,
and preparation of the development environment.

#* Most requirement analysis occurs during the elaboration phase ,in
parallel with early production quality programming and testing.

* It is a approximate vision, business case, scope, vague estimates.
5. List out any four reasons for the complexity of software.
1). Nature of the problem domain
- requirements,
- decay of systems
it). Complexity of process
- management problems,
- need for simplicity
ii1).Dangerous potential for flexibility in software systems

“Software is flexible and expressive and thus encourages highly de-
manding requirements, which in turn lead to complex implementations
which are difficult to assess”

iv).Characterizing behavior of discrete systems

“The task of the software development team is to engineer the illusion
of simplicity”

6. Define a) Actors b) Scenario c) Use cases. (NOV/DEC 2011)
% Definition: An actor is something with behavior, such as a person
(identified by role), computer system, or organization; for example,

a cashier.

* A scenario is a specific sequence of actions and interactions
between actors and the system; it is also called a use case instance.

* [t is one particular story of using a system, or one path through the
use case; for example, the scenario of successfully purchasing items
with cash, or the scenario of failing to purchase items because of a
credit payment denial.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 3

10.

11.

#* A use case is a collection of related success and failure scenarios
that describe an actor using a system to support a goal

#* Definition of a use case provided by the RUP:

* A set of use-case instances, where each instance is a sequence of
actions a system performs that yields an observable result of value
to a particular actor [RUP].

Define object. (NOV/DEC 2009)
An object is a combination of data and logic; the representation of
some real-world entity.

What is the main advantage of object-oriented development?
* High level of abstraction

#* Secamless transition among different phases of software development
#* Encouragement of good programming techniques.

% Promotion of reusability.

Define Class Diagram.

The main static structure analysis diagram for the system, it represents
the class structure of a system including the relationships between
class and the inheritance structure.

Define Activity Diagram.

A variation or special case of a state machine in which the states are
activities representing the performance of operations and the transi-
tions are triggered by the completion of the operations.

What is interaction diagram? Mention the types of interaction

diagram.

* Interaction diagrams are diagrams that describe how groups of
objects collaborate to get the job done interaction diagrams capture
the behavior of the single use case, showing the pattern of interaction
among objects.

#¥* There are two kinds of interaction models
#* Sequence Diagram

#* Collaboration Diagram.

1101 AMSCE - DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

12.

13.

14.

15.

16.

17.

What is Sequence Diagram? (NOV/DEC 2011)

Sequence diagram is an easy and intuitive way of describing the be-
haviors of a system by viewing the interaction between the system and
its environment.

What is Collaboration Diagram?

Collaboration diagram represents a collaboration, which is a set of
objects related in a particular context, and interaction, which is a set
of messages exchanged among the objects with in collaboration to
achieve a desired outcome.

Define Start chart Diagram.
% Start chart diagram shows a sequence of states that an object goes
through during its life in response to events.

* A state is represented as a round box, which may contain one or
more compartments. The compartments are all optional.

What is meant by implementation diagram?

Implementation Diagrams show the implementation phase of systems
development such as the source code structure and the run- time im-
plementation structure.

There are two types of implementation diagrams:
#* Component Diagrams

#* Development Diagrams.

Define Component Diagram?

% A Component diagrams shows the organization and dependencies
among a set of components.

¥ A component diagrams are used to model the static implementation
view of a system.

% This involves modeling the physical things that reside on a mode,
such as executable, libraries, tables, files and documents.

Define Deployment Diagram.

* Deployment Diagram shows the configuration of run-time
processing elements and the software components, processes, and
objects that live in them.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 5

18.

19.

% Deployment diagrams are used to model the static deployment view
of a system.

#* A deployment diagram is a graph of modes connected by

communication association.

Define Use-case Diagram.(NOV/DEC 2011)(MAY/JUNE 2012)
¥ Use-Case Model is the set of all written use cases; it is a model of
the system’s functionality and environment.

#* Use cases are text documents, not diagrams, and use-case modeling
is primarily an act of writing text, not drawing diagrams.

#* The Use-Case Model is not the only requirement artifact in the UP.

% There are also the Supplementary Specification, Glossary, Vision,
and Business Rules.

¥ These are all useful for requirements analysis, but secondary at this
point.

% The Use-Case Model may optionally include a UML use case
diagram to show the names of use cases and actors, and their
relationships.

% This gives a nice context diagram of a system and its environment.

It also provides a quick way to list the use cases by name.

What are the three kinds of Actors?
Definition: Actors are roles played not only by people, but by
organizations, software, and machines.

There are three kinds of external actors in relation to the SuD:

1. Primary actor has user goals fulfilled through using services of the
SuD.

For example, the cashier. Why identify? To find user goals, which
drive the use cases?

2. Supporting actor provides a service (for example, information) to
the SuD.

#* The automated payment authorization service is an example.

#* Often a computer system, but could be an organization or person.
Why identify?

1101 AMSCE - DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

#* To clarify external interfaces and protocols.
3. Offstage actor has an interest in the behavior of the use case, but
is not primary or supporting; for example, a government tax agency.
20. What are three common use case formats?
* Drief
¥* casual
* fully dressed
21. What are the artifacts in inception phase?
1).Vision and business case
i).Supplementary specification
ii1).Glossary
iv).Risk list
v).Prototypes
vi).Iteration plan
vii).Phase plan
viii).Development case
22. What are the steps to find use case?
1) Choose the system boundary.
i1) Identify the primary actors
1i1) Identify the goals for each primary actor.
iv) Define use cases that satisfy user goals.
23. What Tests Can Help Find Useful Use Cases?
% The Boss Test
% The EBP Test
% The Size Test

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 7

24,

25.

26.

27.

What are the three ways and perspectives to Apply UML?
(APRIL/MAY-2017)
Ways-

#* UML as sketch,

#* UML as blueprint,

% UML as programming language Perspectives-
#* Conceptual perspective,
#* Specification (software) perspective,

* Implementation(Software) perspective.

What is the use of Component Diagram?
% The Component Diagram helps to model the physical aspect of an
Object-Oriented software system.

#* It illustrates the architectures of the software components and the
dependencies between them.

% Those software components including run-time components,
executable components also the source code components.

Give the meaning of Event, State, Transition. (APRIL/MAY 2011)
¥ An event is a significant or noteworthy occurrence. For example:A
telephone receiver is taken off the hook.

¥* A state is the condition of an object at a moment in time—the time
between events. For example:A telephone is in the state of being
“idle” after the receiver is placed on the hook and until it is taken
off the hook.

* A transition is a relationship between two states that indicates that
when an event occurs, the object moves from the prior state to the
subsequent state. For example:When the event “off hook™ occurs,
transition the telephone from the “idle” to “active” state.

Define component with an example.

* A component represents a modular part of a system that encapsulates
its contents and whose manifestation is replaceable within its
environment.

1101 AMSCE - DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

¥* A component defines its behavior in terms of provided and required
interfaces.

#* As such, a component serves as a type, whose conformance is
defined by these provided and required interfaces

[View full size image]
altemate notationto D

indicate using or S0L ACOMPONEnts
requiring an interface. T D8
» alternate I
SySlems JMS notation for
NexiGen > MessagingService | a companent

Figure 1.1 : UML COMPONENTS

28. How will you reflect the version control information in UML
diagram?
Version Control provides two key facilities:

% -Coordinating sharing of packages between users
* -Saving a history of changes to Enterprise Architect packages,

including the ability to retrieve previous versions.

29. Define UML state machine diagram?
UML state machine diagram illustrates the interesting events and states
of an object, and the behavior of an object in reaction to an event.

30. Define state dependent object.
It reacts differently to events depending on their state or mode.

31. What are the steps involved in modeling protocols and legal
sequences?
¥ Communication protocols

* Ul page / Window flow or Navigation
¥ UI flow controllers or sessions
#* Use case system operations

Individual UI window event handling

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 9

32.

33.

34.

3s.

36.

37.

Define transition action.
¥* A transition can cause an action to fire.

* In a software implementation, this may represent the invocation of
a method of the class of the state machine diagram.

Define guard condition.
¥* A transition may also have a conditional guard or Boolean test.

* The transition only occurs if the test passes.

What do you meant by Nested state?
A state allows nesting to contain substates; a substate inherits the tran-
sitions of its upper state.

What is deployment Diagrams?

* A deployment diagram shows the assignment of concrete software
artifacts (such as executable files) to computational nodes
(something with processing services).

* It shows the deployment of software elements to the physical
architecture and the communication (usually on a network) between
physical elements

What is State-Independent and State-Dependent Objects?
* If an object always responds the same way to an event, then it is
considered as state

#* independent (or modeless) with respect to that event.

% State-dependent objects react differently to events depending on
their state or mode.

What are the basic elements of deployment diagrams?

#* The basic element of a deployment diagram is a node, of two
types: device node (or device) A physical (e.g., digital electronic)
computing resource with processing and memory services to
execute software, such as a typical computer or a mobile phone.

% Execution environment node (EEN) This is a software computing
resource that runs within an outer node (such as a computer) and
which itself provides a service to host and execute other executable
software elements.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

38.

39.

40.

% For example: an operating system (OS) is software that hosts and
executes programs a virtual machine (VM, such as the Java or
NET VM) hosts and executes programs a database engine (such as
PostgenSQL) receives SQL program requests and executes them,
and hosts/executes internal stored procedures.

What are the three ways and perspectives to Apply UML?

(NOV/DEC 2016)
Ways - UML as sketch, UML as blueprint, UML as programming lan-
guage Perspectives-Conceptual perspective, Specification (software)
perspective, Implementation (Software) perspective.

Distinguish between method and message in object. Method

Message (NOV/DEC 2016)
1) Methods are similar to functions, procedures or subroutines in more
traditional programming languages. Message essentially is non-

specific function calls.
i1) Method is the implementation. Message is the instruction.

ii1) In an object-oriented system, a method is invoked by
sending an object a message. An object understands a mes-
sage when it can match the message to a method that has the
same name as the message.

Differentiate coupling and cohesion. (NOV/DEC 2015)

% Coupling deals with interactions between objects or software
components while cohesion deals with the interactions within a
single object or software component.

% Highly cohesive components can lower coupling because only
minimum of essential information need to be passed between
components

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 11

PART - B
1. Explain about Unified Process Phases. (APRIL/MAY 2011)(MAY/
JUNE 2012) (NOV/DEC 2011) (NOV/DEC 2015) (NOV/DEC
2016).(APRIL/MAY-2017)
* A software development process describes an approach to

building, deploying, and possibly maintaining software.

% The Unified Process has emerged as a popular software development
process for building object-oriented systems.

#* In particular, the Rational Unified Process or RUP [KruchtenOO],
a detailed refinement of the Unified Process, has been widely
adopted.

% The Unified Process (UP) combines commonly accepted best
practices, such as an iterative lifecycle and risk-driven development,
into a cohesive and well-documented description

This starts with an introduction to the UP for two reasons:

1. The UP is an iterative process. Iterative development is a valuable
practice that influences how this book introduces OOA/D, and how it is
best practiced.

2. UP practices provide an example structure to talk about how to do—and
how to learn—OOA/D.

The Most Important UP Idea: Iterative Development

#* The UP promotes several best practices, but one stands above the
others: iterative development. In this approach, development is
organized into a series of short, fixed-length (for example, four
week) mini-projects called iterations; the outcome of each is a
tested, integrated, and executable system.

% FEach iteration includes its own requirements analysis, design,
implementation, and testing activities.

#* The iterative lifecycle is based on the successive enlargement and
refinement of a system through multiple iterations, with cyclic
feedback and adaptation as core drivers to converge upon a suitable
system.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

»*

The system grows incrementally over time, iteration by iteration,
and thus this approach is also known as iterative and incremental
development

Iteration Length and Timeboxing

»*

»*

L 3

The UP (and experienced iterative developers) recommends an
iteration length between two and six weeks.

Small steps, rapid feedback, and adaptation are central ideas in
iterative development; long iterations subvert the core motivation
for iterative development and increase project risk.

Much less than two weeks, and it is difficult to complete sufficient
work to get meaningful throughput and feedback; much more
than six or eight weeks, and the complexity becomes rather
overwhelming, and feedback is delayed.

A very long iteration misses the point of iterative development.
Short is good. A key idea is that iterations are time boxed, or fixed
in length.

For example, if the next iteration is chosen to be four weeks long,
then the partial system should be integrated, tested, and stabilized
by the scheduled date—date slippage is discouraged.

If it seems that it will be difficult to meet the deadline, the
recommended response is to remove tasks or requirements from the
iteration, and include them in a future iteration, rather than slip the
completion date.

Additional UP Best Practices and Concepts

The central idea to appreciate and practice in the UP is short timeboxed
iterative, adaptive development.

Another implicit, but core, UP idea is the use of object technologies,

including OOA/D and object-oriented programming.

Some additional best practices and key concepts in the UP include:

*
*

»*

tackle high-risk and high-value issues in early iterations

continuously engage users for evaluation, feedback, and
requirements

build a cohesive, core architecture in early iterations

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 13

* continuously verify quality; test early, often, and realistically
* apply use cases

% model software visually (with the UML)

#* carcfully manage requirements

¥ practice change request and configuration management

The UP Phases and Schedule-Oriented Terms

A UP project organizes the work and iterations across four major phases:
1. Inception— approximate vision, business case, scope, vague estimates.

2. Elaboration—refined vision, iterative implementation of the core
architecture, resolution of high risks, identification of most requirements
and scope, more realistic estimates.

3. Construction—iterative implementation of the remaining lower risk
and easier elements, and preparation for deployment.

4. Transition—beta tests, deployment.

These phases are more fully defined in subsequent chapters.

#* This is not the old “waterfall” or sequential lifecycle of first defining
all the requirements, and then doing all or most of the design.

* Inceptionis not a requirements phase; rather, it is a kind of feasibility
phase, where just enough investigation is done to support a decision
to continue or stop.

* Similarly, elaboration is not the requirements or design phase; rather,
it is a phase where the core architecture is iteratively implemented,
and high risk issues are mitigated.

development cycle
A

s

iteration phase
T .

inc. E trangiSon

! ! !

midestone release increment final producfion
releasze
An iteration end- A stable executable The difference
point when some subset of the final {delta) between the At this pont. the
significant decision product. Theend of releases of 2 System is released
or evaluation each fteration isa subsequent for production use.
ocours. minor release. iteratons.

Figure 1.2 : Schedule —oriented terms in UP

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

The UP Disciplines (was Workflows)
% The UP describes work activities, such as writing a use case, within
disciplines (originally called workflows).

* Informally, a discipline is a set of activities (and related artifacts) in
one subject area, such as the activities within requirements analysis.

% In the UP, an artifact is the general term for any work product:
code,Web graphics, database schema, text documents, diagrams,
models, and so on.

% There are several disciplines in the UP; this book focuses on some
artifacts in the following three:

Business Modeling—When developing a single application, this includes
domain object modeling. When engaged in large-scale business analysis
or business process reengineering, this includes dynamic modeling of the
business processes across the entire enterprise.

Requirements—Requirements analysis for an application, such as writing
uses cases and identifying non-functional requirements.

Design—All aspects of design, including the overall architecture, objects,
databases, networking, and the like.

A longer list of UP disciplines is shown in Figure 2.4,

A four-week Aeration [for example).
A prini-project that includes work in mest
disciplings. ending in 3 stabls axecutable

o~
P Disciplines .
7 .----._!___ |
Business Modeling 1
p\‘ﬂ‘f[. -(: Requrements. e 2= :
— T Tt
Design e —
L |1 T =
Imlernentyton -
Teat -"""..-I-_
I B
1
Cwﬁw:b?:nlcharm ____JI_.—-——— s e
T
Project — —_’!_'_'
.__.--'-'- I
Envirorement ¥
Iterations.

Figure 1.3 :UP Disciplines

» In the UP, Implementation means programming and building
the system, not deployment.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 15

» The Environment discipline refers to establishing the tools and
customizing the process for the project—that is, setting up the
tool and process environment.

Disciplines and Phases

» During one iteration work goes on in most or all disciplines.

» However, the relative effort across these disciplines changes
over time.

» Early iterations naturally tend to apply greater relative
emphasis to requirements and design, and later ones less so, as
the requirements and core design stabilize through a process of
feedback and adaptation.

» Relating this to the UP phases (inception, elaboration,),

relatively high level of requirements and design work, although definitely some

implementation as well During construction the emphasis is heavier on mmple.
mentation and lighter on requirements analysis.

Fample noep-

UP Disciplines | fon | S oor e | %
11 11 [I A | The relative efirt in
Business ' - i daaplaes shis
Madeing] | | across the phases
= | = == &} -
Requirements | ‘___i.—-'— 1= __--~|._._ ! This examphe s
— — { suggestive, not teral
Design] Lt | 1
4= | |-
e | | | I

Figure 1.4 : Disciplines and Phases
Book Structure and UP Phases and Disciplines

With respect to the phases and disciplines, what is the focus of the case
study?
Answer:

* The case study emphasizes the inception and elaboration phase.

#* [t focuses on some artifacts in the Business Modeling, Requirements,

and Design disciplines, as this is where requirements analysis,
OOA/D, patterns, and the UML are primarily applied.

The earlier chapters introduce activities in inception; later chapters explore
several iterations in elaboration.

The following list and describe the organization with respect to the UP
phases.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

1. The inception phase chapters introduce the basics of requirements
analysis.

2. Iteration 1 introduces fundamental OOA/D and how to assign
responsibilities to objects.

3. Iteration 2 focuses on object design, especially on introducing some
high-use “design patterns.”

4. Iteration 3 introduces a variety of subjects, such as architectural analysis
and framework design.

Disciplines and phases
Sample

UP Disciplines
Business, Modeling, Requirements, Design, Implementation

The relative effort in disciplines shifts across the phases.

This example is suggestive, not literal, inception, elaboration construction
transition

=l 2 I) =

5 Topics such a5 0O analysis and 00
m"l Wﬂil T_'"d:w I design are incrementally inTodused in 7

ieration 1. 2, and

Figure 1.5 : Book organization is related to the UP Phases and

iterations
The Agile UP
Methodologists speak of processes as heavy vs. light, and predictive vs.
adaptive.

A heavy process is a pejorative term meant to suggest one with the
following Qualities [Fowler]:

% Many artifacts created in a bureaucratic atmosphere

#* Rigidity and control

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 17

%* Elaborate, long-term, detailed planning
% Predictive rather than adaptive

#* A predictive process is one that attempts to plan and predict the
activities and resource (people) allocations in detail over a relatively
long time span, such as the majority of a project.

% Predictive processes usually have a “waterfall” or sequential
lifecycle—first, defining all the requirements; second, defining a
detailed design; and third, implementing.

% In contrast, an adaptive process is one that accepts change as an
inevitable driver and encourages flexible adaptation; they usually
have an iterative lifecycle.

* An agile process implies a light and adaptive process, nimble in
response to changing needs.

% The UP was not meant by its authors to be either heavy or
predictive, although its large optional set of activities and artifacts
has understandably led to that impression in some.

* Rather, it was meant to be adopted and applied in the spirit of an
agile process—agile UP. Some examples of how this applies:

% Prefer a small set of UP activities and artifacts. Some projects will
benefit from more than others benefit, but, in general, keep it simple.

#* Since the UP s iterative, requirements and designs are not completed
before implementation. They adaptively emerge through a series of
iterations, based on feedback.

¥ There is not a detailed plan for the entire project.

#* There is a high-level plan (called the Phase Plan) that estimates the
project end date and other major milestones, but it does not detail
the fine-grained steps to those milestones.

% A detailed plan (called the Iteration Plan) only plans with detail
one iteration in advance. Detailed planning is done adaptively from
iteration to iteration.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

2. Explain about Use case modeling (NOV/DEC 2015).
Hotel Information System
O - O
‘ > X \: Make Booking ‘é——
('\ Customer Booking Process Clerk
-
\:{:Cancel Booking}t)—Q
Tour Group -
Customer B - ()
\/Check—in a Roorrrt)

N\
JK Reception Staff
- 1 Check-outa Roomﬁ)*Q
Individual - -
Customer

Figure 1.6: Hotel Information System
#* Writing use cases—stories of using a system—is an excellent
technique to understand and describe requirements

% The UP defines the Use-Case Model within the Requirements
discipline.

* Essentially, this is the set of all use cases; it is a model of the
system’s functionality and environment.

Goals and Stories

Customers and end users have goals (also known as needs in the UP) and
want computer systems to help meet them, ranging from recording sales to
estimating the flow of oil from future wells.

There are several ways to capture these goals and system requirements; the
better ones are simple and familiar because this makes it easier—especially
for customers and end users—to contribute to their definition or evaluation.

That lowers the risk of missing the mark.

Use cases are a mechanism to help keep it simple and understandable for
all stakeholders.

Informally, they are stories of using a system to meet goals. Here is an
example brief format use case:

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 19

Process Sale:

»*

»*
*
*

* W

»*

A customer arrives at a checkout with items to purchase.
The cashier uses the POS system to record each purchased item.
The system presents a running total and line-item details.

The customer enters payment information, which the system
validates and records.

The system updates inventory.

The customer receives a receipt from the system and then leaves
with the items.

Use cases often need to be more elaborate than this, but the essence
is discovering and recording functional requirements by writing
stories of using a system to help fulfill various stakeholder goals;
that is, cases of use.

It isn’t supposed to be a difficult idea, although it may indeed be
difficult to discover or decide what is needed, and write it coherently
at a useful level of detail.

Much has been written about use cases, and while worthwhile,

Use Cases and Adding Value

>

First, some informal definitions: an actor is something with
behavior, such as a person (identified by role), computer system,
or organization; for example, a cashier.

A scenario is a specific sequence of actions and interactions
between actors and the system under discussion; it is also called a
use case instance.

It is one particular story of using a system, or one path through
the use case; for example, the scenario of successfully purchasing
items with cash, or the scenario of failing to purchase items
because of a credit card transaction denial.

Informally then, a use case is a collection of related success and
failure scenarios that describe actors using a system to support a
goal.

For example, here is a casual format use case that includes some
alternate scenarios:

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Handle Returns
#¥* Main Success Scenario: A customer arrives at a checkout with items

to return. The cashier uses the POS system to record each returned
item ...

Alternate Scenarios:

If the credit authorization is reject, inform the customer and ask for
an alternate payment method.

If the item identifier is not found in the system, notify the Cashier
and suggest manual entry of the identifier code (perhaps it is
corrupted).

If the system detects failure to communicate with the external tax
calculator system, ...

An alternate, but similar definition of a use case is provided by the
RUP:

A set of use-case instances, where each instance is a sequence of
actions a system performs that yields an observable result of value
to a particular actor

Use Cases and Functional Requirements

>

>

Use cases are requirements; primarily they are functional
requirements that indicate what the system will do.

In terms of the FURPS+ requirements types, they emphasize

the “F” (functional or behavioral), but can also be used for other
types, especially when those other types strongly relate to a use
case.

In the UP—and most modern methods—use cases are the central
mechanism that is recommended for their discovery and definition.
Use cases define a promise or contract of how a system will
behave.

To be clear: Use cases are requirements (although not all
requirements).

Some think of requirements only as “the system shall do...”
function or feature lists.
Not so, and a key idea of use cases is to (usually) reduce the
importance or use of detailed older-style feature lists and rather,

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 21

write use cases for the functional requirements. More on this point
in a later section.

» Use cases are text documents, not diagrams, and use-case modeling
is primarily an act of writing text, not drawing

» However, the UML defines a use case diagram to illustrate the
names of use cases and actors, and their relationships.

Use Case Types and Formats

Black-Box Use Cases and System Responsibilities
#* Black-box use cases are the most common and recommended
kind; they do not describe the internal workings of the system, its
components, or design. Rather, the system is described as having
responsibilities, which is a common unifying metaphorical theme in
object-oriented thinking—software elements have responsibilities
and collaborate with other elements that have responsibilities.

% By defining system responsibilities with black-box use cases,
it is possible to specify what the system must do (the functional
requirements) without deciding Asow it will do it (the design).
Indeed, the definition of “analysis” versus “design” is sometimes
summarized as “what” versus “how.”

#* This is an important theme in good software development: During
requirements analysis avoid making “how” decisions, and specify
the external behavior for the system, as a black box. Later, during
design, create a solution that meets the specification.

% Black —Box Style: The System Record the sale

% Not : The system writes the sale to a database..or(even worse):the
system generates a SQL INSERT statement for the sale.

Formality Types

Use cases are written in different formats, depending on need. In addition
to the black-box versus white-box visibility type, use cases are written in
varying degrees of formality:

brief—terse one-paragraph summary, usually of the main success scenario.
The prior Process Sale example was brief.

casual—informal paragraph format. Multiple paragraphs that cover
various scenarios. The prior Handle Returns example was casual.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

fully dressed—the most elaborate. All steps and variations are written in
detail, and there are supporting sections, such as preconditions and success
guarantees.

Fully Dressed Example: Process Sale

Fully dressed use cases show more detail and are structured; they are useful
in order to obtain a deep understanding of the goals, tasks, and requirements.
In the NextGen POS case study, they would be created during one of the
early requirements workshops in a collaboration of the system analyst,
subject matter experts, and developers.

Use Case UC1: Process Sale
Primary Actor: Cashier

Stakeholders and Interests:

Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer
short ages are deducted from his/her salary.

Salesperson: Wants sales commissions updated.

Customer: Wants purchase and fast service with minimal effort. Wants
proof of purchase to support returns.

Company: Wants to accurately record transactions and satisfy customer
interests.

Wants to ensure that Payment Authorization Service payment receivables
are recorded. Wants some fault tolerance to allow sales capture even if
server components (e.g., remote credit validation) are unavailable. Wants
automatic and fast update of accounting and inventory.

Government Tax Agencies: Want to collect tax from every sale. May be
multiple agencies, such as national, state, and county.

Payment Authorization Service: Wants to receive digital authorization
requests in the correct format and protocol. Wants to accurately account
for their payables to the store.

Preconditions: Cashier is identified and authenticated.

Success Guarantee (Postconditions): Sale is saved. Tax is correctly
calculated.

Accounting and Inventory are updated. Commissions recorded. Receipt is
generated. Payment authorization approvals are recorded.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 23

Main Success Scenario (or Basic Flow):

1.Customer arrives at POS checkout with goods and/or services to purchase.
2.Cashier starts a new sale.
3.Cashier enters item identifier.

4.System records sale line item and presents item description, price, and
running total.

5.Price calculated from a set of price rules.

Cashier repeats steps 3-4 until indicates done.

6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.

8. System logs completed sale and sends sale and payment information
to the external Accounting system (for accounting and commissions) and
Inventory system (to update inventory).

9. System presents receipt.

10.Customer leaves with receipt and goods (if any).
Extensions (or Alternative Flows):

*a. At any time, System fails:

To support recovery and correct accounting, ensure all transaction sensitive
state and events can be recovered from any step of the scenario.

1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.
2a. System detects anomalies preventing recovery:

1. System signals error to the Cashier, records the error,
and enters a clean state.

2. Cashier starts a new sale.
3a. Invalid identifier:
System signals error and rejects entry.

3b. There are multiple of same item category and tracking unique item
identity not important (e.g., 5 packages of veggie-burgers):

1. Cashier can enter item category identifier and the quantity.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

3-6a: Customer asks Cashier to remove an item from the purchase:
1. Cashier enters item identifier for removal from sale.
2. System displays updated running total.

3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.

3-6¢. Cashier suspends the sale:

1. System records sale so that it is available for retrieval
on any POS terminal.

4a.The system generated item price is not wanted (e.g., Customer
complained about something and is offered a lower price):

Cashier enters override price.
2. System presents new price.

Sa. System detects failure to communicate with external tax calculation
system service:

1. System restarts the service on the POS node, and continues.
la. System detects that the service does not restart.
1. System signals error.

2. Cashier may manually calculate and enter the tax, or
cancel the sale.

5b. Customer says they are eligible for a discount (e.g., employee, preferred
customer):

1. Cashier signals discount request.

2. Cashier enters Customer identification.

3. System presents discount total, based on discount rules.
Sc. Customer says they have credit in their account, to apply to the sale:

1. Cashier signals credit request.

2. Cashier enters Customer identification.

3. Systems apply credit up to price=zero, and reduces
remaining credit.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 25

6a. Customer says they intended to pay by cash but do not have enough
cash:

la. Customer uses an alternate payment method.

1b. Customer tells Cashier to cancel sale. Cashier cancels sale on
System.

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.

3. Cashier deposits cash tendered and returns balance in cash to
Customer.

4. System records the cash payment.
7b. Paying by credit:
1. Customer enters their credit account information.

2. System sends payment authorization request to an external
Payment Authorization Service System, and requests payment
approval.

2a. System detects failure to collaborate with external
system:

1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

3. System receives payment approval and signals approval to
Cashier.

3a. System receives payment denial:
1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.

4. System records the credit payment, which includes the payment
approval.

5. System presents credit payment signature input mechanism.

6. Cashier asks Customer for a credit payment signature. Customer
enters signature.

7c. Paying by check...

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

7d. Paying by debit...
7e. Customer presents coupons:

1. Before handling payment, Cashier records each coupon
and System reduces price as appropriate. System records the used coupons
for accounting reasons.

la. Coupon entered is not for any purchased item:
System signals error to Cashier.
9a.There are product rebates:

1. System presents the rebate forms and rebate receipts
for each item with a rebate.

9b. Customer requests gift receipt (no prices visible):
1.Cashier requests gift receipt and System presents it.
Special Requirements:

Touch screen Ul on a large flat panel monitor. Text must be visible from 1
meter.

Credit authorization response within 30 seconds 90% of the time.

Somehow, we want robust recovery when access to remote services such
the inventory system is failing.

Language internationalization on the text displayed.
Pluggable business rules to be insertable at steps 3 and 7.

Technology and Data Variations List:

3a. Item identifier entered by bar code laser scanner (if bar code is present)
or keyboard.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.
7a. Credit account information entered by card reader or keyboard.

7b. Credit payment signature captured on paper receipt

Frequency of Occurrence: Could be nearly continuous.

Open Issues:
- What are the tax law variations?

- Explore the remote service recovery issue.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 27

- What customization is needed for different businesses?
- Must a cashier take their cash drawer when they log out?

- Can the customer directly use the card reader, or does the cashier
have to do it?

The Two-Column Variation

Some prefer the two-column or conversational format, which emphasizes
the fact that there is an interaction going on between the actors and the
system.

Primary Actor: ...
-.. as before ...

Main Success Scenario:
Actor Action (or Intention) System Responsibility
1. Customer arrives at a POS checkout

with goods and/or services to

purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier. 4. Records each sale line item and pre
sents item description and running
total

Cashier repeats steps 3-4 until indi- 5. System presents total with taxes

cates done. calculated.

6. Cashier tells Customer the total, and

asks for payment.
7. Customer pays. 8. Handles payment.

Figure 1.7: Use Case UC1: Process Sale
The [system] operates a contract between stakeholders, with the use cases
detailing the behavioral parts of that contract...The use case, as the contract
for behavior, captures all and only the behaviors related to satisfying the
stakeholders’ interests

Preconditions and Success Guarantees (Postconditions)
% Preconditions state what must always be true before beginning a
scenario in the use case.

% Preconditions are not tested within the use case; rather, they are
conditions that are assumed to be true.

* Typically, a precondition implies a scenario of another use case that
has successfully completed, such as logging in, or the more general
“cashier is identified and authenticated.

¥ “ Note that there are conditions that must be true, but are not of
practical value to write, such as “the system has power.”

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

¥ Preconditions communicate noteworthy assumptions that the use
case writer thinks readers should be alerted to.

#* Success guarantees (or postconditions) state what must be true
on successful completion of the use case.either the main success
scenario or some alternate path.

#* The guarantee should meet the needs of all stakeholders.

Main Success Scenario and Steps (or Basic Flow)
* This has also been called the “happy path” scenario, or the more
prosaic “Basic Flow.”

#* [t describes the typical success path that satisfies the interests of the
stakeholders.

* Note that it often does not include any conditions or branching.

The scenario records the steps, of which there are three kinds:
1. An interaction between actors.3
2. A validation (usually by the system).
3. A state change by the system

(for example, recording or modifying something).

Extensions (or Alternate Flows)
% Extensions are very important. They indicate all the other scenarios
or branches, both success and failure.

#* Observe in the fully dressed example that the Extensions section
was considerably longer and more complex than the Main Success
Scenario section; this is common and to be expected.

* They are also known as “Alternative Flows.”

» In thorough use case writing, the combination of the happy path
and extension scenarios should satisfy nearly” all the interests of
the stakeholders.

» This point is qualified, because some interests may best be
captured as non-functional requirements expressed in the
Supplementary Specification rather than the use cases.

Guideline: Write the condition as something that can be defected by the
system or an actor. To contrast:

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 29

Sa. System detects failure to communicate with external tax calculation
system service:

Sa. External tax calculation system not working:

The former style is preferred because this is something the system can
detect; the latter is an inference.

Extension handling can be summarized in one step, or include a sequence,
as in this example, which also illustrates notation to indicate that a condition
can arise within a range of steps:

3-6a: Customer asks Cashier to remove an item from the purchase:
1. Cashier enters the item identifier for removal from the sale.

2. System displays updated running total.

Goals and Scope of a Use Case

How should use cases be discovered? It is common to be unsure if
something is a valid (or more practically, a useful) use case. Tasks can be
grouped at many levels of granularity, from one or a few small steps, up
to enterprise-level activities. At what level and scope should use cases be
expressed.

Use Cases for Elementary Business Processes

Which of these is a valid use case?
. Negotiate a Supplier Contract
. Handle Returns

.LogIn

Use Cases and Goals

» Actors have goals (or needs) and use applications to help satisfy
them.

» Consequently, an EBP-level use case is called a user goal-level
user case, to emphasize that it serves (or should serve) to fulfill a
goal of a user of the system, or the primary actor.

And it leads to a recommended procedure:
1. Find the user goals.

2. Define a use case for each.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Subfunction Goals and Use Cases
* Although “identify myself and be validated” (or “log in”’) has been
eliminated as a user goal, it is a goal at a lower level, called a sub
function goal.subgoals that support a user goal.

#* Use cases should only occasionally be written for these sub function
goals, although it is a common problem that use case experts
observe when asked to evaluate and improve (usually simplify) a
set of use cases.

Goals and Use Cases Can Be Composite

+¢* Goals are usually composite, from the level of an enterprise (‘“be
profitable”), to many supporting intermediate goals while using
applications (“sales are captured”), to supporting sub function
goals within applications (“input is valid”).

+¢+ Similarly, use cases can be written at different levels to satisfy
these goals, and can be composed of lower level use cases.

Finding Primary Actors, Goals, and Use Cases

Use cases are defined to satisfy the user goals of the primary actors. Hence,
the basic procedure is:

1. Choose the system boundary. Is it just a software application, the
hardware and application as a unit, that plus a person using it, or an entire
organization?

2. Identify the primary actors.those that have user goals fulfilled through
using services of the system.

3. For each, identify their user goals. Raise them to the highest user goal
level that satisfies the EBP guideline.

4. Define use cases that satisfy user goals; name them according to their
goal. Usually, user goal-level use cases will be one-to-one with user goals,
but there is at least one exception, as will be examined.

Step 1: Choosing the System Boundary
#* For this case study, the POS system itself is the system under design;
everything outside of it is outside the system boundary, including
the cashier, payment authorization service, and so on.

¥* If it is not clear, defining the boundary of the system under design
can be clarified by defining what is outside.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 31

% The external primary and supporting actors.

#* Once the external actors are identified, the boundary becomes
clearer.

% For example, is the complete responsibility for payment
authorization within the system boundary? No, there is an external
payment authorization service actor.

Steps 2 and 3: Finding Primary Actors and Goals
* It is artificial to strictly linearize the identification of primary actors
before user goals; in a requirements workshop, people brainstorm
and generate a mixture of both. Sometimes, goals reveal the actors,
or vice versa.

% Guideline: Emphasize brainstorming the primary actors first, as this

sets up the framework for further investigation.

Primary and Supporting Actors
#* Recall that primary actors have user goals fulfilled through using
services of the system.

% They call upon the system to help them.

% This is in contrast to supporting actors, which provide services to
the system under design.

% For now, the focus is on finding the primary actors, not the

supporting ones.

The Actor-Goal List

Record the primary actors and their user goals in an actor-goal list

Actor Goal Actor Goal

Cashier process sales System add users
process rentals Adminisers- | modify users
handle remurms tor delete wrers
cashm manage secuzity
each out manage system tables

Mansger start up Saler Actv- |amalyze sales and per-
shut dowm. ity System |formance data

Figure 1.8: Actor-Goal List

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Primary Actor and User Goals Depend on System Boundary

Why is the cashier, and not the customer, the primary actor in the use case
Process Sale? Why doesn’t the customer appear in the actor-goal list? If
viewing the enterprise or checkout service as an aggregate system, the
customer is a primary actor, with the goal of getting goods or services and
leaving. However, from the viewpoint of just the POS system (which is the
choice of system boundary for this case study), it services the goal of the
cashier (and the store) to process the customer’s sale.

‘ Enterprise Seling Things
Chechout Senvice
-
;o heeey ﬁ 5 POS System
Goal: Collect
faxes on sales Sales Actvity
o System Eashrer

Goal: Buy tems Goal: Anahme sales Goal Process sales
and performance data

Figure 1.9: Primary actor and Goal at different system boundaries

Actors and Goals via Event Analysis

Another approach to aid in finding actors, goals, and use cases is to identify
external events. What are they, where from, and why? Often, a group of
events belongs to the same EBP-level goal or use case. For example:

External Event From Actor Goal

eater sale e tem | Cashier process a sale
enler payment Cachuer or Customer | process a sale

Figure 1.10: Actors and Goals via Event Analysis

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 33

Step 4: Define Use Cases
In general, define one EBP-level use case for each user goal. Name the use

case similar to the user goal. For example, Goal: process a sale; Use Case:
Process Sale.

Also, name use cases starting with a verb. A common exception to one
use case per goal is to collapse CRUD (create, retrieve, update, delete)
separate goals into one CRUD use case, idiomatically called Manage <X>.
For example, the goals “edit user,” “delete user,” and so forth are all satisfy
ed by the Manage Users use case.

USE-CASE MODEL: WRITING REQUIREMENTS IN CONTEXT

1. Administrator enters ID and password in dialog box (see Picture 3).
2. System authenticates Administrator.

3. System displays the “edit users” window (see Picture 4).

4....

% These concrete use cases may be useful as an aid to concrete or
detailed GUI design work during a later step, but they are not
suitable during the early requirements analysis work.

% During early requirements work, “keep the user interface out.focus
on intent.” An actor is anything with behavior, including the system
under discussion (SuD) itself when it calls upon the services of
other systems.

% Primary and supporting actors will appear in the action steps of
the use case text. Actors are not only roles played by people, but
organizations, software, and machines. There are three kinds of
external actors in relation to the SuD:

Primary actor.has user goals fulfilled through using services of the SuD.

For example, the cashier. Why identify? To find user goals, which drive
the use cases?

Supporting actor.provides a service (for example, information) to the
SuD. The automated payment authorization service is an example. Often a
computer system, but could be an organization or person.

Why identify? To clarify external interfaces and protocols.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Offstage actor.has an interest in the behavior of the use case, but is not
primary or supporting; for example, a government tax agency.

Why identify? To ensure that all necessary interests are identified and
satisfied. Offstage actor interests are sometimes subtle or easy to miss
unless these actors are explicitly named.

Use Case Diagrams

The UML provides use case diagram notation to illustrate the names of use
cases can actors, and the relationships between them

system boundary NextGen _ -~ communication
-~ d--
R -
Q (Pmma Sale S Q alter ate
AN e — / /\ notation for

Cashier \‘\/Hamlo R«umD
7 S

. S .
, /
- e E
actor «actors of
F*m*"“‘/x_
T re

Figure 1.11: Partial use case Context Diagram

Use Cases Are Not Object-Oriented
% There is nothing object-oriented about use cases; one is not doing
object-oriented analysis if writing use cases.

¥ This is not a defect, but a point of clarification. Indeed, use cases are
a broadly applicable requirements analysis tool that can be applied
to non-object-oriented projects, which increases their usefulness as
a requirements method. However, as will be explored, use cases are
a pivotal input into classic OOA/D activities.

Use Cases within the UP
Use cases are vital and central to the UP, which encourages use-case
driven development. This implies:

#* Requirements are primarily recorded in use cases (the Use-Case

Model); other requirements techniques (such as functions lists) are
secondary, if used at all.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 35

*
*

Use cases are an important part of iterative planning.
The work of iteration is in part.

Defined by choosing some use case scenarios, or entire use cases.
And use cases are a key input to estimation.

Use-case realizations drive the design. That is, the team designs
collaborating objects and subsystems in order to perform or realize
the use cases. . Use cases often influence the organization of user
manuals.

The UP distinguishes between system and business use cases.
System use cases are what have been examined in this chapter, such
as Process Sale. They are created in the Requirements discipline,
and are part of the Use-Case Model.

Structuring Use-cases with Relationships

*

»*

In the process of developing a use case model, we may discover that
some use cases share common behaviors

There are also situations where some use cases are very similar but
they have some additional behaviors

For example, Withdraw Money and Deposit Money both require
the user to log-on to an ATM system

In the process of developing a use case model, we may discover that
some use cases share common behaviors

There are also situations where some use cases are very similar but
they have some additional behaviors

For example, Withdraw Money and Deposit Money both require
the user to log-on to an ATM system

The <<include>> Relationship

*

L 3

*

Include relationships are used when two or more use cases share
some common portion in a flow of events

This common portion is then grouped and extracted to form an
inclusion use case for sharing among two or more use cases

Most use cases in the ATM system example, such as Withdraw
Money, Deposit Money or Check Balance, share the inclusion use-
case Login Account

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

When to use include relationship:

¥ The behavior of the inclusion use case is common to two or more
use cases

% The result of the behavior that the inclusion use case specifies, not
the behavior itself, is important to the base use case

zincludes

Inclusion use case B aze use caze

Figure 1.12: The <<include>> Relationship for use case

. <<include>>
Withdraw money) - - - - -----------~- Bl
1
Deposit moeny
<<include>>

Figure 1.13: The <<include>> Relationship for Bank

The <<extend>> Relationship
% In UML modeling, you can use an extend relationship to specify
that one use case (extension) extends the behavior of another use
case (base)

% This type of relationship reveals details about a system or application
that are typically hidden in a use case

#* The extend relationship specifies that the incorporation of the
extension use case is dependent on what happens when the base use
case executes

% The extension use case owns the extend relationship. You can
specify several extend relationships for a single base use case

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 37

»*

*

»*

While the base use case is defined independently and is meaningful
by itself, the extension use case is not meaningful on its own

The extension use case consists of one or several behavior sequences
(segments) that describe additional behavior that can incrementally
augment the behavior of the base use-case

Each segment can be inserted into the base use case at a different
point, called an extension point

The extension use case can access and modify the attributes of
the base use case; however, the base use case is not aware of the
extension use case and, therefore, cannot access or modify the
attributes and operations of the extension use case

You can add extend relationships to a model to show the following
situations:

A part of a use case that is optional system behavior
A sub flow is executed only under certain conditions

A set of behavior segments that may be inserted in a base use case

gextends

Base use case Extension use case

Figure 1.14: Use Case diagram for Base and Extension

i Withdraw money

User

@

| =<extend=>=>

'
Process
excess amount

Figure 1.15 : Use Case Diagram for Bank with Extend Relationship

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

' ében Account - : Open Account

<<@xtension points>>
Add account user

[<<extension points>>
‘. Add account user

Figure 1.16 Use Case Diagram for Bank with Extend point

The Generalization Relationship
% A child use-case can inherit the behaviors, relationships and
communication links of a parent use-case (like Actor generalization)

% In other words, it is valid to put the child use-case at a place
wherever a parent use-case appears

#* The relationship between the child use-case and the parent use-case
is the generalization relationship

¥* For example: suppose the ATM system can be used to pay bills. Pay
Bill has two child use cases: Pay Credit Card Bill and Pay Utility

Bill
Pay Credit Card Bill
£
Pay Bill
o
Customer

Pay Litility Bill

Figure 1.17: Use Case Diagram For Bill Payment

3. By considering the Library Management system, perform the
Object Oriented System Development and give the use case
model (use include, extend and generalization). (8 mark)

Library Management System:

* Library management system is the new approach in the management
system which is able to transfer the facilities like login user, register
of new user, adding/removing of books in the library, searching,
issuing & returning of the books etc.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 39

% Management system also helps in promoting, improving and also
managing of the regular procedure and policy.

#* This system is especially designed for the students of the college/
university etc.

% In this library system there are certain rules & regulation for the
proper functioning i.e. new students can get library card directly,
due most be charged to those students for late submission of books
etc.

#* In this system, user or the students first request the book to the
librarian in the library then the librarian check the availability of
the books and ask for student’s library card. Initially s/he verifies or
validates the library card and again s/he records the date of issue &
dates the books to be return along with student’s details.

% Then the librarian issue the books to the students. For the case
of new students librarian register the students to the database and
provide library card to them. Likewise, penalty must charged for the
late submission of books if the deadline is already over.

Object:
* In object oriented analysis design, objects are the entities through
which we perceive the world around us.

% We normally see our system as being composed of things, which
have recognizable identities & behaviour.

% Those entities are then represented as object in the program.

% They may represent a person, a place, a bank account, or any item
that the program must handle.

% For a simple examples, vehicles are objects as they have size,
weight, colour, etc as attributes and starting, pressing the brake,
turning the wheel, pressing the accelerator etc as the operation(that
is function).

Following are the most important class for the library management system:

% Library: It is the place where books, newspapers, magazine etc
are placed for users. It provides the card to its regular user with or
without cost.

110140AMSCE - DEPARTMENTUOF IT

NIT WISE SOLVED QUESTION PAPERS

* Library Card: It is a normal identity card containing the basic
information of the user.

#* Books: The library most contains books or it is the main resources
of the library.

#* Students: They are the primary user of the library

#¥* Bar code reader: It is an electronic device which is used to read the
coded information for the validation.

% Librarian: The persons who handle the overall operation of the
library.

Library System

Ragquest for beok

Ak for librasy card

Show kisher library card

Ask for membership

Provide memberihip .

Check for previous withdraw

£

Beok ramaew Librurian

Records card mo & return date

Sridenn
1] Ask library card bask

Figure 1.18 : Use Case Diagram For Library System

4. Explain about interaction diagrams with example.
(MAY/JUNE 2011, 2015)(NOV/DEC 2012)

Interaction Diagram
% From the name Interaction it is clear that the diagram is used to
describe some type of interactions among the different elements in
the model.

* Interaction diagrams are models that describe how a group of
objects interact / collaborate in some behavior - typically a single
use-case.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 41

Purpose
% To capture dynamic behavior of a system.

#* To describe the message flow in the system.
% To describe structural organization of the objects.

% To describe interaction among objects.

Forms of Interaction Diagram

This interactive behaviour is represented in UML by two diagrams known
as

#* Sequence diagram and

% Collaboration diagram

Drawing the interaction diagram
% The purpose of interaction diagrams are to capture the dynamic
aspect of a system.

% Dynamic aspect can be defined as the snap shot of the running
system at a particular moment.

#* So the following things are to identified clearly before drawing the
interaction diagram:

Objects taking part in the interaction.

Message flows among the objects.

The sequence in which the messages are flowing.

Object organization.
Sequence Diagram
#* Describe the flow of messages, events, actions between objects .

% An important characteristic of a sequence diagram is that time
passes from top to bottom and model important runtime interactions
between the parts that make up the system.

#* Typically used to document and understand the logical flow of the
system .

* A Sequence diagram is an interaction diagram that shows

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

-- how the objects and classes involved in the scenario operate

with one another.

-- the sequence of messages exchanged .

Its Significance

»*

»*

An organization’s technical staff can find sequence diagrams useful
in documenting how a future system should behave.

During the design phase, architects and developers can use the
diagram to force out the system’s object interactions, thus fleshing
out overall system design.

Its Use

»*

»*
»*

»*

One of the primary uses of sequence diagrams is in the transition
from requirements expressed as use cases to the next level of
refinement.

Use cases are often refined into one or more sequence diagrams.

In addition to their use in designing new systems, sequence diagrams
can be used to document how objects in an existing system currently
interact.

This documentation is very useful when transitioning a system to
another person or organization.

Sequence Diagram Key Parts

L 3

* W M kW

participant: object or entity that acts in the diagram
message: communication between participant objects
the axes in a sequence diagram:

—horizontal: which object/participant is acting
—vertical: time (down -> forward in time)

Time. The vertical axis represents time proceedings (or progressing)
down the page. Note that Time in a sequence diagram is all a about
ordering, not duration. The vertical space in an interaction diagram
is not relevant for the duration of the interaction.

Objects. The horizontal axis shows the elements that are involved in
the interaction. Conventionally, the objects involved in the operation
are listed from left to right according to when they take part in the

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 43

message sequence. However, the elements on the horizontal axis
may appear in any order.

ES

Picks up

Dial tone

Figure 1.19: Sequence Diagram for Phone

Object
#* Objects as well as classes can be targets on a sequence diagram,
which means that messages can be sent to them.

* A target is displayed as a rectangle with some text in it. Below the
target, its lifeline extends for as long as the target exists. The lifeline
is displayed as a vertical dashed line.

»*

The basic notation for an object is where ‘name’ is the name of the
object in the context of the diagram and ‘Type’ indicates the type of
which the object is an instance.

»*

Both name and type are optional, but at least one of them should be
present.

Object : Class «{- Target

Lifeline

Figure 1.20: Target and Lifeline

1101 AMSCE DEPARTMENT OF IT

UNiT WISE SOLVED QUESTION PAPERS

Anohject named 'student’, | | An ananymous instance Aninstance of type
ts type is not specified of type Student Studlert, named 's'

studert Stulent guotudert

Figure 1.21: Object

Object (Examples):
¥ As with any UML-element, we can add a stereotype to a target.
Some often used stereotypes for objects are «actor», «boundary»,
«controly, «entity» and «databasey.

«ador»j «baundaw»j «comml»j «ent'rty»j atlatabases

Figure 1.22: Objects

MultiObject:
#¥* When we want to show how a client interacts with the elements of a
collection, we can use a multiobject. Its basic notation is:

| . .
. A collection of Student instances,
studerts Student J the collection is named 'stucents'

Figure 1.23: Multi Objects

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 45

Lifelines in UML diagrams
% In UML diagrams, such as sequence or communication diagrams,
lifelines represent the objects that participate in an interaction.

* Lifeline is a named element which represents an individual
participant in the interaction.

% For example, in a banking scenario, lifelines can represent objects
such as a bank system or customer.

% FEach instance in an interaction is represented by a lifeline.

* Lifeline in a sequence diagram is displayed with its name and type
in arectangle, which is called the head. The head is located on top of
a vertical dashed line, called the stem, which represents the timeline
for the instance of the object.

Head af liteline

/"

/}{:CIESSZL\
Marme of Type of

instance instance

Sterm of
Liteline

Figure 1.24: Lifelines in UML diagrams

Messages
* Messages (or signals) on a sequence diagram are specified using an
arrow from the participant (message caller) that wants to pass the
message to the participant (message receiver) that is to receive the
message.

* A Message (or stimulus) is represented as an arrow going from the
sender to the top of the focus of control (i.e., execution occurrence)
of the message on the receiver’s lifeline.

% Near the arrow, the name and parameters of the message are shown.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Synchronous message
* A synchronous message is used when the sender waits until the
receiver has finished processing the message, only then does the

caller continue.

#* A closed and filled arrowhead signifies that the message is sent
synchronously.

synchronousiessagelactual parameters) .
F

e

Figure 1.25: Synchronous message with actual parameters
If you want to show that the receiver has finished processing the message
and returns control to the sender, draw a dashed arrow from receiver to
sender. Optionally, a value that the receiver returns to the sender can be
placed near the return arrow.

messadgel paramasterss >

e _ _ _ _ returnedvalue

Figure 1.26: Synchronous message with parameters

and return value

If you want your diagrams to be easy to read, only show the return arrow if
a value is returned. Otherwise, hide it.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 47
Web Interface Database Wrapper
Teacher f ;(
Login Teacher E ;
' : Validate User)
! oo 3
e S ‘

.
i
[successtul validation] ! i
i

Lookup Student Info '

Figure 1.27: Synchronous message for Teacher

Asynchronous messages
% With an asynchronous message, the sender does not wait for the
receiver to finish processing the message, it continues immediately.

#* Messages sent to a receiver in another process or calls that start a
new thread are examples of asynchronous messages.

* An open arrowhead is used to indicate that a message is sent
asynchronously.

i i

asynchronousMessagelactual parameters) :

Figure 1.28: Asynchronous message with actual parameters

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

% Waiter Chef

Custemer
I

Take Crder

I
1
1
S
AI.' Receive Kitchen Order —
I
I
I
I
I

Figure 1.29: Asynchronous message for Hotel Order

Instantaneous message
* Messages are often considered to be instantaneous, i.e. the time it
takes to arrive at the receiver is negligible.

% Such messages are drawn as a horizontal arrow.

Figure 1.30: Instantaneous message

Non-instantaneous message
* Sometimes the message takes a considerable amount of time to
reach the receiver.

% For example, a message across a network.
% Such a non-instantaneous message is drawn as a slanted arrow.

]
NnonlnstarmntansousMessagse() :

Figure 1.31: Instantaneous message

1101 AMSCE - DEPARTMENT OF IT 4

OBJECT ORIENTED ANALYSIS AND DESIGN

Found message
* A found message is a message of which the caller is not shown.

#* Depending on the context, this could mean that either the sender is
not known, or that it is not important who the sender was.

% The arrow of a found message originates from a filled circle.

foundiMessage(parameters) o |
L

"
-

The exact sender is not known
or not relevant to the interaction

Figure 1.32: Found message

tServer

DO puUter

.
checkEmail .

.
- .
sendUnsentEmail -
.
S

[newEmail] downloadEmail

deleteOIdEMmail

Figure 1.32.1: Found message for sending mail

Guards
#* A message can include a guard, which signifies that the message is

only sent if a certain condition is met.
% The guard is simply that condition between brackets.

% Guards are used throughout UML diagrams to control flow.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

[condition] message(parameters), : message is only Semj

. if condition is met
[
[
i

Figure 1.33 : Guard Message

register : RegisterOffice a ¢ AccountsReceivable drarma : Class

getPastDueBalance (studentld)

|

|

|

#U ‘

5 SOOI |
| |

|

Figure 1.34: Guard Message

Combined fragments (alternatives, options, and loops)
% If you want to show that several messages are conditionally
sent under the same guard, you’ll have to use an ‘opt’ combined
fragment.

% The combined fragment is shown as a large rectangle with an ‘opt’
operator plus a guard, and contains all the conditional messages
under that guard.

1101 AMSCE - DEPARTMENT OF IT

| [pastDueBalance = 0]
addStudent (studentld)

OBJECT ORIENTED ANALYSIS AND DESIGN 51
register : RegisterOffice ar : AccountsReceivable drama : Class
| | l
| | I
| l
| [
getPastDueBalance { shudentld) a | [
pastDueBalance u [
R A s [
opt J |
|
1

N
getCostOfClass () |

t -
classCost | J !
bbbty | ----------------------------

chargeForClass ()

h 4
T —

—]
Figure 1.35: Combined fragment Message

Alt
* If you want to show several alternative interactions, use an ‘alt’
combined fragment.

% The combined fragment contains an operand for each alternative.
Each alternative has a guard and contains the interaction that occurs
when the condition for that guard is met.

bank : Bank theCheck : Check account : CheckingAccount

1 |

getamount {3 " |

|

|

|

—u |

armount

L s A |
|

|

|

getBalance)|

balanc u
4 _______________________ P_ ______________________________

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

acoount ; Checkingaccount

acdDeb it Tr arsac check
Mumiber | & 3

e

storePhoOfched) (thechedk 3

[el=e]

mmnmﬁmﬂr:%:ae)

e

Y

noteRahemedTheck | heCheck)

rﬂ'redvc{ﬂ'z(r}a:t)

- -

I
LE I

o |

o S

Figure 1.36: Alt Message

Repeated interaction
#* When a message is prefixed with an asterisk (the ‘*’-symbol), it
means that the message is sent repeatedly.

% A guard indicates the condition that determines whether or not the

message should be sent (again). As long as the condition holds, the

message is repeated.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN

53

: Synthesizer

: Score

loop _,l

[hasMext]

1 : note := getiext()

H !3 : play{note)

Figure 1.37: Repeated Interaction Message

Create and Destroy message

% A create message represents the creation of an instance in an
interaction. The target lifeline begins at the point of the create

message.

* A destroy message represents the destruction of an instance in
an interaction. The target lifeline ends at the point of the destroy

message, and is denoted by an X.

a Handler

1

new a Cuary
Cormmand

v

e

- a Database

creation

Statement

executs |

=
deletion

from other
ablect

close

self-deletion

Figure 1.38: Create and Destroy Message

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Basic Collaboration Diagram Notation

Links

A link is a connection path between two objects; it indicates some form of
navigation and visibility between the objects is possible

I malefapmen{easTendred) =+
Lty =
Rt — &
b
Fgue 3Lk s il

Figure 1.39: Link, Lines

Messages

Each message between objects is represented with a message expression
and small arrow indicating the direction of the message.

megl l 1:msg2() .

Imgd) —

Imsp) —

Regstee Sae

= 31 msgh)
0

all messages fow on the same link \

Figure 1.40 : Message

Messages to “self” or “this”

A message can be sent from an object to itself

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 55

msgt() |

: Register

1: dean() r
Figure 1.41: Message to “this”

Creation of Instances

Any message can be used to create an instance, but there is a convention in
the UML to use a message named create for this purpose. If another (perhaps
less obvious) message name is used, the message may be annotated with a
special feature called a UML stereotype, like so: «createy.

ereate message, wih cpboral intalizng parameters, The wll ﬂ

normally be inlefpreted 26 2 consiructor cal
1]
1: createlcasher) —
Regehe e)
obrEXE
! malelcasher) :
Regetr 0 Sale frew)

1 an unobvious creabon mestage name fs used, the
messag nay e sechped b ity

Figure 1.42: Creation of Instances

Message Number Sequencing

The order of messages is illustrated with sequence numbers

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

msglf|=* Ol : megl|— (e
1}
— H 0'1_12"'&23”{

L S

Figure 1.43: Message Number Sequencing

Conditional Messages

A conditional message is shown by following a sequence number with a
conditional clause in square brackets, similar to an iteration clause. The
message is only sent if the clause evaluates to true.

condtonal message. with best ﬁ

r'mm::- |
¢ /.

1 [oohor =ned) caculats
oo | |

Figure 1.44: Conditional Message

Mutually Exclusive Conditional Paths
The example illustrates the sequence numbers with mutually exclusive
conditional paths.

m'dﬂ:w M
1a and 1b are mutually
exclusive conditonal paths

2 2 msglD

a
1a estl] : msg2{) ___
1 Cixasd] ClassB
mﬂ,-I:_l E

1b [not test1] - magh() | 1312 rrag3()

[] NS -

Figure 1.45: Mutually Exclusive Message

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 57

Iteration or Looping

If the details of the iteration clause are not important to the modeler, a
simple **’ can be used.

- —

Rmuion) g 1" [, mm = naind) B

b

msmmm'rﬁmmﬂﬂ
terabion claus folowing e sequnce number

Figure 1.46: Iteration or Looping

Iteration Over a Collection (Multiobject)

map), sending a message to each. Often, some kind of iterator object is
ultimately used, such as an implementation of java.util.Iterator or a C++
standard library iterator. In the UML, the term multiobject is used to
denote a set of instances.a collection.

t:’ﬁTﬂ E | "ﬂ'=m Salesl nekem
L]

0
0

0

double box indicates a mulbobyect (coliction)
these two symbols used i o
HMmes;mw i‘”‘“"ﬂmwmmnmmY
gefSublofal message bo each member SafesLinaltem objects

Figure 1.47: Iteration Over a Collection

The “*” multiplicity marker at the end of the link is used to indicate that the
message is being sent to each element of the collection.

Messages to a Class Object

Messages may be sent to a class itself, rather than an instance, to invoke
class or static methods. A message is shown to a class box whose name is
not underlined, indicating the message is being sent to a class rather than
an instance.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

message to class, or a ﬂ

static method call
meg1() L o
-
list ;= synchronizedList] alist)
~InstanceCffon java.utl. Collections
o
not underfined,
therefore a class

Figure 1.48: Messages to a Class Object

5. Explain Types of UML Diagrams with example.
(MAY/JUNE 2014, 2016) (APRIL/MAY-2017)

Types of UML Diagrams

Each UML diagram is designed to let developers and customers view a
software system from a different perspective and in varying degrees of
abstraction. UML diagrams commonly created in visual modeling tools
include:

Use Case Diagram displays the relationship among actors and use cases.

Class Diagram models class structure and contents using design elements
such as classes, packages and objects. It also displays relationships such as
containment, inheritance, associations and others.

Interaction Diagrams is an important sequence of interactions between
objects.

% Sequence Diagram displays the time sequence of the objects
participating in the interaction.

% This consists of the vertical dimension (time) and horizontal
dimension (different objects).

% Collaboration Diagram displays an interaction organized around
the objects and their links to one another. Numbers are used to
show the sequence of messages.

#* State Diagram displays the sequences of states that an object of
an interaction goes through during its life in response to received
stimuli, together with its responses and actions.

* Activity Diagram displays a special state diagram where most of
the states are action states most of the transitions are triggered by

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 59

completion of the actions in the source states. This diagram focuses
on flows driven by internal processing.

Physical Diagrams
¥ Component Diagram displays the high level packaged structure of
the code itself.

#* Dependencies among components are shown, including source code
components, binary code components, and executable components.
Some components exist at compile time, at link time,at run times
well as at more than one time.

% Deployment Diagram displays the configuration of run-time
processing elements and the software components, processes, and
objects that live on them. Software component instances represent
run-time manifestations of code units. Use Case Diagrams

* Ause case is a set of scenarios that describing an interaction between
a user and a system. A use case diagram displays the relationship
among actors and use cases. The two main components of a use
case diagram are use cases and actors.

b e
=5

-'___'_'_,_:—"" _'—\-_|_‘_-_‘—_ - — L —

g Teer Lise —asSe

Figure 1.49: Use Case Diagrams

An actor is represents a user or another system that will interact with the
system you are modeling. A use case is an external view of the system that
represents some action the user might perform in order to complete a task.

When to Use: Use Cases Diagrams
#* Use cases are used in almost every project.

#* They are helpful in exposing requirements and planning the project.

% During the initial stage of a project most use cases should be defined,
but as the project continues more might become visible.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

How to Draw: Use Cases Diagrams

Use cases are a relatively easy UML diagram to draw, but this is a very
simplified

example.

#* This example is only meant as an introduction to the UML and use
cases.

#* If you would like to learn more see the Resources page for more
detailed resources on UML.

Start by listing a sequence of steps a user might take in order to complete
an action. For

Example, a user placing an order with a sales company might follow these
steps.

1. Browse catalog and select items.

2. Call sales representative.

3. Supply shipping information.

4. Supply payment information.

5. Receive conformation number from salesperson.

These steps would generate this simple use case diagram:

N,

ﬂ
L

CUSIOMEr ™, L s }

T Eve Shipping Info
~— B -
(™)
N -
. Give Payment Info

Y

et Confirmation #

Figure 1.50: UML Diagram

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 61

Class Diagrams

Class diagrams are widely used to describe the types of objects in a system
and their relationships. Class diagrams model class structure and contents
using design elements such as classes, packages and objects. Class diagrams
describe three different perspectives when designing a system, conceptual,
specification, and implementation. These perspectives become evident as
the diagram is created and help solidify the design. This example is only
meant as an introduction to the UML and class diagrams. If you would like
to learn more see the Resources page for more detailed resources on UML.
Classes are composed of three things: a name, attributes, and operations.

Class Mame —————e Customer
@s-name - String

1 —
Attributes ®eaddress . String

Oparallons ——— | *creditRating)

Class diagrams also display relationships such as containment, inheritance, associ

others.” Below is an example of an associative relationship:

SOrder Association
& dateRecived - Date Customer
@sisPrepald - Boolean @ namo : Swing
gl::gghe;‘n;ﬂ“'fng _— — - = @p-address | String
N 1 :]
A B radilR ating O
Tclosed
AT City
rary-walued Mandatory

Figure 1.51: Class Diagrams

The association relationship is the most common relationship in a class
diagram. The association shows the relationship between instances of
classes. For example, the class Order is associated with the class Customer.
The multiplicity of the association denotes the number of objects that
can participate in then relationship. For example, an Order object can be
associated to only one customer, but a customer can be associated to many
orders. Another common relationship in class diagrams is a generalization.
A generalization is used when two classes are similar, but have some
differences.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

narme @ Sinng
B address - Stning

Customer

TcreditRating()

A ————————— e TETSNZATON

I

|

Corpratse Cuslormer
o comtactMarme @ String
ﬁnrﬁdnﬁnnng String
@ecreditlimit | Double

Parsonal Customsr
ﬂpcrodnﬂ' mrdd® - Long Integoer

Bepprrvi e
T LillF arblanth(

Figure 1.52: Class Diagrams for generalization

When to Use: Class Diagrams

Class diagrams are used in nearly all Object Oriented software designs.
Use them to describe the Classes of the system and their relationships to

each other.

How to Draw: Class Diagrams

Class diagrams are some of the most difficult UML diagrams to draw. To
draw detailed and useful diagrams a person would have to study UML and
Object Oriented principles for a long time. Therefore, this page will give a
very high level overview of the process.

Crder
By dateRacred ; Date
By isPiepasd | Boalean
rrbar © Strng

Bpprice Maney "-

s pateh(
el

Customer

arme . Sinng
Saddress - Stnng

WrrpddFatingl)

T

Corprate Cusiomarn Parsonal Customer

Bpcresalira | Double

@ -cortactName : String BpcroditCard® . Long Integes
BpcredaFating - String

Trarnand()
il crbdonthil)

Figure 1.53: Class Diagrams for bank

Interaction Diagrams

Interaction diagrams model the behavior of use cases by describing the way
groups of objects interact to complete the task. The two kinds of interaction

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 63

diagrams are sequence and collaboration diagrams. This example is only
meant as an introduction to the UML and interaction diagrams. If you
would like to learn more see the Resources page for a list of more detailed
resources on UML.

When to Use: Interaction Diagrams

Interaction diagrams are used when you want to model the behavior of
several objects in a use case. They demonstrate how the objects collaborate
for the behavior.

Interaction diagrams do not give a in depth representation of the behavior.
If you want to see what a specific object is doing for several use cases use a
state diagram. To see a particular behavior over many use cases or threads
use an activity diagrams.

How to Draw: Interaction Diagrams

Sequence diagrams, collaboration diagrams, or both diagrams can be used
to demonstrate the interaction of objects in a use case. Sequence diagrams
generally show the sequence of

events that occur. Collaboration diagrams demonstrate how objects are
statically connected. Both diagrams are relatively simple to draw and
contain similar elements.

Sequence diagrams:

Sequence diagrams demonstrate the behavior of objects in a use case by
describing the objects and the messages they pass. the diagrams are read
left to right and descending. The example below shows an object of class
1 start the behavior by sending a message to an object of class 2. Messages
pass between the different objects until the object of class 1 receives the
final message.

Object Class1| [Obiect: Class2| [Dbiect: Class3

—_—

Figure 1.54: Sequence Diagrams

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Below is a slightly more complex example. The light blue vertical
rectangles the objects activation while the green vertical dashed lines
represent the life of the object. The green vertical rectangles represent
when a particular object has control. The represents when the object is
destroyed. This diagrams also shows conditions for messages to be sent to
other object. The condition is listed between brackets next to the message.
For example, a [condition] has to be met before the object of class 2 can
send a message() to the object of class 3.

Collaboration diagrams:

Collaboration diagrams are also relatively easy to draw. They show the
relationship between objects and the order of messages passed between
them. The objects are listed as icons and arrows indicate the messages
being passed between them. The numbers next to the messages are called
sequence numbers. As the name suggests, they show the sequence of the
messages as they are passed between the objects. There are many acceptable
sequence numbering schemes in UML. A simple 1, 2, 3... format can be
used, as the example below shows, or for more detailed and complex
diagrams a 1, 1.1,1.2, 1.2.1... scheme can be used.

Object:Classt

Passive
| 1: Message)

-

Object:Class? 2 Message() Object

Figure 1.55: Collaboration diagrams

State Diagrams

State diagrams are used to describe the behavior of a system. State diagrams
describe all of the possible states of an object as events occur. Each diagram
usually represents objects of a single class and track the different states of
its objects through the system.

When to Use: State Diagrams

Use state diagrams to demonstrate the behavior of an object through
many use cases of the system. Only use state diagrams for classes where
it is necessary to understand the behavior of the object through the entire

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 65

system. Not all classes will require a state diagram and state diagrams
are not useful for describing the collaboration of all objects in a use case.
State diagrams are other combined with other diagrams such as interaction
diagrams and activity diagrams.

How to Draw: State Diagrams

State diagrams have very few elements. The basic elements are rounded
boxes representing the state of the object and arrows indicting the transition
to the next state. The activity section of the state symbol depicts what
activities the object will be doing while it is in that state.

¢ State Name

do / action +— Activity

— Transition

Figure 1.56: State Diagrams

All state diagrams being with an initial state of the object. This is the state
of the object when it is created. After the initial state the object begins
changing states. Conditions based on the activities can determine what the
next state the object transitions to.

-g—————— [nitail State

State1 [Conditian] rﬂm

Dofactivity T_*" _
[Condition]

u
Statez

Transitons

Figure 1.57: Condition based State Diagrams

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Activity Diagrams

Activity diagrams describe the workflow behavior of a system. Activity
diagrams are similar to state diagrams because activities are the state of
doing something. The diagrams describe the state of activities by showing
the sequence of activities performed. Activity diagrams can show activities
that are conditional or parallel.

When to Use: Activity Diagrams

Activity diagrams should be used in conjunction with other modeling
techniques such as interaction diagrams and state diagrams. The main
reason to use activity diagrams is to model the workflow behind the system
being designed. Activity Diagrams are also useful for: analyzing a use case
by describing what actions need to take place and when they should occur;
describing a complicated sequential algorithm; and modeling applications
with parallel processes. However, activity diagrams should not take the
place of interaction diagrams and state diagrams. Activity diagrams do not
give detail about how objects behave or how objects collaborate.

How to Draw: Activity Diagrams

Activity diagrams show the flow of activities through the system. Diagrams
are read from top to bottom and have branches and forks to describe
conditions and parallel activities. A fork is used when multiple activities
are occurring at the same time. The diagram below shows a

fork after activityl. This indicates that both activity2 and activity3 are
occurring at the same time. After activity2 there is a branch. The branch
describes what activities will take place based on a set of conditions. All
branches at some point are followed by a merge to indicate the end of
the conditional behavior started by that branch. After the merge all of the
parallel activities must be combined by a join before transitioning into the
final activity state.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 67

Start ;
Fork +

Join

End

Figure 1.58: Activity Diagrams

Figure 1.59: Activity Diagrams for Hotel

Physical Diagrams

There are two types of physical diagrams: deployment diagrams
and component diagrams. Deployment diagrams show the physical
relationship between hardware and software in a system. Component
diagrams show the software components of a system and how they are
related to each other. These relationships are called dependencies.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

COMPONENT DIAGRAM:
Component diagrams consist of physical components like libraries, files,

folders etc.

Component diagrams describe the organization of the components in a
system.

A component in UML is shown as below with a name inside. Additional
elements can be added wherever required.

Component

I . }
nstltutla?_ ame
Additional

components can
be added

Figure 1.60: COMPONENT DIAGRAM
DEPLOYMENT DIAGRAM:

A deployment diagram consists of nodes. Nodes are nothing but physical
hardwares used to deploy the application.

Node Notation:

A node in UML is represented by a square box as shown below with a
name. A node represents a physical component of the system.

Node

Server < Name

Figure 1.61: DEPLOYMENT DIAGRAM

Node is used to represent physical part of a system like server,
network etc.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 69

Deployment diagram of an order management system

Internet

Connection &

\ P
j 27 Modem v
‘ Fa
8“ - Q =<Processor>>

Caching server

User

Server 3

Server 1 Server 2

Figure 1.62: Deployment Diagram For order Management System
6. Explain in detail about UML State diagram.

UML State Machine Diagrams and Modeling
% A UML state machine diagram illustrates the events and states of
an object and the behavior of an object in reaction to an event.

¥ Transitions are shown as arrows and it is labeled with their events.
* States are shown in rounded rectangle.

* In state diagram , it is common to include initial pseudostate which
automatically make transition to another state.

Telephone

e O {mma siateL
J/
b off hook — = o
(Idle e — | Active 3 o | state ‘
o T p o P4 e
i, } on hook 5
! t{ansitioTEI } eveﬁt‘
K L 48 TR

Figure 1.63 : State Diagram for Telephone

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

¥ The state diagram shows the lifecycle of an object.

* [t shows what events it is experiences, its transitions and its states
in between the events.

¥* It is nor necessary to represent all events in state machine diagram.
* A state machine diagram can be created that describes the lifecycle

of object at simple or complex level of detail.

Definitions:

1. Event: An event is a significant occurrence.
Example -> A telephone receiver is taken off the hook.
2. State: A state is the condition of an object at a moment of time.

Example -> A telephone is in the state of being “idle” after the receiver is
placed on the hook.

3. Transitions: A transitions is a relationship between two states that
indicates when an event occur , the object moves from prior state to
subsequent state.

Example -> When an event “off hook” occurs, the state of telephone moves

from “idle” to “active’ state.

How to apply State Machine Diagram ?
(i) State - Independent and State —Dependent Objects:

% For all events , if an object always react in the same way , it is state-
independent objects.

% State dependent objects react differently to events depending on
their state or mode.

¥* State machine diagram should be drawn to state-dependent objects
not for state-independent objects.

% Example -> a telephone is state-dependent object.
* (i) Modeling State-dependent Objects:

* State machine diagram are applied in two ways

i. To model the behavior of complex objects in response to events.

ii. To model legal sequence of operations —protocol or language
specification.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 71

The following is a list of common objects which are state-dependent . So
it is useful to create state machine diagram for these objects.

(i) Complex Reactive objects
Physical Devices controlled by software.

->Phone,car etc.Their complex reaction depends upontheir current
mode.

Transactions and related Business objects.

-> Reaction of business objects like Sale, payment, order etc.
Understanding events and objects states it is useful for design and process
improvement.

Role Mutators

-> These are the objects that change their role.
(ii) Protocols and Legal Sequences
Communication Protocols

->TCP protocols can be easily understand with state machine diagram.

UI Page /Window Flow or Navigation

-> A state diagram is used to understand the legal sequence between
the Web Pages or Windows.

UI Flow Controller or Sessions

-> This is related to UI navigation modeling, but for server-side objects
that control the page flow.

UseCase System Operations

->The usecase enterltem, makeNewSlae,endSale etc should come in
legal order.

->Example: endSale must come after one or more enterltem operations.
Individual UI Window Event Handling

-> Understanding the events and legal sequence for one window
or form .

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

More UML Notation for State Machine Diagram
% Transitions - Transitions is a progression from one state to another
is denoted by lines with arrowheads. A transition may have a trigger,
a guard and an effect.

#* Self-Transitions - A state can have a transition that returns to itself,
as in the following diagram. This is most useful when an effect is
associated with the transition.

sm Transmon

Source State Target State
Trigger [Guard] FEffact

Figure 1.64: State Machine Diagram for Transition

=m ==l Tranm=ition /

atter 2 second= Spaoll input

h

wrmiting

Figure 1.65: State Machine Diagram for self Transition
“Trigger” is the cause of the transition, which could be a signal, an event,
a change in some condition, or the passage of time. “Guard” is a condition
which must be true in order for the trigger to cause the transition. “Effect”
is an action which will be invoked directly on the object that owns the state
machine as a result of the transition.

4— Activity

— Transition

Figure 1.66: State Machine Diagram for activity

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 73

Ilitems available]

[an itern is not available]

Figure 1.67: State Machine Diagram for delivery

Super state

A super-state is used when many transitions lead to the a certain state.
Instead of showing all of the transitions from each state to the redundant
state a super-state can be used to show that all of the states inside of the
super-state can transition to the redundant state.

Compound States - A state machine diagram may include sub-machine
diagrams, as in the example below.

1101 AMSCE DEPARTMENT OF IT

UNiT WISE SOLVED QUESTION PAPERS

=m Compound /'

!

Check FIN

fohedk FIN

mmom

d

Erter PIN
[pin

m\ralld]

[pin 0K

Search Network

nebmotk found

power off

T

power off

power off

Figure 1.68: State Machine Diagram for Super state

=m Comp05|te

Check FIN

[pin DK]

powner off

powwer off

Figure 1.69: State Machine Diagram for Compound state
The « symbol indicates that details of the Check PIN sub-machine are

shown in a separate diagram

1101OAMSCE - DEPARTMENT OF IT

BJECT ORIENTED ANALYSIS AND DESIGN 75

Choice Pseudo-State - A choice pseudo-state is shown as a diamond with
one transition arriving and two or more transitions leaving. The following
diagram shows that whichever state is arrived at, after the choice pseudo-
state, is dependent on the message format selected during execution of the
previous state.

=m Choice

[Woice] I Creating Woice !

Mas==age

N —

Selecting Message Iy Creating SMS ||
For m=at [EMIE] tMas==age
(N D, W

Iy Cresting Fax !

hMa==age

[F ax]

e

Figure 1.70: State Machine Diagram for Choice Pseudo-State
Concurrent Regions - A state may be divided into regions containing
sub-states that exist and execute concurrently. The example below shows
that within the state “Applying Brakes”, the front and rear brakes will be
operating simultaneously and independently. Notice the use of fork and
join pseudo-states, rather than choice and merge pseudo-states. These
symbols are used to synchronize the concurrent threads.

=m Concurrent Regions

Applying Brakes

Applying
Front Brakes

Applying
Rear Brakes

Figure 1.71: State Machine Diagram for Concurrent Regions

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

7. Explain UML Deployment diagrams (Implementation diagram)
(MAY/JUNE 2011,2012,2014,2015)

Deployment Diagram

Used to model the static deployment view of a system.

It is important for visualizing , specifying, and documenting embedded,
client/server, & distributed systems.

It is a diagram that shows the configuration of run time processing nodes &
the artifacts that live on them.

Graphically, a deployment diagram is a collection of vertices and arcs.

Purpose of deployment Diagrams:

¥ Visualize hardware topology of a system
* Describe the H/'W components used to deploy software components.
¥ Describe runtime processing nodes.
Elements of Deployment Diagram
Nodes

Communication between Nodes/Connections

* Association
% Dependency
#* Generalization
¥* Realization
#* Nodes and Artifacts
Common Modeling Techniques of nodes
% Modeling Processors and Devices
#* Modeling the Distribution of Artifacts
Elements of Deployment Diagram
* Artifacts
% Kinds of Artifacts
% Deployment artifacts
#* Work product artifacts

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 77

% Execution Artifacts

#* Common Modeling Techniques of Artifacts
% Modeling Execution and Libraries

#* Modeling Tables, Files , and Documents

% Modeling Source Code

Nodes:

* Just like artifacts, is an important building block in modeling the
physical aspects of a system.

% It is a physical elements that exists at run time & represents a
computational resource.

#* Graphical representation of node is cube.

Types of node
Processor:

¥* It is a piece of hardware capable of executing programs.
* A Processor can have list of processes on it.
#* Represented as shaded cube with name of the object.

Device:

* A piece of hardware incapable of executing program is called as
device.

¥ Device will also have on a cube.

Communication between Nodes/ Connections:
Association:
¥* It refers to a physical connection or link between the nodes.

#* [t is shown as a solid-line between nodes.

Communication between Nodes/ Connections:
Dependency

* [t is a relationship that indicates that a model element is in some
way dependent of another model element.

#* Dependency of a node on components is depicted using dashed
lines.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Communication between Nodes/ Connections:

Generalization

* It is a relationship between a parent node and child node

¥* It is shown as a solid-line with triangle between nodes.

Communication between Nodes/ Connections:

Realization

* [tis arelationship between interface and classes or components that
realize them

#* [t shows as a dashed line with hollow triangle.

% Example the relationship between a interface and a class that
realizes or execute that interface

Common Modeling Techniques of Nodes
#* Modeling Processors and devices
% Modeling the Distribution of Artifacts
* Artifacts

* Artifacts are physical entities that are deployed on nodes, devices
and executable environments.

It is a physical replaceable part of a system.
Executables, libraries, tables files and documents.

Standard stereotypes for artifacts

»* Ok W Ok

<<file>>, <<document>>, <<source>>, <<library>>, <<executable>>,
<<script>>.

¥* Artifact must have a unique name

Elements of Deployment Diagram

Artifacts
¥ Kinds of Artifacts

#* Deployment artifacts
* Work product artifacts
* Execution Artifacts

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 79

Common Modeling Techniques of Artifacts

* Modeling Execution and Libraries
¥ Modeling Tables, Files , and Documents
#* Modeling Source Code

ﬂ.T"l_l“l-ll.i'hr-

Customer Consols l i
\ Clend _Ciralktop
A "
k) F T
\ P ¥ T |
Card_fnader | | [BaSC Eat J‘
X Ermpbay s Danaols
Welk Page

Figure 1.72: Deployment Diagram for bank

8. Explain UML Component diagram. (Implementation diagram)
(MAY/JUNE 2011,2012,2014,2015)

Component Diagram
% Component diagrams are one of the two kinds of diagrams found in
modeling the physical aspects of object-oriented systems.

¥* It shows organizations & dependencies among set of components.

% It describe the organization of physical s/w components, including
source code, run-time code & executables.

* Addresses static implementation view of a system .it represents the
high-level parts that make up the system.

* High level reusable parts of a system are represented in a component
diagram.

#* Visualize the static aspect of the physical components and their
relationships and to specify their details for construction.

#* Collecting various executables, libraries, files, tables(physical
things), we build component diagram.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Elements Of a Component Diagram

#* Components
* Interfaces
* Ports

#* Connectors

Components
¥ Components are made up of one or more classes & describe parts of
an application that can be assembled and reused.

#* Defined as “a physical replaceable part that conforms to and
provides the realization of a set of interfaces”.

% Graphically ,a component is rendered as a rectangle with tabs, with
the name of the object in it, preceded by a colon and underlined.
Interface
¥* It is a collection of operations that are used to specify a service of

class or components.

% Graphically it is displayed as a circle or as a typical class with
stereotype of <<interface>>

Types of interface
Provided Interface
% An interface that the component provides as a service to other
component.
Required Interface
¥ An interface that the component conforms to when requesting

services from other components.

#* Relationships between component & its interface

Elided, iconic form.

* A provided interface is shown as a circle attached to the component
by a line and a “lollipop”. A required interface is shown as a
semicircle attached to the component by a line and a “socket”. In
both cases, the name of the interface is placed next to the symbol.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 81

Ports
% Ports are used to control the implementation of all the operations in
all of the provided interfaces in the component.

¥* It is an explicit window into an encapsulated component.

#* All of the interactions into and out of the component pass through
ports.

#* [t has identity.

% Component can communicate with the component through a
specific port.

* It is shown as a small square straddling the border of a component
Both provided and required interfaces may be attached to the port
symbol.

#* A provided interface represents a service that can be requested
through that port. A required interface represents a service that the
port needs to obtain from some other component.

Connectors
#* A wire between two port is called connector.

* It represents a link or a transient link. Instance of an ordinary
association.

% A transient link represents a usage relationship between two
components.

* If two components are explicitly wired together, either directly or
through ports, just draw a line between them or their ports.

* If two components are connected because they have compatible
interface, you can use a ball-and-socket notation to show that there
is no inherent relationship between the components, although they
are connected inside this component.

Types of Connector
¥* Direct connector

* Delegation connector

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

gl

tiCourseFarStud

O

nDBAForStud

DEAccess

Student

S

]

Studert
PStUA it o seFarstud
riSecFortud

pStuda

HiDBAF orStud
adelegates

potud2 il

gl

SecuntyForStudent

o]

fiSecForStud

Figure 1.73: Component Diagram for Student

E' ATM Machine

.

I__

@ -

Web Page

Web Merchant Transaction

O

Deline Transaction

ATH Transaction

_4'\

N:Dm.l*l'n[mlon
r_] Employee Console

[Chent Desktop

Q
Client DeskiopTransaction

Figure 1.74: Component Diagram for Bank

9. Consider the Hospital Management System application with the

following requirements Domain model for a hospital to show and
explain hospital structure, staff, relationships with patients, and
patient treatment terminology.

(NOV/DEC 2015)

Purpose: Domain model describing various types of health insurance

policies.

Summary: This example shows several subtypes of Health Insurance
Policy using UML generalization sets. One generalization set is Coverage
Type - Job Based Coverage, Self Coverage, and Benefits Coverage, and
another set is based on Insurance Plan - HMO, POS, PPO, FFS.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 83
Coverage coverage policy | Health Insurance | Policy plan Insurance
Type 1 * Policy * 1 Plan
{complete, overlapping} {incomplete, disjoint}
:CoverageType JInsurancePlan

Job Based
Coverage I HMOPIan

Self Coverage |— — POS Plan

A

Individual
Policy

— PPO Plan

Family
Policy

— FFS Plan

Benefits
Coverage

A

Medicade

CHIP

PCIP

Figure 1.75: Use case diagram example for Hospital Management

Purpose: Describe major services (functionality) provided by a hospital’s
reception.

Summary: Hospital Management System is a large system including
several subsystems or modules providing variety of functions. Hospital
Reception subsystem or module supports some of the many job duties
of hospital receptionist. Receptionist schedules patient’s appointments and
admission to the hospital, collects information from patient upon patient’s
arrival and/or by phone.

For the patient that will stay in the hospital (“inpatient”) she or he should
have a bed allotted in a ward. Receptionists might also receive patient’s
payments, record them in a database and provide receipts, file insurance
claims and medical reports.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

srraiine

Figure 1.76: Radiology diagnostic reporting UML use case diagram
example
Purpose: Radiology diagnostic reporting UML use case diagram example
for Simple Image and Numeric Report (SINR) IHE Radiology Integration
Profile.

Summary: In the initial stage of diagnostic reporting, a reading physician
records a diagnosis by generating a draft DICOM Structured Report (SR)
object. Report Creator actor transmits that DICOM SR object to the Report
Manager. External Report Repository Access actor is a gateway to obtain
other enterprise department reports, such as Laboratory and Pathology,
from within the Imaging department.

Report
Satemission
[RAD-24)

Repart Manager . Raport lesuing
\ RAD-25)
%ﬂv %
[RAD-)
— Extormas &
N Rapository
Rueirieve Reporis.

Figurel.77: UML information flow diagram example for the
Scheduled Workflow

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 85

10. Explain UML activity diagram with example.
(MAY/JUNE 2011,2015, NOV/DEC 2011)

Activity Diagram
* Activity is a particular operation of the system.

#* An Activity diagram is a dynamic diagram that shows the activity
and the event that causes the object to be in the particular state.

% The diagrams describe the state of activities by showing the
sequence of activities performed.

#* Activity diagrams can show activities that are conditional or parallel.
% The purposes of Activity diagram can be described as:
* Draw the activity flow of a system.
#* Describe the sequence from one activity to another.
#* Describe the parallel, branched and concurrent flow of the
system.
Elements in Activity Diagram

Fork and Join Nodes

Forks and joins have the same notation: either a horizontal or vertical bar
(the orientation is dependent on whether the control flow is running left
to right or top to bottom). They indicate the start and end of concurrent
threads of control. The following diagram shows an example of their use.

ad Fork and Jaoin /

Concurrent
Action 1

Concurrernt
Action 2

Figure 1.78: Fork and Join Nodes

Decision and Merge Nodes

Decision nodes and merge nodes have the same notation: a diamond shape.
They can both be named. The control flows coming away from a decision
node will have guard conditions which will allow control to flow if the

1101 AMSCE DEPARTMENT OF IT

UNiT WISE SOLVED QUESTION PAPERS

guard condition is met. The following diagram shows use of a decision
node and a merge node.

ad Decision or Merge /

[condition is true]

&

[condition is false]

Action on
True

ion Mode

Figure 1.79: Decision and Merge Nodes

Join node vs Merge node

A join is different from a merge in that the join synchronizes two inflows
and produces a single outflow. The outflow from a join cannot execute until
all inflows have been received. A merge passes any control flows straight

through it.
L
N

< E -
[In Hine fior Bletra] / [Mot intne for Metra
Ga]oe nEhatomnw:slty) CTa]necabbDu.tnve:srly)

xji_f

Figure 1.80 : Join and Merge Nodes

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 87

?

[rush order]

Figure 1.81: Activity Diagram for Hotel

*The following diagram is drawn with the four main activities:
*Send order by the customer

*Receipt of the order

*Confirm order

*Dispatch order

» After receiving the order request condition checks are performed
to check if it is normal or special order. After the type of order
is identified dispatch activity is performed and that is marked

as the termination of the process.

Activities
Customer sends
\ an order request

Start of
process No)

Condition

Order request system
confirms the receipt of the

[Check if the
arder is normal
order]

[Check lf!h-

(- [Yes] -/ Caonfirm the
order
Termination

Dispatch the " -
order

Figure 1.82: Activity Diagram for Hotel with check conditions

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

UNIT II
DESIGN PATTERNS

PART - A

1. Define Modular Design? (APRIL/MAY-2017)
Modular design, or “modularity in design”, is a design approach that
subdivides a system into smaller parts called modules or skids, that
can be independently created and then used in different systems.

2. When to use Patterns? (NOV/DEC 2015)
The purpose of the pattern is, then, the re-use of the knowledge encap-
sulated in it in order to solve a particular problem.

3. Define Coupling. (APRIL/MAY-2017)
Coupling is a measure of the strength of association established by a
connection from one object or software component to another. Cou-
pling is a binary relationship. For example A is coupled with B. Cou-
pling is important when evaluating a design because it helps us focus
on an important issue in design.

4. What is Design Pattern? (NOV/DEC 2016)
It is a description or template for how to solve a problem that can be
used in many different situations. Design pattern is instructive infor-
mation for that captures the essential structure and insight of a success-
ful family of proven design solutions to a recurring problem that arises
within a certain context.

Characteristics of Design Patterns:

1. It solves the problem — Design patterns are not just abstract repre-
sentations of theoretical research. To be accepted as a pattern it should
have some proves practical experiences.

2. It’s a proven concept — Patterns must have a successful history.

3. It describes a relationship — Patterns do not specify a single class
instead it specifies more than one classes and their relationship.

4. It has a human component - Good patterns make the job of the pro-
grammer easy and time saving.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 89
5. Distinguish between coupling and cohesion. 2(NOV/DEC 2016)
(APRIL/MAY-2017)

Coupling deals with interactions between objects or software
components while cohesion deals with the interactions within a single
object or software component. Highly cohesive components can lower
coupling because only a minimum of essential information need to be
passed between components.

6. Write a note on Patterns. ? (NOV/DEC 2016)
In Object Oriented Design, a pattern is anamed description of a Problem
and Solutions that can be applied to new contexts. Many patterns,
given a category of problem, guide the assignment of responsibilities
to objects.

7. What is GRASP?
GRASP stands for General Responsibility Assignment Software
Patterns. There are 9

GRASP patterns
Creator

Controller

Pure fabrication
Information expert
High cohesion
Indirection

Low coupling

Polymorphism

NS R SE S I S S I

Protected variations

8. What is a creator pattern?
To identify who is responsible for creating a new instance of class.
This design will support low coupling, increased clarity, encapsulation
and reusability

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

9.

10.

11.

12.

13.

14.

15.

16.

Define information expert .

The information expert is analyzed to find what is the general principle
of assigning responsibilities to object. This will support information
encapsulation.

Define controller.

Controller is to identify which class is having more control over the
overall system. This is the first object beyond the UI layer that is
responsible for receiving or handling a system operation message.

Define bloated controller.

When the controllers are poorly designed a controller class will have
low cohesion-unfocused and handling too many areas of responsibil-
ity; this is called a bloated controller

Define use case controller.

When placing responsibilities in a fagade controller it lead to design
with low cohesion or high coupling, typically when the facade control-
ler is becoming bloated with more responsibility a use case controller
is the best choice to solve this problem.

Define adapter.
The adapter design pattern is a kind of pattern that is adapting between
classes and objects. It act as a interface between objects

What is a factory?

This is also called simple factory or concrete factory. This pattern is
not a GOF design pattern, but extremely widespread. It deals with the
problem of creating objects without specifying the exact class of ob-
ject that will be created.

What is a concrete factory?
This is also called simple factory or concrete factory, this pattern is not
a GOF design pattern, but extremely widespread.

What is Observer pattern?

The observer pattern (a subset of the publish/subscribe pattern) is a
software design pattern in which an object, called the subject, main-
tains a list of its dependents, called observers, and notifies them auto-

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 91

17.

18.

matically of any state changes, usually by calling one of their methods.
It is mainly used to implement distributed event handling systems.

What is Responsibility-Driven Design?

A popular way of thinking about the design of software objects and
also larger scale. Components 3 are in terms of responsibilities, roles,
and collaborations. This is part of a larger approach called responsibil-
ity-driven design or RDD.

What is Facade Pattern?
A facade is an object that provides a simplified interface to a larger
body of code, such as a class library.

A facade can:

% make a software library easier to use, understand and test, since the
facade has convenient methods for common tasks;

% make code that uses the library more readable, for the same reason;

#* reduce dependencies of outside code on the inner workings of a
library, since most code uses the facade, thus allowing more
flexibility in developing the system;

% Wrap a poorly-designed collection of APIs with a single well-
designed API (as per task needs).

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

PART - B

1. Write short notes on Adapter, Singleton, Factory and Observer
Patterns. (NOV/DEC 2015, MAY/JUNE 2016, NOV/DEC2016)

(APRIL/MAY-2017)
Gof Patterns
Purpose
Creational Structural Behavioral
Scope | Class | Faclory Method (107) | Adapter (class) (139) | Interpreter (243)
Template Method (325)
Object | Abstract Factory (87) | Adapter (object) {139) | Chain of Respomsibility (223)
Builder (97) Bridge (151} Command (233)
Prototype (117) Composite (163) Iterator (257)
Singleton (127) Decorator (175) Mediator (273)
Facade (185) Memento (283)
Flyweight {195) Observer (293)
Proxy (207) State (305)
Strategy (315)
Visitor (331)

Table 2.1 : GOF Classification Pattern
» Gof patterns are design patterns.

» Used to resolve design related issues.

» Patterns simplify but proliferation of patterns adds
complexity.

» Adapter
» Factory
> Singleton
» Observer
Adapter Patterns
B Problem:
B How to resolve incompatible interfaces.

B How to provide stable interface to similar components with
different interfaces.

B Solution:

B Hide the incompatible/ unstable interfaces behind the adapter’s
interface.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN

93

B Client collaborate with stable adapter.

B Adapter relay message to unstable interface

B Uses protected variations, polymorphism, indirection.

Adaptee
+methodB()
M
Client > Adaptor
+adaptor: Adaptor +adaptee: Adaptee
+dowork ()~ +methodA() ~
adaptor.methodA(); adaptee.methodB();

Figure 2.1: The Adapter Pattern

B Register post the sale to an adapter.
B Adapter communicates with SAP accounting system.

SAP accounting system exposes functionality as a web server

<<Interface>>
Client Target
"""" 'D + methodA (String) : void

Client calls methodA of
Adapter through Target
interface

hvd

Adapter calls methodB of
Ad
Adaptee and converts it to the Adapter aptes
output expected by Client + methadA (String) ; void | + msthods(string) : voig
through methodA

Figure 2.2: The Adapter Pattern for client

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

GRASP as generalization of other patterns
B Patterns overload:
B 100’s of documented patterns.
B Too many to comprehend and use.
B Perhaps 50+ are common.
B GRASP patterns helpful to categorize the patterns using few
basic principles.
B GRASP is the alphabet of patterns language.
B Very important conceptual model.

B PV is the most fundamental principle.

Specific gof patterns are concrete applications of grasp

‘ Protcted Varin GRASP
| Meghansn J Principles
f’\
!Low CouplingT High Cohesion
| Mechanism Mech Anis
/\l/’ \/\ ,f“\
2
b
*Pomrp%m " Indirection | PIJre ‘
Example Mechanism Fabrication |

——a}\———/———.—.—-———

N

GoF Design
Adapter Patterns

Figure 2.3: Adapter and GRASP

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 95

Updated partial domain model

Design modeling discover new domain concept

Factory
B This is also called Simple Factory or Concrete Factory.
B Problem:

B Who should be the creator when creation causes incohesiveness
or it involves complex creation logic.

B Solution (advice)
B Assign creation responsibility to pure fabrication factory object

B Commonly implemented via singleton pattern

ServicesFactory note that the factory methods
return objects typed to an
accountingAdapter : IAccountingAdapter .| interface rather than a class, so
inventoryAdapter : linventoryAdapter o that the factory can return any
taxCalculatorAdapter : ITaxCalculatorAdapter T implementation of the interface

getAccountingAdapter() : IAccountingAdapter O

getinventoryAdapter() : linventoryAdapter

getTaxCalculatorAdapter() : ITaxCalculatorAdapter
O

if (taxCalculatorAdapter == null) k

1/ a reflective or data-driven approach to finding the right class: read it from an
/Il external property

String className = System.getProperty("taxcalculator.class.name");
taxCalculatorAdapter = (ITaxCalculatorAdapter) Class.forName(className).newlnstance();

}

return taxCalculatorAdapter;

Figure 2.4: Factory object advantages

B Separate the responsibility of complex creation in to cohesive
objects.

B Hide potentially complex creation logic.

B Allow introduction of performance enhancing memory
management strategy such as object caching.

Singleton
B Problem:

B Exactly only one instance of a class is neede or allowed.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Solution (advice):

Who should create factory? Singleton !

Provides global visibility via static method

Singleton pattern in ServicesFactory class

UML notation: in a
class box, an
underlined attribute or
method indicates a
static (class level)
member, rather than
an instance member

UML notation: this 1" can optionally be used to
indicate that only one instance will be created (a
singleton)

]

The static method can only create one instance.

Avoid passing factory reference to many clients.

ServicesFactory

instance : ServicesFactory o

accountingAdapter : IAccountingAdapter
inventoryAdapter : linventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getinstance() : ServicesFactory e
o

i getAccountingAdapter() : IAccountingAdapter
getinventoryAdapter() : linventoryAdapter
getTaxCalculatorAdapter() : ITaxCalculatorAdapter

/1 static method

if (instance == null)

return instance

public static synchronized ServicesFactory getinstance()

instance = new ServicesFactory()

Figure 2.5: Singleton

Accessing Singleton instance

To obtain visibility of singleton instance use following

Singleton Class . get Instance();

Others objects need single , global point of access to it.

Define a static method of a class that return the singleton

singleton static
attribute

singleton
static
method

#* To send message using singleton instance use the following

% Singleton Class . get Instance(). do Foo();

#* Example
Adapter();

¥ Implementation and Design issue

Service Factory. get Instance(). Get Accounting

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 97

* Lazy Initialization

* Eager Initialization

Public class Service Factory

{

Private static Service Factory instance = new Service Factory();
Public static Service Factory get Instance()

{

Return instance;
1
Why not all methods made static ?

B [nstance side methods permit sub classing and refinement of
singleton classes in to subclasses , but static methods are not
polymorphic.

B Most object-oriented remote communication mechanism only
support remote-enabling of instance methods, not static methods.
Observer

B Problem

B An observer (eg GUI) needs to know about static changes in a
publisher (eg domain object) without direct coupling with the
objects..

B Solution :

B Subscriber implements a “listener” interface.

B Publishes dynamically register listeners.

B Publishes automatically notify listeners when event occurs.

B Publishers coupled to generic interface instead of concrete object

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

{
for each PropertyListener pl in propertyListeners
pl.onPropertyEvent(this, name, value);

{
}

propertyListeners.add(lis);

Sale

. | addPropertyListener(PropertyListener lis) O ’
“0 publishPropertyEvent(name, value)

setTotal(Money newTotal) ©-.._

javax.swing.JFrame propertyListeners

*

{
total = newTotal;
publishPropertyEvent("sale.total", total);

«interface»
setTitle() PropertyListener

setVisible()

onPropertyEvent(source, name, value)

SaleFrame1

onPropertyEvent(source, name, value) ©

initialize(Sale sale) o-

}

| if (name.equals("sale.total"))

saleTextField.setText(value.toString());

)...

{
sale.addPropertyListener(this)

Figure 2.6: Observer

Updating interface

% Updating interface when sale total changes

+notify()

Observer ———————<>{+observer(ollection

Subject

+registerObserver(observer)
+unregisterObserver(observer)
+notifyObservers()

notifyObservers()
for observer in observerCollection
call observer.notify()

ConcreteObserverA ConcreteObserverB

+notify() +notify()

Figure 2.7 : Concrete Observer

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 99

sf : SaleFrame! s Sale propertyListeners .
List<PropertyListener>

|
I
initglize s : Sale) :

addPropertyListener(sf L .

add(sf) >

Figure 2.8: The Observer SaleFramel Subscribes to the

publisher Sale
s 'Sale propertylisteners| i] :
PropertyListener
1
setTotal(total) > :
publishPropertyEvent !
("sale.total", total) |
th - I
I
loop onPropertyEvent(s, "sale.total”, total) >

I
I
I
I
I

Figure 2.9: The sale publishes a property event

to all its subscriber

2. What is GRASP? Explain the design patterns and the principles
used in it. (APRIL/MAY 2011) (MAY/JUNE 2015,2016)
(APRIL/MAY-2017)

GRASP: Designing Objects with Responsibilities

Objectives:
#* OOD is sometimes taught as “ Identifying requirements, creating
domain model and then adding methods and define messaging
between objects to fulfill the requirements.

#* Mastering OOD involves a large set of principles.
UML versus Design Principles
% UML is a standard visual modeling language.

#* UML sometimes described as “design tool”.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

% The right thing is “ the critical design tool for software development
is a mind well educated in design principles”.

Object Design

How artifacts relate to object design?

» Inputs to object design
» Activities of object design

» Outputs
#* Inputs : Domain model, use case text, operation contracts, SSD,
glossary and supplementary specification.

Now developers start coding, UML modeling.

During modeling (ID,CD), they apply GRASP principles.
Outputs : UML ID, CD and PD for difficult parts of design
Responsibilities & RDD

LR R NS

Designing software objects involve responsibilities, roles and
collaborations.

»*

This approach called Responsibility-Driven Design (RDD).

»*

UML defines responsibilities as a contract of classifier.

#* Responsibilities are two types : doing & knowing.

Responsibility types
¥ Doing responsibility

% Doing something itself

* Initiating action in other objects.

#* Controlling activities in another objects.
Knowing responsibility

#* Knowing about encapsulated data.

* About related data

#* Things that it calculate

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 101

Connection between Responsibilities, GRASP and UML diagrams
% In UML drawing interaction diagram consider the responsibility of
objects.

% Example : Sale objects invoke Payment object and it is assigned to

make Payment method

Pattern Definitions and names
* Alexander: “A pattern is a recurring solution to a standard problem,
in a context.”

#* Larman: “In OO design, a pattern is a named description of
a problem and solution that can be applied in new contexts;
ideally, a pattern advises us on how to apply the solution
in varying circumstances and considers the forces and trade-offs.”

Naming Patterns—important!
% Why is naming a pattern or principle helpful?

* [t supports chunking and incorporating that concept into our
understanding and memory

* It facilitates communication
GRASP
* Acronym for General Responsibility Assignment Software Patterns
#* Describe fundamental principles of object design and responsibility
#* Expressed as patterns
Five GRASP patterns:
B Creator
M [nformation Expert
B [ow Coupling
B Controller
B High Cohesion
Creator pattern
Name: Creator

Problem: Who creates an instance of A?

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Solution: Assign class B the responsibility to create an instance of class A
if one of these is true (the more the better):

B B contains or aggregates A (in a collection)
B B records A

M B closely uses A

B B has the initializing data for A

Who creates the SalesLineltem?

Since Sale contains many SalesLineltem objects, the creator pattern
suggests that Sale is a good candidate to have the responsibility of creating

SalesLineltem.
Sale
date
time .
Is this cl
1 (note: n
Contains
Product
SalesLineltem Specification
) 1 —
quantity Described by g;z:nptlon
itemID

Figure 2.10: Who creates the SalesLineltem

Design Of Object interactions

% The context of assigning responsibilities is considered while
drawing interaction diagram

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 103
Sale
date
time (done by Expert)
getTotal()
1
Contains
Product
SalesLineltem Specification
- . 1]
quantity Described by description
price
getSubtotal() itemlID
getPrice()

Figure 2.11: Design of Creator

Discussion about creator pattern

»*

*

»*

»* X W Kk X *

Creator guides the assigning of responsibilities related to the
creation of objects.

The basic intent of creator pattern is to find a creator that needs to
be connected to connected object in any event.

Composite aggregates Part, Container contains Content and
Recorder records.

Creator suggests enclosing container or recorder is a good candidate
for creating objects

Responsibilities for object creation are common
Connect an object to its creator when:
Aggregator aggregates Part

Container contains Content

Recorder records

Initializing data passed in during creation

Contraindications or caveats

*
»*
*

Creation may require significant complexity:
recycling instances for performance reasons

conditionally creating instances from a family of similar classes.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

* In this cases, delegate creation to a helper class called Concrete
Factory or Abstract Factory rather than using creator class.

* In these instances, other patterns are available...

Benefits
¥ Low coupling is supported because created class is visible to the
creator class by the existing associations.

Related patterns
* Low coupling

% Concrete Factory or Abstract Factory

Information Expert (Expert) pattern or principle

Name: Information Expert
Problem: How to assign responsibilities to objects?

Solution: Assign responsibility to the class that has the information
needed to fulfill it?

Example : In Next Gen POS application, some class needs to know the
grand total of sale.

“Start assigning responsibilities by clearly stating the responsibility”

By Information Expert, look at class of objects that has the information
needed to determine the total

#* To identify the class look at design model first.

* [f design model is not started, then use domain model to model
software classes.

#* We add a software class to Design model called Sale

% This supports lower representational gap between real world
concepts and software objects

1101 AMSCE - DEPARTMENT OF IT 105

OBJECT ORIENTED ANALYSIS AND DESIGN

Our first design class:

Sale
date

. genbta‘(} tlme
New method —-> getTotal()

Figure 2.12: Design of Information Expert pattern or principle

Information to find determine SalesLineltem
#* SalesLineltem is information expert for finding subtotal

Well, we now have:
Sale

date

time

getTotal()

tEgetlol | 1% sti= getSubtotall) | . g5ja) ineitem

:SalesLineltem

quantity

Note: we have added a responsibility, / [petSubtota) |

getSubtotal() to SalesLineltem
Figure 2.13: Design of Information Expert for finding Subtotal

Product Description is the information expert on answering product price

Sale
date
time

getTotal()

t = getTotal() P
Sale 17 st = getSubtotal0 | _sgiestineite
1.1:p = getPrice salesLineltefn

quantity

laetSubtotal()

_Product.

Specification|

Product
Bpecification

description
price

getPrice()

e .
Figure 2.14: Design of Information Expert for answering

product price

Benefits and Contraindications
#* Facilitates information encapsulation: why?

1. Classes use their own info to fulfill tasks

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

¥ Encourages cohesive, lightweight class definitions

#* Information expert may contradict patterns of Low Coupling and
High Cohesion

¥ Remember separation of concerns principle for large sub-systems
* [.e., keep “business” or application logic in one place, user interface

in other place, database access in another place, etc.

Low Coupling Pattern
Name: Low Coupling

Problem: How to reduce the impact of change and encourage reuse?

Solution: Assign a responsibility so that coupling (linking classes)
remains low.

Why does the following design violate Low Coupling?

Create Payment instance associated with sale class. By real-world
domain, Register records payment, so according to creator pattern
“Register” is creator for payment.

Partial interaction diagram reflecting this is follow

—
makePayment()

: Register 1: create() p : Payment

2: addPayment(p) —

:Sale

Figure 2.15: Design of Low Coupling Pattern
¥* In previous diagram, Register creates payment, adds coupling of
Register to Payment . It increases coupling.

* So, use Sale class to create payment which does not increase the
coupling

—> —
makePayment 1: makePayment -Sale

1.1. create()

:Payment

Figure 2.15.1: Design of Low Coupling Pattern for sales

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 107

Benefits & Contraindications
% Understandability: Classes are easier to understand in isolation

* Maintainability: Classes aren’t affected by changes in other
components

* Reusability: easier to grab hold of classes But:
#* Don’t sweat coupling to stable classes (in libraries or pervasive,

well-tested classes)

Controller pattern
Name: Controller

(see Model-View-Controller architecture)
Problem: Who should be responsible for UI events?

Solution: Assign responsibility for receiving or handling a system
event in one of two ways:

Represent the overall system (fagade pattern)

Represent a use case scenario within which the system event occurs (a
session controller)

“Controller if the first object beyond Ul layer that is responsible for
receiving or handling system operation message.”

The Next Gen Pos application contains several system operations.

During analysis system operations may be assigned to the class System,
but it does not mean that software class System fulfill that responsibility

System

endSale()
enterltem()
makeNewSale()
makePayment()

Figure 2.16 : Design of Controller Pattern
#* Controller class is assigned the responsibility for system operations.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

[The FOO Store =[Ol x]

temp []
Quantity ’j

-

. Cashier

> | Entertem | [Andsoon... |

l actionPerformed(actionEvent)

Ul Layer :SaleJFrame
system operation message ﬁ
enterltem(itemID, qty) ©~

-

Which class of object should be responsible for receiving this
Domain system event message?

Layer) [

- It is sometimes called the controller or coordinator. It does not
i ¢ l normally do the work, but delegates it to other objects.

The controller is a kind of "facade” onto the domain layer from
the interface layer.

Figure 2.16.1: Domain Layer Controller

System Register

endSale()

enterltem() >

makeNewSale() endSale()

makePayment() enterltem()
makeNewSale()

makeNewReturn() makePayment()

enterReturnitem()

. makeNewReturn()
enterReturnltem()

system operations allocation of system
discovered during system operations during design,
behavior analysis using one facade controller
ProcessSale HandleReturns
System Handler Handler

endSale()
enterltem() >
makeNewSale() endSale() enterReturnltem()
makePayment() enterltem() makeNewReturn()

makeNewSale() -
enterReturnltem() makePayment()
makeNewReturn()

allocation of system k

operations during design,

using several use case

controllers

Figure 2.16.2: Allocation of system operations to two kinds of
controllers

By controller pattern there are some choices

#* Represent overall “system”

#* Represent a receiver or handler of system events of use case
scenario.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN

109

—>
enterltem(id, quantity)

‘Register

—>

enterltem(id, quantity)

:ProcessSaleHandler

Figure 2.16.2: Design of Controller choices

#* During design , the system operations identified are assigned to one

or more controller classes

How to choose controllers ?

% Facade controllers are suitable when there are not “too many”

system events.

¥ Choose use case controller when there are multiple system events to

be controlled by multiple controller.

Benefits

% Increased potential for reuse and pluggable interface.

¥ Opportunity to reason about the state of the use case.

High Cohesion pattern

Cohesion measures how strongly related and focused are the

responsibilities of an element

Name: High Cohesion

Problem: How to keep classes focused and manageable?

Solution: Assign responsibility so that cohesion remains high.

Example

Register records payment in real world domain

—

makePayment : Register

1: create

2: addPayment(p) —

p : Payment
:Sale

Figure 2.17: High Cohesion pattern for payment

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

—> —>

makePayment() Register 1: makePayment() Sale

1.1. create()

:Payment

Figure 2.17.1: High Cohesion pattern for Sale

Benefits & Contraindications
#* Understandability, maintainability

#* Complements Low Coupling
* But:
*

Avoid grouping of responsibilities or code into one class or
component to simplify maintenance by one person. Why?

#* Sometimes desirable to create less cohesive server objects that
provide an interface for many operations, due to performance needs
associated with remote objects and remote communication

Designing for Visibility
¥ Visibility is the ability of one object to see or have reference to
another object.

Visibility Between Objects
¥ For a sender object to send a message to a receiver object , the
sender must be visible to the receiver- “the sender must have some
kind of reference or pointer to the receiver.”

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 111

class Register

{

private ProductCatalog catalog;

-

o

enterltem : ProductCatalog

(itemID, quantity) T

i
| desc = getProductDesc(itemID)

Q,

\'I.

I
|
I
I I

b 1 |
public void enterltem(itemID, gty) !
{

desc = catalog.getProductDesc(itemlID)

-

Figure 2.18: the getProductDesc message imply
about object visibility

Kinds of Visibility
% There are four common ways that visibility can be achieved from
object A to object B.

* Attribute visibility — B is an attribute of A
#* Parameter visibility — B is a parameter of a method of A.

#* Local visibility — B is a (non-parameter) local object in a method
of A.

* Global visibility — B is in some way globally visible
Attribute Visibility
* Attribute visibility from A to B exists when B is an attribute of A.

* It is relatively permanent visibility because it persists as long as A
and B exists.

This is a common form of visibility in object- oriented system.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

A Register instance may have
attribute visibility to a
ProductCatalog

{
public void entevitemibeniD , gty

Idanﬁem {
SpeC = calnk geESpecilcationdiem D
et vk P 20 atakog catakog - - [l
¥
]]
]
st [
(RemiD , quartity) |

spec = getSpecibeation BemiD) |

Figure 2.19 : Attribute Visibility

Parameter visibility
#* Parameter visibility from A to B exists when B is passed as a
parameter to a method of A.

* It is relatively temporary visibility because it persists only within
the scope of the method.

% This is the second common form of visibility in object — oriented
system.

Wiithin the scope of the makeLineltem method,
the sale has paramater ".rlsnl:lllt_iI
to Prod

B e — AT T ETgeey
e

1sos u gRiSpe e dicn(d)]

g:'lm;r J

o Saleslinedern

1
rmakelineilemdProguetSpec fcalion spec, int gby)

4 = e SalesLineltemimec, gyl

Figure 2.20 : Parameter Visibility

Transforming parameter visibility to attribute visibility
% Within the initializing method , the parameter is assigned to an
attribute, thus establishing attribute visibility.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 113

e 2, makalinetlemidasc, gty -
Rregester Sali

£, 088C ® QalProduciDescid)
2.1: crooie{dias, gty

L] L)

Froouct
Catalag

iniakzing method (2.9, 3 Java consirucion
SaksLingltem(ProduciDescription dese. inl gty)

descripbon = desc: | paramador i atinbute visibiity

Figure 2.21 : Parameter to Attribute Visibility

Local visibility
#* Local visibility from A to B exists when B is declared as a local
object within the method.

#* This is relatively temporary visibility because it persists only within
the scope of the method.

There are two common means by which local visibility is achieved are:

% Create a new local instance & assign it to a local variable.

#* Assign returning object from method invocation to a local variable

Local visibility diagram:

enbortemsid Giv] Y
hocnl siaibsity van assdyremand of Fetuer
FroductCescnption de cantabi cure Procsct]
i
" puariity

Figure 2.22: Local Visiblity

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Global visibility
¥ Global visibility from A to B exists when b is global to A.

* [t is relatively permanent visibility because it persists as long as A
& B exists.

¥* It is the least common form of visibility in object - oriented system.

#* One way to achieve global visibility is to assign an instance to a
global variable.

¥ Preferred method to achieve this is to use Singleton pattern
3. Explain Creator and Controller design pattern with examples
(NOV/DEC2016)
Refer: question No:2

4. Explain design principles in object Modeling. Explain in detail
GRASP method for designing objects with examples (NOV/ DEC
2016)

Refer: question No:2
5. Describe the concept of Information Expert
Refer: question No:2

6. Design the use case Realization with GoF Patterns.(APRIL/MAY
2011)

Refer: Question No.1

7. - Compare Cohesion and coupling with suitable example
(NOV /DEC 2015)

Key to good design is functional independence and key to software quality
is design.

Functional independence is evaluated using two criteria:
1. Cohesion

2. Coupling

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 115
Cohesion Coupling

Cohesion is the indication =~ Coupling is the indication

of the relationship of the relationships between

within module. modules.

Cohesion shows the Coupling shows the relative

module’s relative independence among the

functionalstrength. modules.

Cohesion is a degree Coupling is a degree to

(quality) to which a which a component / module

component / module is connected to the other

focuses on the single modules.

thing.

While designing you

should strive for high

cohesion i.e. a cohesive While designing you should

component/ module focus _strive for low coupling
on a single task (i.es; i.e. dependency between
single-mindedness) with © modules should be less.
little interaction with other

modules of the system.

Cohesion is the kind Making private fields,
of natural extension of private methods and non
data hiding for example, public classes provides loose

class having all members coupling.
visible with a package

having default visibility.
Cohesion is Intra — Coupling is Inter -Module

Module Concept. Concept.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

8. State the role and patterns while developing System Design

(NOV/DEC 2015)
In software development, a pattern (or design pattern) is a written document
that describes a general solution to a design problem that recurs repeatedly
in many projects. Software designers adapt the pattern solution to their
specific project. Patterns use a formal approach to describing a design
problem, its proposed solution, and any other factors that might affect the
problem or the solution. A successful pattern should have established itself
as leading to a good solution in three previous projects or situations.

In object-oriented programming, a pattern can contain the description of
certain objects and object classes to be used, along with their attributes
and dependencies, and the general approach to how to solve the problem.
Often, programmers can use more than one pattern to address a specific
problem. A collection of patterns is called a pattern framework.

Design patterns include the following types of information:

¥ Name that describes the pattern

Problem to be solved by the pattern

Context, or settings, in which the problem occurs
Forces that could influence the problem or its solution
Solution proposed to the problem

Context for the solution

LR S NS NS

Rationale behind the solution (examples and stories of past
successes or failures often go here)

Known uses and related patterns
Author and date information

References and keywords used or searching

»* Ok Wk

Sample code related to the solution, if it helps

9. Explain about Behavioral pattern (NOV/DEC 2016)
In software engineering, behavioral design patterns are design patterns
that identify common communication patterns between objects and realize
these patterns. By doing so, these patterns increase flexibility in carrying
out this communication.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 117

Chain of responsibility

A way of passing a request between a chain of objects

Command

Encapsulate a command request as an object

Interpreter

A way to include language elements in a program

Iterator

Sequentially access the elements of a collection

Mediator

Defines simplified communication between classes

Memento

Capture and restore an object’s internal state

Null Object

Designed to act as a default value of an object

Observer

A way of notifying change to a number of classes

State

Alter an object’s behavior when its state changes

Strategy

Encapsulates an algorithm inside a class

Template method
Defer the exact steps of an algorithm to a subclass
Visitor

Defines a new operation to a class without change

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

UNIT III
CASE STUDY

PART - A

1. What is Elaboration? What are the tasks in elaboration?
(NOV/DEC 2015)

Elaboration is the initial series of interactions during which, on a normal

project:
#* The core, risky software architecture is programmed and tested
#* The majority of requirements are discovered and stabilized

* The major risks are mitigated or retired

Elaboration is the initial series of iterations during which the team does
serious investigation, implements (program and tests) the core architecture,
clarifies most requirements, and tackles the high-risk issues. It Build the
core architecture, resolve the high-risk elements, define most requirements,
and estimate the overall schedule and resources

2. List the relationships used in Usecases. (MAY/JUNE 2012)
» Include
» Extend
» Generalize

» Association

3. Define Aggregation and Composition. (APRIL /MAY 2011)
Aggregation is a vague kind of association in the UML that loosely
suggests whole-part relationships (as do many ordinary associations).
It has no meaningful distinct semantics in the UML versus a plain as-
sociation, but the term is defined in the UML.

Composition, also known as composite aggregation, is a strong kind
of whole-part aggregation and is useful to show in some models. A
composition relationship implies that 1) an instance of the part belongs
to only one composite instance at a time, 2) the part must always be-
long to a composite and 3) the composite is responsible for the creation

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 119

and deletion of its parts either by itself creating/deleting the parts, or
by collaborating with other objects.

4. What is a Domain Model? (APRIL/MAY 2011)
A domain model is a visual representation of conceptual classes or re-
al-situation objects in a domain. Domain models have also been called
conceptual models, domain object models and analysis object models.
Domain model means a representation of real-situation or conceptual
classes, not of software objects. The term does not mean a set of dia-
grams describing software classes, the domain layer of a software ar-
chitecture, or software objects with responsibilities.

5. Define swim lane.
A swimlane shows the actions and activities being executed by a unit,
an object or a class, mostly concurrent to other actions/activities

6. Is a domain model a Picture of Software Business Objects?
A UP Domain Model is a visualization of things in a real-situation
domain of interest, not of software objects such as Java or C# classes,
or software objects with responsibilities.

Therefore, the following elements are not suitable in a domain model:
* Software artifacts
* Responsibilities or methods.

7. What are Conceptual Classes?

A conceptual class is an idea, thing, or object. A conceptual class may
be considered in terms of its symbol, intension, and extension.

Symbol: words or images representing a conceptual class.

Intension: the definition of a conceptual class.

Extension: the set of examples to which the conceptual class applies.
8. Are Domain and Data Models the Same Thing?

Data Model: It shows the persistent data to be stored somewhere else.
It has relation database design. It has some attributes and methods.

Domain Model: Domain model is not a data model because it does not
have attributes and methods for a class.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

9.

10.

11.

12.

13.

14.

How to create a Domain Model? (NOV/DEC 2015)
(NOV/DEC 2016)
Bounded by the current iteration requirements under design:

1. Find the conceptual classes.
2. Draw them as classes in a UML class diagram.

3. Add associations and attributes

What are Three Strategies to Find Conceptual Classes?
There are three strategies.

1. Reuse or modify existing models
2. Use a category list

3. Identify noun phrases.

When will you Model with “Description” Classes?

A description class contains information that describes something else.
For example, a product description that records the price, picture, and
text description of an item.

When Are Description Classes Useful?

Add a Description Class when: There needs to be a description about
an item or service, independent of the current existence of any ex-
amples of those items or services. Deleting instances of things they
describe results in a loss of information that needs to be maintained. It
reduces redundant or duplicated information.

Why Should We Avoid Adding Many Associations?
We need to avoid adding too many associations to a domain model.
Too many creates “visual noise” in a domain model.

How do you name an association in UML?

Association names should start with a capital letter, since an associa-
tion represents a classifier of links between instances; in the UML,
classifiers should start with a capital letter. Two common and equally
legal formats for a compound association name are: current

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 121

15.

16.

17.

18.

19.

20.

21.

What is role of association?
Each end of an association is called a role. Roles may optionally have:

Register Sale

Define Multiplicity.

Multiplicity defines how many instances of a class A can be associated
with oneinstance of a class B. For example, a single instance of a Store
can be associated with many” Item instances.

Define attributes with example.

An attribute is a logical data value of an object. It is useful to identify
those conceptual classes that are needed to satisfy the information re-
quirements of the current scenarios under development.

For example, a receipt in the Process Sale use case normally includes
a date and time, the store name and address, and the cashier ID, among
many other things.

When do you show attributes?
Include attributes that the requirements suggest or imply a need to re-
member information. Therefore, Time attribute.

What is the syntax for an attribute?
The full syntax for an attribute in the UML is:

Visibility name: type multiplicity = default {property-string}.

What is derived attribute?

The total attribute in the Sale can be calculated or derived from the
information in the Sales Line Item. It is derivable attribute, we use
convention: a / symbol before the attribute name.

What is data type attribute in the domain model?
It is a primitive data type such as numbers, character, Boolean, string
and Saledate Time / total : Money enumerations.

Example: Here, current Register is not a data type.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

22,

23.

24.

25.

26.

When do you define new data type classes?

In the Next Gen POS system an item ID attribute is needed; it is prob-
ably an attribute of an Item or Product Description. For example, item
ID : Integer or item ID : String. If item ID will be a class in the domain
model then use the attribute of the item as Item Identifier in software
designing.

What is an association? Give one example.

An association is the relationship between the classes.

Example: person and company are the classes, works-for is the as-
sociation name: Works_for

Why call a domain model a visual dictionary? (NOV/DEC 2016)
A domain model is a visual dictionary of

» the noteworthy abstractions
» domain vocabulary, and

> information content

A domain model visualizes and relates words or concepts in the do-
main. It also shows an abstraction of the conceptual classes and shows
how they relate to each other.

Explain Association using UML notation.
UML Definition:

Associations are defined as semantic relationship between two or more
classifiers that involve connections among their instances

Records-current

Register Sale

What is Generalization? (APRIL/MAY 2017)
Generalization is the activity of identifying commonality among con-
cepts and defining superclass (general concept) and subclass (special-
ized concept) relationships.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 123

27.

28.

29.

30.

31.

32.

What is UML Activity Diagrams?
A UML activity diagram shows sequential and parallel activities in a
process. They are useful for modeling business processes, workflows,
data flows, and complex algorithms.

How to Apply Activity Diagrams?

A UML activity diagram offers rich notation to show a sequence of
activities, including parallel activities. It may be applied to any per-
spective or purpose, but is popular for visualizing business workflows
and processes, and use cases.

What is Inception? (APRIL/MAY-2011)
Inception is the initial short step to establish a common vision and ba-
sic scope for the Project. It will include analysis of perhaps 10% of the
use cases, analysis of the critical non-Functional requirement, creation
of a business case, and preparation of the development Environment
so that programming can start in the elaboration phase. Inception in
one Sentence: Envision the product scope, vision, and business case.

What Artifacts May Start in Inception?
Some sample artifacts are Vision and Business Case, Use-Case Model,
Supplementary Specification, Glossary, Risk List & Risk Management
Plan, Prototypes and proof-of-concepts etc.

What are the task performed in elaboration? (NOV/DEC2015)
% The core risky software architecture is programmed and tested.

#* The majority of requirement are discovered and stabilized

% The major risk are mitigated or retired

What is the purpose of extends and include relationship in use dia-

gram (APRIL/MAY 2017)

#* Extend is used when a use case adds steps to another first class use
case.

#* For example, imagine “Withdraw Cash” is a use case of an ATM
machine. “Access Fee” would extend Withdraw Cash and describe
the conditional “extension point” that is instantiated when the ATM
user doesn’t bank at the ATM’s owning institution.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

»*

¢

Notice that the basic “Withdraw Cash” use case stands on its own,
without the extension.

Include is used to extract use case fragments that are duplicated in
multiple use cases. The included use case cannot stand alone and
the original use case is not complete without the included one. This
should be used sparingly and only in cases where the duplication is
significant and exists by design (rather than by coincidence).

For example, the flow of events that occurs at the beginning of
every ATM use case (when the user puts in their ATM card, enters
their PIN, and is shown the main menu) would be a good candidate
for an include.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 125

PART - B

1. Explain Case Study For NextGen POS System.

The NextGen POS System

3
»*

»*

The case study is the NextGen point-of-sale (POS) system.

In this apparently straightforward problem domain, we shall see that
there are very interesting requirement and design problems to solve.

In addition, it is a realistic problem; organizations really do write
POS systems using object technologies.

A POS system is a computerized application used (in part) to record
sales and handle payments; it is typically used in a retail store.

It includes hardware components such as a computer and bar code
scanner, and software to run the system.

It interfaces to various service applications, such as a third-party
tax calculator and inventory control.

These systems must be relatively fault-tolerant; that is, even if
remote services are temporarily unavailable (such as the inventory
system), they must still be capable of capturing sales and handling
at least cash payments (so that the business is not crippled).

A POS system increasingly must support multiple and varied client-
side terminals and interfaces.

These include a thin-client Web browser terminal, a regular personal
computer with something like a Java Swing graphical user interface,
touch screen input, wireless PDAs, and so forth.

Furthermore, we are creating a commercial POS system that we
will sell to different clients with disparate needs in terms of business
rule processing.

Each client will desire a unique set of logic to execute at certain
predictable points in scenarios of using the system, such as when a
new sale is initiated or when a new line item is added.

Case study — the Next Gen POS system, Inception :

USECASE MODELING:

»*

The Use Case Model describes the proposed functionality of the
new system.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

»*

¢

A Use Case represents a discrete unit of interaction between a user
(human or machine) and the system.

A Use Case is a single unit of meaningful work; for example login
to system, register with system and create order are all Use Cases.

Each Use Case has a description which describes the functionality
that will be built in the proposed system.

A Use Case may ‘include’ another Use Case’s functionality or
‘extend’ another Use Case with its own behavior.

Use Cases are typically related to ‘actors’.

An actor is a human or machine entity that interacts with the system
to perform meaningful work.

Actors An Actor is a user of the system.
This includes both human users and other computer systems.

An Actor uses a Use Case to perform some piece of work which is
of value to the business.

The set of Use Cases an actor has access to defines their overall role
in the system and the scope of their action.

Constraints, Requirements and Scenarios

The formal specification of a Use Case includes:

1. Requirements:
» These are the formal functional requirements that a Use Case

must provide to the end user.

» They correspond to the functional specifications found in

structured methodologies.

» A requirement is a contract that the Use Case will perform some

action or provide some value to the system.

2. Constraints:

» These are the formal rules and limitations that a Use Case

operates under, and includes prepost- and invariant conditions.

» A pre-condition specifies what must have already occurred or be

in place before the Use Case may start.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 127

» A post-condition documents what will be true once the Use Case
is complete.

» An invariant specifies what will be true throughout the time the
Use Case operates.

3.Scenarios:
» Scenarios are formal descriptions of the flow of events that
occurs during a Use Case instance.

» These are usually described in text and correspond to a textual
representation of the Sequence Diagram.

USE CASE RELATIONSHIPS

Use case relationships is divided into three types
1. Include relationship
2. Extend relationship
3. Generalization
1. Include relationship:

* [t is common to have some practical behavior that is common across
several use cases.

¥* It is simply to underline it or highlight it in some fashion

* Example: Paying by credit: Include Handle Credit Payment

2. Extend relationship:
#* Extending the use case or adding new use case to the process
Extending use case is triggered by some conditions called extension
point.

3. Generalization:
#* Complicated work and unproductive time is spending in this use
case relationship.

* Use case experts are successfully doing use case work without this
relationship.

Includes and Extends relationships between Use Cases
v One Use Case may include the functionality of another as part of
its normal processing.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

v Generally, it is assumed that the included Use Case will be called
every time the basic path is run.

v An example may be to list a set of customer orders to choose
from before modifying a selected order in this case the Use Case
may be included every time the Use Case is run.

v A Use Case may be included by one or more Use Cases, so it
helps to reduce duplication of functionality by factoring out
common behavior into Use Cases that are re-used many times.

v" One Use Case may extend the behavior of another - typically
when exceptional circumstances are encountered.

Relationships Between Use Cases :
Use cases could be organized using following relationships:

v Generalization
v’ Association
v' Extend

v Include

Generalization Between Use Cases

Generalization between use cases is similar to generalization between
classes; child use case inherits properties and behavior of the parent use
case and may override the behavior of the parent.

NOTATION:

Generalization is rendered as a solid directed line with a large open
arrowhead (same as generalization between classes).

Generalization between use cases
v' Association between Use Cases Use cases can only be involved
in binary Associations.

v" Two use cases specifying the same subject cannot be associated
since each of them individually describes a complete usage of the
system.

Extend Relationship
#* Extend is a directed relationship from an extending use case to an
extended use case that specifies how and when the behavior defined

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 129

in usually supplementary (optional) extending use case can be
inserted into the behavior defined in the use case to be extended

#* The extension takes place at one or more extension points defined
in the extended use case. The extend relationship is owned by the
extending use case.

#* The same extending use case can extend more than one use case,
and extending use case may itself be extended.

#* Extend relationship between use cases is shown by a dashed arrow
with an open arrowhead from the extending use case to the extended
(base) use case.

% The arrow is labeled with the keyword Registration use case is
meaningful on its own, and it could be extended with optional Get
Help On Registration use case.

% The condition of the extend relationship as well as the references to
the extension points are optionally shown in a Note attached to the
corresponding extend relationship.

Registration use case is conditionally extended by Get Help On Registration
use case in extension point Registration Help

Include Relationship
% An include relationship is a directed relationship between two use
cases, implying that the behavior of the required (not optional)
included use case is inserted into the behavior of the including

(base) use case.

* Including use case depends on the addition of the included use case.

% The include relationship is intended to be used when there are
common parts of the behavior of two or more use cases.

% This common part is extracted into a separate use case to be included
by all the base use cases having this part in common.

* As the primary use of the include relationship is to reuse common
parts, including use cases are usually not complete by themselves
but dependent on the included use cases.

#* Include relationship between use cases is shown by a dashed arrow
with an open arrowhead from the including (base) use case to the
included (common part) use case.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

2. Explain in detail about Domain Model.

(APRIL/MAY 2011)(MAY/JUNE 2016).

Define a Domain Model

»*

#*

*

Object-oriented analysis is concerned with creating a description of
the domain from the perspective of classification by objects.

A decomposition of the domain involves an identification of the
concepts, attributes, and associations that are considered noteworthy.

The result can be expressed in a domain model, which is illustrated
in a set of diagrams that show domain concepts or objects.

i Dhefirney Crofine
Dietines s casers il RN um‘#
duagrams
For example, a pastial domain model 15 shown in Figure 1.3,
by 1 Rols 2 De
TN [t
L - —
Plays
1
DicwCamms 1 Incluges

Figure 3.1 : Partial Domain Model of the Dice Game
A domain model is a visual representation of conceptual classes or
real-world objects in a domain of interest

They have also been called conceptual models, domain object
models, and analysis object models.

The UP defines a Domain Model as one of the artifacts that may be
created in the Business Modeling discipline.

Using UML notation, a domain model is illustrated with a set of
class diagrams in which no operations are defined.

It may show:
% domain objects or conceptual classes
* associations between conceptual classes

¥* attributes of conceptual classes

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 131
concept Sales item
OF doOmain o Lin&itém Ré&cords-aalé-of
object 1
quantity 0.1
-
i.”
Stocked-in
1 i
Sale Store
o date addreas
time 1 name
1 1
House:
Paid-ly T
1 Register
Captured-oh
Payment 3
amount

Figure 3.2: Partial Domain Model- a visual dictionary .The numbers
at each end of the line indicate multiplicity

Domain Model- a Visual Dictionary

A Visual Dictionary of Abstractions It visualizes and relates some words
or conceptual classes in the domain. It also depicts an abstraction of the
conceptual classes, because there are many things one could communicate
about registers, sales, and so forth. The model displays a partial view, or
abstraction, and ignores uninteresting (to the modelers) details. But it is
easy to comprehend the discrete elements and their relationships in this
visual language, since a significant percentage of the brain participates in
visual processing— it is a human strength.

Thus, the domain model may be considered a visual dictionary of the
noteworthy abstractions, domain vocabulary, and information content of
the domain.

Domain Models Are not Models of Software Components

A domain model, as shown in, is a visualization of things in the realworld
domain of interest, not of software components such as a Java or C++ class
or software objects with responsibilities. Therefore, the following elements
are not suitable in a domain model:

Software artifacts, such as a window or a database, unless the domain
being modeled is of software concepts, such as a model of graphical user
interfaces.

Responsibilities or methods.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

visualization of are
world concept in th

Sale domain of interest
[= Sl
date it is anofa picture of
time software class

Figure 10.2 A domain model shows real-world conceptual classes. not software

classes.
o SelesDatabase o software artifact; not
! of domain model

Sale

o software class; not pal
date b of domain model

time

a"éd

print()
Figure 3.3: A Domain model does not show artifacts or classes

Conceptual Classes

The domain model illustrates conceptual classes or vocabulary in the
domain.

Informally, a conceptual class is an idea, thing, or object. More formally, a
conceptual class may be considered in terms of its symbol, intension, and
extension

#* Symbol—words or images representing a conceptual class.
* Intension—the definition of a conceptual class.

#* Extension—the set of examples to which the conceptual class
applies.

For example, consider the conceptual class for the event of a purchase
transaction.

I may choose to name it by the symbol Sale. The intension of a Sale may
state that it “represents the event of a purchase transaction, and has a date
and time.” The extension of Sale is all the examples of sales; in other
words, the set of all sales.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 133

Saleo | concept's -_=ayn‘|bc:|h]

date
time

"A sale represants the evept . L‘
of a purchase transaction. It |'3‘5"“:F-’pt s intension

has a date and time.”

{ AN
.
~ sale3 sale-2 ™~ | concept's exlehslhr

Figure 3.4 A Conceptual Class has a symbol,
intension and extension

Domain Models and Decomposition
#* Software problems can be complex decomposition - divide - and
- conquer - is a common strategy to deal with this complexity by
division of the problem space into comprehensible units.

#* In structured analysis, the dimension of decomposition is by
processes or functions

* However, in object-oriented analysis, the dimension of
decomposition is fundamentally by things or entities in the domain.

Conceptual Classes in the Sale Domain
* For example, in the real-world domain of sales in a store, there are
the conceptual classes of Store, Register, and Sale.

% Therefore, our domain model, shown in Figure, may include Store,
Register, and Sale.

Store Register Sale

Figure 3.5 Partial Domain Model in the domain of the store

Conceptual Class Identification
¥ Our goal is to create a domain model of interesting or meaningful
conceptual classes in the domain of interest (sales).

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

% In this case, that means concepts related to the use case Process
Sale.

* In iterative development, one incrementally builds a domain model
over several iterations in the elaboration phase.

¥ In each, the domain model is limited to the prior and current
scenarios under consideration, rather than a “big bang” model
which early on attempts to capture all possible conceptual classes
and relationships.

v" For example, this iteration is limited to a simplified cash-only
Process Sale scenario; therefore, a partial domain model will
be created to reflect just that—not more.

v The central task is therefore to identify conceptual classes

related to the scenarios under design.

Domain Modeling Guidelines

How to Make a Domain Model

Apply the following steps to create a domain model:

1.List the candidate conceptual classes using the Conceptual Class
Category List and noun phrase identification techniques related to the
current requirements under consideration.

2.Draw them in a domain model.

3.Add the associations necessary to record relationships for which there is
a need to preserve some memory (discussed in a subsequent chapter).

4.Add the attributes necessary to fulfill the information requirements

3. Explain the guidelines for finding Conceptual classes with neat
diagrams. (MAY/JUNE 2016) (APRIL/MAY 2017)

Conceptual Classes

The domain model illustrates conceptual classes or vocabulary in the

domain.

Informally, a conceptual class is an idea, thing, or object. More formally, a
conceptual class may be considered in terms of its symbol, intension, and
extension

% Symbol—words or images representing a conceptual class.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 135

¥* Intension—the definition of a conceptual class.

% Extension—the set of examples to which the conceptual class
applies.

For example, consider the conceptual class for the event of a purchase
transaction.

Name it by the symbol Sale. The intension of a Sale may state that it
“represents the event of a purchase transaction, and has a date and time.”
The extension of Sale is all the examples of sales; in other words, the set
of all sales.

Salec concept's swnbolH

date
time

“A sale represents the evept e . N
of a purchase transactian. It concept's intension

has a date and time.”

\ N\
— sale-3 sale-2 \ © concept's extension

i'_____\
sale-4

Figure 3.4 A Conceptual Class has a symbol,
intension and extension

Conceptual Class Identification
#* Our goal is to create a domain model of interesting or meaningful
conceptual classes in the domain of interest (sales).

* In this case, that means concepts related to the use case Process
Sale.

* In iterative development, one incrementally builds a domain model
over several iterations in the elaboration phase.

% In each, the domain model is limited to the prior and current
scenarios under consideration, rather than a “big bang” model

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

¢

L 3

which early on attempts to capture all possible conceptual classes
and relationships.

For example, this iteration is limited to a simplified cash-only
Process Sale scenario; therefore, a partial domain model will be
created to reflect just that—mnot more.

The central task is therefore to identify conceptual classes related to
the scenarios under design.

The following is a useful guideline in identifying conceptual classes:

L 3

3

It is better to over specify a domain model with lots of fine-grained
conceptual classes than to underspecify it.

Do not think that a domain model is better if it has fewer conceptual
classes; quite the opposite tends to be true.

It is common to miss conceptual classes during the initial
identification step, and to discover them later during the
consideration of attributes or associations, or during design work.

When found, they may be added to the domain model. Do not
exclude a conceptual class simply because the requirements do
not indicate any obvious need to remember information about it (a
criterion common in data modeling for relational database design,
but not relevant to domain modeling), or because the conceptual
class has no attributes.

It is valid to have attribute less conceptual classes, or conceptual
classes which have a purely behavioral role in the domain instead
of an information role.

Strategies to Identify Conceptual Classes

Two techniques are presented in the following sections:

1. Use a conceptual class category list.

2. Identify noun phrases.

Another excellent technique for domain modeling is the use of analysis
patterns, which are existing partial domain models created by experts, using

published resources such as Analysis Patterns and Data Model Patterns.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 137

Use a Conceptual Class Category List
¥* Start the creation of a domain model by making a list of candidate
conceptual classes. The following table contains many common
categories that are usually worth considering, though not in any
particular order of importance.

* Examples are drawn from the store and airline reservation domains.

Conceptual Class Category

Examples

Physical or tangible objects

Register, Airplane

Specifications, deigns or ProductSpecification
descriptions of things FlightDescription
Places Store Airport
Transactions Sale PaymentReservation
Transaction line items SalesLineltem
Roles of people CashierPilot

Store
Containers of other things Bin

Airplane

. . . Item

Things in a container

Passenger

Other computer or electro-
mechanical systems external to
the system

Credit Payment Authorization
System

AirTrafficControl

Organizations

SalesDepartment
ObjectAirline

Events

Sale
Payment
Meeting
Flight
Crash

Rules and policies

Landing

RefundPolicy
CancellationPolicy

Catalogs

ProductCatalog
PartsCatalog

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Receipt
Records of finance, work, Ledger
contracts, legal matters EmploymentContract
MaintenanceLog
Financial instruments and LineOfCredit
services Stock
Manuals, documents, reference | DailyPriceChangeList
papers, books RepairManual

Table 3.1: Use a Conceptual Class Category List

Finding Conceptual Classes with Noun Phrase Identification
¥ Another useful technique (because of its simplicity) is linguistic
analysis: identify the nouns and noun phrases in textual descriptions
of a domain, and consider them as candidate conceptual classes or
attributes.

% Care must be applied with this method; a mechanical noun-to-
class mapping isn’t possible, and words in natural languages are
ambiguous.

¥ Nevertheless, it is another source of inspiration. The fully dressed
use cases are an excellent description to draw from for this analysis.

#* For example, the current scenario of the Process Sale use case can

be used.

Main Success Scenario (or Basic Flow):

1. Customer arrives at a POS checkout with goods and/or services to
purchase.

2. Cashier starts a new sale.
3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and
running total. Price calculated from a set of price rules.

Cashier repeats steps 2-3 until indicates done.
5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 139

8. System logs the completed sale and sends sale and payment information
to the external Accounting (for accounting and commissions) and Inventory
systems (to update inventory).

9. System presents receipt.

10.Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):

7a. Paying by cash:

1. Cashier enters the cash amount tendered.

2. System presents the balance due, and releases the cash drawer.

3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.

Candidate Conceptual Classes for the Sales Domain

% From the Conceptual Class Category List and noun phrase analysis,
a list is generated of candidate conceptual classes for the domain.

% The list is constrained to the requirements and simplifications
currently under consideration—the simplified scenario of Process

Sale.
I. Register
II. Item
II. Store
IV. Sale
V. Payment

VI. ProductCatalog
VII. ProductSpecification
VII. SalesLineltem
IX. Cashier
X. Customer

XI. Manager

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Resolving Similar Conceptual Classes—Register vs. “POST”
% POST stands for point-of-sale terminal. In computerese, a terminal
is any end-point device in a system, such as a client PC, a wireless
networked PDA, and so forth.

#* Inearlier times, long before POSTs, a store maintained a register—a
book that logged sales and payments.

% Eventually, this was automated in a mechanical “cash register.”
Today, a POST fulfills the role of the register .

#* A register is a thing that records sales and payments, but so is a
POST.

% However, the term register seems somewhat more abstract and less
implementation oriented than POST.

#* First, as a rule of thumb, a domain model is not absolutely correct
or wrong, but more or less useful; it is a tool of communication.

similar concepts with
different names

POST or? Register
1 1
Records * Records ~
* *
Sale Sale

Figure 3.5 : Post and Register are similar conceptual Classes

Specification or Description Conceptual Classes
#* The following discussion may at first seem related to a rare, highly
specialized issue.

#* However, it turns out that the need for specification conceptual
classes (as will be defined) is common in many domain models.
Thus, it is emphasized.

The Need for Specification or Description Conceptual Classes
% The preceding problem illustrates the need for a concept of objects
that are specifications or descriptions of other things.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 141

#* To solve the /tem problem, what is needed is a ProductSpecification
(or ItemSpecification, ProductDescription, ...) conceptual class that
records information about items.

* A ProductSpecification does not represent an Item, it represents a
description of information about items.

#* Notethatevenifall inventoried items are sold and their corresponding
Item software instances are deleted, the ProductSpecifications still
remain.

#* Description or specification objects are strongly related to the
things they describe.

% In a domain model, it is common to state that an XSpecification
Describes an X .

% The need for specification conceptual classes is common in sales
and product domains.

* [t is also common in manufacturing, where a description of a
manufactured thing is required that is distinct from the thing itself.

% Time and space have been taken in motivating specification
conceptual classes because they are very common,; it is not a rare
modeling concept.

Item

description Worse

price
serial number
itemID

ProductSpecification|

. Item
description Describes Better
price 1 * | serial number
itemID

Figure 3.6: Specifications or descriptions about other things.

The “*” means a multiplicity of many .It indicates that omne
ProductSpecification may describe many(*) Items

When Are Specification Conceptual Classes Required?

The following guideline suggests when to use specifications:

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

% Add a specification or description conceptual class (for example,
ProductSpecification)when:

% There needs to be a description about an item or service, independent
of the current existence of any examples of those items or services.

% Deleting instances of things they describe (for example, Item)
results in a loss of information that needs to be maintained, due to
the incorrect association of information with the deleted thing.

#* [t reduces redundant or duplicated information.

4. Explain in detail about Association.
#* An association is a relationship between types (or more specifically,
instances of those types) that indicates some meaningful and
interesting connection.

#* In the UML associations are defined as “the semantic relationship
between two or more classifiers that involve connections among
their instances.”

association h

o

. Records-current
Register] 1 Sale

Figure 3.7: Association.

Criteria for Useful Associations
% On a domain model with n different conceptual classes, there can
be n-(n-1) associations to other conceptual classes—a potentially
large number.

% Many lines on the diagram will add “visual noise” and make it less
comprehensible.

% Therefore, be parsimonious about adding association lines.
The UML Association Notation

% An association is represented as a line between classes with an
association name.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 143

% The association is inherently bidirectional, meaning that from
instances of either class, logical traversal to the other is possible.

% This traversal is purely abstract; it is not a statement about
connections between software entities.

reading the association label

-"reading direction arrow™
-it hashromeaning except to indicate direction
-often excluded

[=]

Register | Regoros—currehl ; sale

association name multiplicity

Figure 3.8: The UML notations for Association.
» The ends of an association may contain a multiplicity expression
indicating the numerical relationship between instances of the

classes.

» An optional “reading direction arrow” indicates the direction
to read the association name; it does not indicate direction of
visibility or navigation.

» Ifnot present, it is conventional to read the association from left
to right or top to bottom, although the UML does not make this

arule.
Finding Associations—Common Associations List
* Start the addition of associations by using the list in Table .
%* It contains common categories that are usually worth considering.

% Examples are drawn from the store and airline reservation domains

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Category

POST Sywtem

A is = physical part of B

not applicable

A is a logical part of B

Saleslaneltermn —Sale

A is phy=ically contained infon B

POST —Store
Ttern —Store

A im logically contained in B

F—a— = ™ " —
F af —d

Caralog
ProductiCatalog—Store

A in a description for B

Product Speci floation—Item

A is a line item of a transaction or report
B

Saleslineltern—Sale

A in logged/recordedireported/captured in
B

toormprleted) Sales—Store
feurrent) Sale—FPOST

A is a member of B

Cashier—Store

A is an organizational subunit of B

not applicable

A usos or mansges B

Cashier—POST
Manager—POST

Manager—Cashier, But proda-
by not applicable.

A communicates with B

Customaer—Cashisr

Table 3.2 Common Association List I

Category _POST System

A is related to a transaction B Customer—Payment
Cashier—Payment

A is a transaction related to another Payment—Sale

transaction B

Aisnextto B POST—POST, but probably not
applicable

Ais owned by B POST—Store

Table 3.3 Common Association List IT

High-Priority Associations

Here are some high-priority association categories that are invariably

useful

to include in a domain model:

* A is a physical or logical part of B.

* A is physically or logically contained infon B.

»*

A is recorded in B.

Association Guidelines
#* Focus on those associations for which knowledge of the relationship
needs to be preserved for some duration (“need-to-know”

associations).

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 145

* [t is more important to identify conceptual classes than to identify
associations.

#* Too many associations tend to confuse a domain model rather than
illuminate it. Their discovery can be time-consuming, with marginal
benefit.

#* Avoid showing redundant or derivable associations.

Roles

Each end of an association is called a role. Roles may optionally have:
* name
* multiplicity expression
¥* navigability

Multiplicity

Multiplicity defines how many instances of a class 4 can be associated
with one instance of a class B

| multiplicity of the role H

For example, a single instance of a store can be associated with “many”
(zero or more, indicated by the *) Item instances.

Some example of multiplicity expressions are shown in figure 11. 4.

B3 =ero Oor mwore

“many”

;.=
— one or more

one to 40

exactly 5

-'-|III

3. 5.
exactly 3. 5. or

Figure 3.9: Multiplicity Values

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

% The multiplicity value communicates how many instances can be
validly associated with another, at a particular moment, rather than
over a span of time.

* For example, it is possible that a used car could be repeatedly sold
back to used car dealers over time.

* But at any particular moment, the car is only Stocked-by one dealer.

#* The car is not Stocked-by many dealers at any particular moment.
Similarly, in countries with monogamy laws, a person can be
Married-to only one other person at any particular moment, even
though over a span of time, they may be married to many persons.

% The multiplicity value is dependent on our interest as a modeler and
software developer, because it communicates a domain constraint
that will be (or could be) reflected in software.

S Sotg e
ol

Figure 3.10 :Dependency of Multiplicity Values

How Detailed Should Associations Be?

Associations are important, but a common pitfall in creating domain
models is to spend too much time during investigation trying to discover
them.

Naming Associations
¥ Name an association based on a TypeName-VerbPhrase-TypeName
format where the verb phrase creates a sequence that is readable and
meaningful in the model context.

* Association names should start with a capital letter, since an
association represents a classifier of links between instances; in the
UML, classifiers should start with a capital letter. Two common and
equally legal formats for a compound association name are:

% Paid-by
* PaidBy

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 147

In this Figure , the default direction to read an association name is left to
right or top to bottom. This is not a UML default, but a common convention.

Contains
1.*
Reg - C.aptures.l _ Sale - Paid-b ; Payment

Supervises

Figure 3.11 :Association Names

Multiple Associations Between Two Types

Two types may have multiple associations between them; this is not
uncommon. There is no outstanding example in our POS case study, but
an example from the domain of the airline is the relationships between a
Flight (or perhaps more precisely, a FlightLeg) and an Airport . the flying-
to and flyingfrom associations are distinctly different relationships, which
should be shown separately.

* Flies-to 1

Flight Flies- Airport
& 1

Figure 3.12 : Multiple Associations

Associations and Implementation
% During domain modeling, an association is not a statement about
data flows, instance variables, or object connections in a software
solution; it is a statement that a relationship is meaningful in a
purely conceptual sense—in the real world.

% Practically speaking, many of these relationships will typically
be implemented in software as paths of navigation and visibility

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

(both in the Design Model and Data Model), but their presence in a
conceptual (or essential) view of a domain model does not require
their implementation.

* When creating a domain model, we may define associations that are
not necessary during implementation.

% Conversely, we may discover associations that need to be
implemented but were missed during domain modeling.

Class Logical View

Class A Association Class B

\ 4

Class Logical View

Class A Association Class B

A4

* Foo(Class B): void

Figure 3.13 : Associations and Implementation

5. Explain about Aggregation and Composition (APRIL/MAY 2017)
Aggregation is a kind of association used to model whole-part relationships
between things. The whole is called the composite.

For instance, physical assemblies are organized in aggregation
relationships,such as a Hand aggregates Fingers.

Aggregation in the UML
#* Aggregation is shown in the UML with a hollow or filled diamond
symbol at the composite end of a whole-part association

Hand i
1 0.7 Finger

Aggregation diamond |

Figure 3.14: Aggregation notation

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 149

Aggregation is a property of an association role. 1

The association name is often excluded in aggregation relationships since
it is typically thought of as Has-part. However, one may be used to provide
more semantic detail.

Composite Aggregation—Filled Diamond
% Composite aggregation, or composition, means that the part is a
member of only one composite object, and that there is an existence
and disposition dependency of the part on the composite.

% For example, a hand is in a composition relationship to a finger.

#* In the Design Model, composition and its existence dependency
implication indicates that composite software objects create (or
caused the creation of) the part software objects (for example, Sale
creates SalesLineltem).

% But in the Domain Model, since it does not represent software
objects, the notion of the whole creating the part is seldom relevant
(a real sale does not create a real sales line item). However, there is
still an analogy.

¥ For example, in a “human body”” domain model, one thinks of the
hand as including the fingers, so if one says, “A hand has come into
existence,” we understand this to also mean that fingers have come
into existence as well.

% Composition is signified with a filled diamond

#* It implies that the composite solely owns the part, and that they are
in a tree structure parts hierarchy; it is the most common form of
aggregation shown in models.

% For example, a finger is a part of at most one hand (we hope!), thus
the aggregation diamond is filled to indicate composite aggregation

Hand L 07 Finger

Composite aggregation

Figure 3.15: Composite Aggregation notation

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

»*

¢

¢

If the multiplicity at the composite end is exactly one, the part may
not exist separate from some composite.

For example, if the finger is removed from one hand, it must be
immediately attached to another composite object (another hand, a
foot, ...); at least, that is what the model is declaring, regardless of
the medical merits of this idea!

If the multiplicity at the composite end is 0..1, then the part may be
removed from the composite, and still exist apart from membership
in any composite.

So, if you want fingers floating around by themselves, use 0..1.

Shared Aggregation—Hollow Diamond

>

Shared aggregation means that the multiplicity at the composite
end may be more than one, and is signified with a hollow
diamond.

It implies that the part may be simultaneously in many composite
instances

. Shared aggregation seldom (if ever) exists in physical
aggregates, but rather in nonphysical concepts.

For instance, a UML package may be considered to aggregate its
elements.

But an element may be referenced in more than one package (it is
owned by one, and referenced in others), which is an example of
shared aggregation

*
UML Package References UMLElement

Shared aggregation

Figure 3.16: Shared Aggregation notation

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 151

How to Identify Aggregation

» In some cases, the presence of aggregation is obvious—usually in

physical assemblies. But sometimes, it is not clear.

» On aggregation: If in doubt, leave it out. Here are some

guidelines that suggest when to show aggregation:

» Consider showing aggregation when:

#* The lifetime of the part is bound within the lifetime of the
composite — there is a create-delete dependency of the
part on the whole.

% There is an obvious whole-part physical or logical
assembly.

* Some properties of the composite propagate to the parts,
such as the location.

% Operations applied to the composite propagate to the
parts, such as destruction, movement, recording.

» Other than something being an obvious assembly of parts,

the next most useful clue is the presence of a create-delete

dependency of the part on the whole.

A Benefit of Showing Aggregation

*

»*

Identifying and illustrating aggregation is not profoundly important;
it is quite feasible to exclude it from a domain model.

Most—if mnot all—experienced domain modelers have seen
unproductive time wasted debating the fine points of these
associations.

Discover and show aggregation because it has the following benefits,
most of which relate to the design rather than the analysis, which
is why its exclusion from the domain model is not very significant.

It clarifies the domain constraints regarding the eligible existence
of the part independent of the whole. In composite aggregation, the
part may not exist outside of the lifetime of the whole.

During design work, this has an impact on the create-delete
dependencies between the whole and part software classes and
database elements (in terms of referential integrity and cascading
delete paths).

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

¥* It assists in the identification of a creator (the composite) using the
GRASP Creator pattern.

#* Operations—such as copy and delete—applied to the whole often
propagate to the parts.

Aggregation in the POS Domain Model

In the POS domain, the SalesLineltems may be considered a part of a
composite Sale; in general, transaction line items are viewed as parts of
an aggregate transaction (see Figure In addition to conformance to that
pattern, there is a create-delete dependency of the line items on the Sale—
their lifetime is bound within the lifetime of the Sale.

By similar justification, ProductCatalog is an aggregate of Product-
Specifications.

Sale Sales line item

Product catalog T Product

Figure 3.17: ProductCatalog is an aggregate of
Product-Specifications.
No other relationship is a compelling combination that suggests whole-part
semantics, a create-delete dependency, and “If in doubt, leave it out.”

Time Intervals and Product Prices—Fixing an Iteration 1 “Error”
* In the first iteration, SalesLineltems were associated with Product-
Specifications, that recorded the price of an item.

% This was a reasonable simplification for early iterations, but needs
to be amended. It raises the interesting— and widely applicable—
issue of time intervals associated with information, contracts, and
the like.

* If a SalesLineltem always retrieved the current price recorded in
a Product-Specification, then when the price was changed in the
object, old sales would refer to new prices, which is incorrect.

% What is needed is a distinction between the historical price when
the sale was made, and the current price.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 153

¥ Depending on the information requirements, there are at least
two ways to model this. One is to simply copy the product price
into the SalesLineltem, and maintain the current price in the

ProductSpecification.
Flight * Files to destination 1 City
_..-0
Role name

Describes the role of a city in the Files —to
association

Person

Child

Creates

Figure 3.18: Time Intervals and Product Prices—
Fixing an Iteration 1 “Error”

6. Write about elaboration and discuss the difference between
elaboration and Inception (NOV/DEC 2015, 2013)
(APRIL/MAY 2017)

Elaboration is the initial series of iterations during which:
. the majority of requirements are discovered and stabilized
. the major risks are mitigated or retired

. the core architectural elements are implemented and proven

% Rarely, the architecture is not a risk.for example, if building a
website like others the team has successfully built, with the same
tools and similar requirements .

In which case, it does not have to be a focus of these early iterations.
In that case, critical but non-architecturally significant features or
use cases may be implemented.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

»*

It is in this phase that the book emphasizes an introduction to
OOA/D, applying the UML, patterns, and architecture.

Checkpoint: What Happened in Inception?

3

L 3

The inception step of the NextGen POS project may last only one
week

The artifacts created should be brief and incomplete, the phase
quick, and the investigation light.

It is not the requirements phase of the project, but a short step to
determine basic feasibility, risk, and scope, and decide if the project
is worth more serious investigation, which occurs in elaboration.

Not all activities that could reasonably occur in inception have
been covered; this exploration emphasizes requirements-oriented
artifacts.

Some likely activities and artifacts in inception include:

I. ashort requirements workshop
II. most actors, goals, and use cases named

III. most use cases written in brief format; 10-20% of the
use cases are written in fully dressed detail to improve
understanding of the scope and complexity

IV. mostinfluential and risky quality requirements identified

V. version one of the Vision and Supplementary
Specification written

VI. risk list

For example, leadership really wants a demo at the POSWorld trade
show in Hamburg, in 18 months.

But the effort for @ demo cannot yet be even roughly estimated until
deeper investigation.

i. technical proof-of-concept prototypes and other
investigations to explore the technical feasibility of
special requirements (“Does Java Swing work properly on
touch-screen displays?”)

ii. user interface-oriented prototypes to clarify the vision of
functional requirements

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 155

»*

»*

iii. recommendations on what components to buy/build/
reuse, to be refined in elaboration
iv. For example, a recommendation to buy a tax calculation
package.
v. high-level candidate architecture and components
proposed)
This is not a detailed architectural description, and it is not meant
to be final or correct.

Rather, it is brief speculation to use as a starting point of investigation
in elaboration.

For example, “A Java client-side application, no application server,
Oracle for the database, ...” In elaboration, it may be proven worthy,
or discovered to be a poor idea and rejected.

. plan for the first iteration

. candidate tools list

On to Elaboration

»*

Elaboration is the initial series of iterations during which the team
does serious investigation, implements (programs and tests) the
core architecture, clarifies most requirements, and tackles the high-
risk issues.

In the UP, “risk” includes business value. Therefore, early work
may include implementing scenarios that are deemed important, but
are not especially technically risky.

Elaboration often consists of between two and four iterations; each
iteration is recommended to be between two and six weeks, unless
the team size is massive.

Each iteration is timeboxed, meaning its end date is fixed; if the
team is not likely to meet the date, requirements are placed back
on the future tasks list, so that the iteration can end on time with a
stable and tested release.

Elaboration is not a design phase or a phase when the models are
fully developed in preparation for implementation in the construction
step. that would be an example of superimposing waterfall ideas on
to iterative development and the UP.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

»*

During this phase, one is not creating throw-away prototypes;
rather, the code and design are production-quality portions of the
final system.

In some UP descriptions, the potentially misunderstood term
“architectural prototype” is used to describe the partial system.

This is not meant to be a prototype in the sense of a discard able
experiment; in the UP, it means a production subset of the final
system. More commonly it is called the executable architecture
or architectural baseline.

Elaboration in one sentence:

Build

the core architecture, resolve the high-risk elements, define most

requirements, and estimate the overall schedule and resources.

Some key ideas and best practices that will manifest in elaboration include:

_-

i

1. do short timeboxed risk-driven iterations

ii. start programming early

i. adaptively design, implement, and test the core and risky parts
of the architecture

iv. test early, often, realistically

v. adapt based on feedback from tests, users, developers

vi. write most of the use cases and other requirements in detail,

through a series of workshops, once per elaboration iteration

What Is Architecturally Significant in Elaboration?

L 3

»*

Early iterations build and prove the core architecture. For the
NextGen POS project.indeed, most.this will include:

.Employing “wide and shallow” design and implementation; or
“designing at the seams” as Grady Booch has called it.

That is, identifying the separate processes, layers, packages, and
subsystems, and their high-level responsibilities and interfaces.
Partially implement these in order to connect them and clarify the
interfaces.

Modules may contain mostly “stubbed” code.

Refining the inter-module local and remote interfaces (this includes
the fin est details of the parameters and return values).

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 157

»*

*

»*

»*

For example, the interface to the object which will wrap access to
third-party accounting systems.

Version one of an interface is seldom perfect. Early attention to
stress testing, “breaking,” and refining the interfaces supports later
multi-team parallel work relying on stable interfaces.

Integrating existing components.
For example, a tax calculator.

Implementing simplified end-to-end scenarios that force design,
implementation, and test across many major components.

For example, the main success scenario of Process Sale, using the
credit payment extension scenario.

Elaboration phase testing is important, to obtain feedback, adapt,
and prove that the core is robust. Early testing for the NextGen
project will include:

Usability testing of the user interface for Process Sale.

Testing of recovery when remote services, such as the credit
authorizer, fail.

Testing of high load to remote services, such as load on the remote
tax calculator.

Planning the Next Iteration

Organize requirements and iterations by risk, coverage, and criticality.

»*

»*

*

*
*

»*

Risk includes both technical complexity and other factors, such as
uncertainty of effort or usability.

Coverage implies that all major parts of the system are at least
touched on in early iterations.perhaps a “wide and shallow”
implementation across many components.

Criticality refers to functions of high business value.
These criteria are used to rank work across iterations.

Use cases or use case scenarios are ranked for implementation.
early iterations implement high ranking scenarios.

In addition, some requirements are expressed as high-level features
unrelated to a particular use case, such as a logging service.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

#* These are also ranked.

¢ The ranking is done before Iteration 1, but then again
before Iteration 2, and so forth, as new requirements and
new insights influence the order.
¢+ That is, the plan is adaptive, rather than speculatively
frozen at the beginning of the project.
% Usually based on some small-group collaborative ranking technique,
a fuzzy grouping of requirements will emerge. For example:

Requirement (Use
Rank Case or Feature) Comment
High Process Sale Scores hugh on all ranking criteria,
Logging Pervasive. Hard to add late.
Mednm | Matntain Users Affects secunity subdomain.
Low

Figure 3.19: Planning the Next Iteration
% Based on this ranking, we see that some key architecturally
significant scenarios of the Process Sale use case should be tackled
in early iterations.

#* This list is not exhaustive; other requirements will also be tacked.
In addition, an implicit or explicit Start Up use case will be worked
on in each iteration, to meet its initialization

Needs
In terms of UP artifacts, a few comments on this planning information:
% The chosen requirements for the next iteration are briefly listed in

an Iteration Plan. This is not a plan of all the iterations, only a plan
of the next.

% If the short description in the Iteration Plan is insufficient, a task
or requirement for the iteration may be written in greater detail in a
separate Change Request, and given to the responsible party.

* .The overall requirements ranking is recorded in the Software
Development Plan.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 159

Iteration 1 Requirements and Emphasis: Fundamental OOA/D Skills
¥* In this case study, Iteration 1 of the elaboration phase emphasizes a
range of fundamental and common OOA/D skills used in building

object systems, such as assigning responsibilities to objects.

#* Of course, many other skills and steps. such as database design,
usability engineering, and Ul design.are needed to build software,
but they are out of scope in this introduction to OOA/D and the UP.

Iteration 1 Requirements
The requirements for the first iteration of the NextGen POS application
follow:

#* .Implement a basic, key scenario of the Process Sale use case:
entering items and receiving a cash payment.

* .Implement a Start Up use case as necessary to support the
initialization needs of the iteration.

#* Nothing fancy or complex is handled, just a simple happy path
scenario, and the design and implementation to support it.

% There is no collaboration with external services, such as a tax
calculator or product database.

% No complex pricing rules are applied.

The design and implementation of the supporting UI would also be done,
but is not covered.

Subsequent iterations will grow on this foundation.

Incremental Development for the Same Use Case Across Iterations
#* Note that not all requirements in the Process Sale use case are being
handled in iteration 1.

% It is common to work on varying scenarios or features of the same
use case over several iterations and gradually extend the system to
ultimately handle all the functionality required .On the other hand,
short, simple use cases may be completed within one iteration

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

A use case or feature is
1 2 3 e often too complex to
complete in one short

\ .\ iteration.
| Therefore, different part

Use Case Use Case Use Case or scenarios must be
FProcess Salfrocess Sald rocess Sale allocated to different

! . iterations.

Use Case
Process Rentals

=

Feature:
Logging

Figure 3.20 : Usecase implementation may be
spread across iterations

What Artifacts May Start in Elaboration?

Table lists sample artifacts that may be started in elaboration, and indicates
the issues they address. Subsequent chapters will examine some of these in
greater detail, especially the Domain Model and Design Model.

#* It introduces artifacts that are more likely to start in elaboration.

Note these will not be completed in one iteration; rather, they will be
refined over a series of iterations.

Aircraft Comment

This is a visualization of the domain
Domain Model concept; it is similar to a static information
model of the domain entitties

This is the set of the diagrams that describes

. the logical dedsign This includes software

Design model
class diagramsobject intraction diagrams,

package diagrams and so forth.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 161

Software architecture

A learning aid that summarizes the key
architectural issues and the resolution in the
design. It is a summary of the out stand-

document ing design ideas and their motivation in the
system
This includes the database schemas, and the

Data Model mapping strategies between object and non -
object representations.

Test Model A describtion of what will be tested , and

how

Implementation Model | source code, executables, data base, and so

This is the actual implementation - the

on

Use case story boards, | A description of the user interface, paths of
UI proto types navigation, useability models, and so forth

Table 3.4: Artifact and its Comment

You Know You Didn’t Understand Elaboration When...

»*
»*

*
»*

»*

It is more than “a few” months long for most projects.

It only has one iteration (with rare exceptions for well-understood
problems)

Most requirements were defined before elaboration.
The risky elements and core architecture are not being tackled.

It does not result in an executable architecture; there is no
production-code programming.

It is considered primarily a requirements phase, preceding an
implementation phase in construction.

There is an attempt to do a full and careful design before
programming.

There is minimal feedback and adaptation; users are not continually
engaged in evaluation and feedback

There is no early and realistic testing.
The architecture is speculatively finalized before programming.

Itis considered a step to do the proof-of-concept programming, rather

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

than programming the production core executable architecture.

% There are not multiple short requirements workshops that adapt
and refine the requirements based on feedback from the prior and
current iterations.

If a project exhibits these symptoms, the elaboration phase was not
understood.

#* SSDs Within the UP

¥ SSDs are part of the Use-Case Model—a visualization of the
interactions implied in the use cases. SSDs were not explicitly
mentioned in the original UP description, although the UP creators
are aware of and understand the usefulness of such diagrams. SSDs
are an example of the many possible skillful analysis and design
artifacts or activities that the UP or RUP documents do not mention.

Phases

» Inception—SSDs are not usually motivated in inception.

» Elaboration—Most SSDs are created during elaboration, when
it is useful to identify the details of the system events to clarify
what major operations the system must be designed to handle,
write system operation contracts and possibly support estimation
(for example, macroestimation with unadjusted function points
and COCOMO II).

» Note that it is not necessary to create SSDs for all scenarios of all
use cases—at least not at the same time. Rather, create them only
for some chosen scenarios of the current iteration.

> Finally, it should only take a few minutes or an half hour to
create the SSDs.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 163
Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration— 1 ElL En |CLCn | TI.T2
Business Modeling [Domain Model s
Requirements Use-Case Model (SSDs) s r
Vision 5 r
Supplementary Specification 5 r
Glossary s r
Design Design Model s r
SW Architecture Document s
Data Model s r
Implementation Implementation Model 5 r R
Project Management |SW Development Plan 5 r r R
Testing Test Model s r
Environment Development Case s r
Figure 3.21: Phases
UP Artifacts
Sample UP Artifacts Partiabrifacty.
Domain refined in &
Business el iteration.
Modeling _3‘
parameter or
return data may be
elaborated in the
Use-Case Model s -,\‘ Gilossary
. X
Reguirements ==: —_— I = E Glossary - --
system I system %
text events & system operations system —
uss date 2EqUENOE operatior
cases diagrams contract:
g
o hm mlm Arehneaure Doc.
Design system events
Software
— Dev. Plan
Project
Manag’etnmr % % %
Tes; Development
Caze
Test

Environment

Figure 3.22: UP Artifacts

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

7. Construct design for Library Information System which comprises
and following notations (i)Aggregations,(ii)Composition,(iii)

Associations (NOV/DEC 2015)
Library:
» Library is a common place for the people especially for students

from where they borrow books, CDs, study without any cost and
disturbance.

In other word library is the peaceful place or environment for those
who want to study.

Normally, it is located in the educational institutions such as
university, school, and college and so on.

Likewise, there are various kinds of library like public library
which is for the local citizens, private library which is not open for
outsiders, community library it is little bit similar to public library
and especially design for the specific community and lastly there is
also a library for school, college etc called a academic library.
Apart from them there are some special library like sports, medical,
film, music, law library in the world.

Library Management System:

>

Library management system is the new approach in the
management system which is able to transfer the facilities like
login user, register of new user, adding/removing of books in the
library, searching, issuing & returning of the books etc.

Management system also helps in promoting, improving and also
managing of the regular procedure and policy.

This system is especially designed for the students of the college/
university etc.

In this library system there are certain rules & regulation for the
proper functioning i.e. new students can get library card directly,
due most be charged to those students for late submission of books
etc.

In this system, user or the students first request the book to the
librarian in the library then the librarian check the availability of
the books and ask for student’s library card. Initially s/he verifies
or validates the library card and again s/he records the date of issue
& dates the books to be return along with student’s details.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 165

» Then the librarian issue the books to the students.

» For the case of new students librarian register the students to the
database and provide library card to them.

» Likewise, penalty must charged for the late submission of books if

the deadline is already over.

Object:
% In object oriented analysis design, objects are the entities through
which we perceive the world around us.

#* We normally see our system as being composed of things which
have recognizable identities & behaviour.

% Those entities are then represented as object in the program.

#* They may represent a person, a place, a bank account, or any item
that the program must handle.

% For a simple examples, vehicles are objects as they have size,
weight, colour, etc as attributes and starting, pressing the brake,
turning the wheel, pressing the accelerator etc as the operation(that

is function).

Class of library system

with Attributes
1. Library Card:

Examples Of Objects

27827, 72932,29882 etc.

Card No

BBA, BIT, BIM, BBS etc.
Faculty

30/04/2011,30/05/2011 etc.
Expiry Date
2. Student

Rahul, Sachin, Sourav etc.
Name

Sukedhara, Lalitpur, Balaju etc.
Address

9841227799, 9849054113, 9849205934 etc.
Phone

3. Librarian :
Deepika, Sneha, Sonali etc.
Name
Mumbai, Delhi, Tamilnadu etc.

Address

Table 3.5 : Examples of class object

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

One examples of class object diagram is given below :

Class:

»*

*

»*

Library Card
Card No: Number

Name: String

Record ()

Figure 3.23 :Example for class

From the view point of object oriented analysis design, the collection
of the similar type of object is called class.

For examples manager, peon, clerk, secretary, accountants are
member of the class employee and class vehicles includes bike, car,
bus etc. Basically it defines the data types similar to a struct in C
programming language and built in data type (int, char, float etc).

In other word, class is the abstraction of the real world entities with
similar properties.

It specifies what data and functions will be included in objects
of that class. Ideally, class is also a template that unites data and
operations.

Finally we can mention class as an implementation of abstract data
type.

Following are the most important class for the library management system:

»*

»*

*

»*

Library: It is the place where books, newspapers, magazine etc
are placed for users. It provides the card to its regular user with or
without cost.

Library Card: It is a normal identity card containing the basic
information of the user.

Books: The library most contains books or it is the main resources
of the library.

Students: They are the primary user of the library

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 167

#* Bar code reader: It is an electronic device which is used to read the
coded information for the validation.

% Librarian: The persons who handle the overall operation of the

library.

Attributes:
#* According to the basic concepts of object oriented analysis design,
attributes is the general properties of an object of the same class.

* It is noun. It is basically implemented while defining the software
entity as the variables in the class.

#* In the library system following are the possible attributes.

Classes of Library System Related Attributes
Library name, phone, etc.
Library card card no, issue date, expiry date etc.
Book name, author, faculty etc.
Student name, address, phone, id etc.
Bar Code Reader version, model, colour etc.
Table 3.6: Classes of Library System
with Related Attributes
Methods:

Normally, each and every object contains certain types of behaviours which
are included as methods in class. In other words, Methods are the services
which are provided by class. It is a verb. For verification in the library
system the following are the methods of their relative class.

Classes of Library System Related Methods
Library study(), searc_book() etc.
Library Card borrow(), check_status() etc.
Book issue(), study() etc.

Bar Code Reader Check validity(),

Students Study(), gain_information() etc.

Table 3.7: Classes of Library System with Related Methods

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

For examples in general we can display class, attributes & methods as:

Class _ name

Attributes — 1

Students
Attributes — 2

ID No: Integer

Attributes — n Name: String

Methods () 1 Address: String

Methods () 2

Study ()

Methods () n ask book ()

Figure 3.24 : display class, attributes & methods

Use Case:

3

»*

Actor:

It is the normal diagram of UML model where UML stands for
Unified Modelling Language.

It is the common language for specifying, visualising, and
constructing during the system development process.

Among the different UML diagram model use case is one of the
important once which explain the functional requirement of the
system.

Use case diagram reflects the aims of the system in the graphical
way, by the proper implementation of step by step process with the
interaction between users and the clients.

Actor is the aspects of the system in the use case diagram.

It reflects the duties of the person or the system needed for
interacting or communicating with the primary use case in the
system.

In library system there are two main actors such as librarian and
students who communicate directly with the system.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN

169

The stepwise processes are given below:

Students

Librarian

SteplI:
A student enters and

request for book in the

Step2:

Librarian initially checks the presence of

Students show his/her
library card and in case
for new students he asks

for membership.

libracy book or not.
Step3:
Librarian asks for library card of the
students.

Step4: Steps:

The librarian verifies the library card and
for new students s/he records the personal

information & provide new library card.

Step6:

The librarian check the previous withdraw
or clearance if earlier withdraw is not
cleared & the deadline was over then s/
he ask for the renewal and charge some

& renew the book.

penalty.
Step7: Step8:
Students pay the penalty | Again the librarian records the student’s

information along with the book details &

the deadline for the book to return.

Step9:
Lastly the students ask
library card back.

Step10:
Finally the librarian return the library card
& issue the book to the.

Table 3.8 :_Actor

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Library System

/\
Request for book

Ask for library card

\¥/

Records card no & return date

//_\

Figure 3.25 : Use case diagram for Library Management System.

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 171
1 |

Library Card 1 Library Students

Card no: int Name: string name: string
¢ —T
Faculty: string * Type: string < id: alphanumeric
—> (College))
EXpiTy dare: L address: string
Issue_book ()

Borrow#)ooks() study () /\
- L g
Inheritance L}
1 * *
¢ Book
Card Reader 00 OLD NEW
Model: string Name: string Name: string Name: string

Version: string Author: siring 1d: alphanumeric | Id:

alphanumieric
*
Librarian S Magazine Read_book()
Name: i ¥ Add_book ()
ame: string - -
name: string
phone: int [:
type: string
price:int
udate_record () .
gain_khowledge () Super
class
Generalization
Weekly Monthly
Name: string Name: string
Price: int Price: int
Read () Borrow_magazine ()

Figure 3.26 :Class-diagram for library Management System

Some definition:

Association:

* Association is the simplest type of class relationship diagram.

% The single line joining the two different classes is known as
association.

¥* In library system, the relationship between students & library card
is denoted as association.

% In above diagram the single straight line shows the process of
association.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Aggregation:
% According to the class diagram, when one class is partially
dependent on other classes then the relationship diagram is called
aggregation.

% In case of library system, the open relation between library &
magazine is aggregation because library can be run without any
magazine.

#* From the figure aggregation is displayed by the white colour
diamond.

Composition:
* In class diagram, when one class is fully or completely dependent
on the other classes then the relationship diagram is known as
composition.

% For library system, the relation between books & library is
composition because library cannot run without books.

#* Likewise the relationship between library card & card reader,
students & library are also composition.

% In the diagram mention above the composition is reflects by the
black diamond joining the two different class.

Generalization:
* During the process of inheritance that is transforming of
characteristics from the ancestors class to the derived class is called
inheritance, generalization & specialization takes place.

% Generalization is the process of creating new super class from the
initial parent class by taking the common attributes and methods.

* Similarly specialization is the process of creating the sub class
from the reference class.

% For simple examples in the above class diagram the class magazine
can be both weekly and monthly.

8. What is the purpose of Use Case Model .Identify the actor,
Scenarios and use case for library management System
(NOV/DEC 2016)

Refer: Question No:6

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 173

9. Explain association, aggregation, and composition relationship in
detail (NOV/DEC 2016)
Refer: Question No:6

10. Discuss in detail three strategies to find conceptual classes.

(NOV/DEC 2016)
The domain model illustrates conceptual classes or vocabulary in the
domain.

Informally, a conceptual class is an idea, thing, or object. More formally, a
conceptual class may be considered in terms of its symbol, intension, and
extension

% Symbol—words or images representing a conceptual class.
% Intension—the definition of a conceptual class.

% Extension—the set of examples to which the conceptual class
applies. For example, consider the conceptual class for the event of
a purchase transaction. [may choose to name it by the symbol Sale.
The intension of a Sale may state that it “represents the event of a
purchase transaction, and has a date and time.” The extension of
Sale is all the examples of sales; in other words, the set of all sales.

Sale o __.| cept's syrnbol‘]

|'A sale represents the e BL.[o) H
f a purchase transactiof. It concepts intension
as a date and time.”

| concept's enensih

Figure 3.27: conceptual classes

When creating a domain model, it is usually the symbol and intentional
view of a conceptual class that are of most practical interest

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

Strategies to Identify Conceptual Classes

Two techniques are presented in the following sections:
1. Use a conceptual class category list.
2. Identify noun phrases.

Another excellent technique for domain modeling is the use of analysis
patterns,which are existing partial domain models created by experts,
using published resources such as Analysis Patterns [Fowler96] and Data
Model Patterns [Hay96].

Use a Conceptual Class Category List

Start the creation of a domain model by making a list of candidate
conceptual classes. Table 10.1 contains many common categories that are
usually worth considering, though not in any particular order of importance.
Examples are drawn from the store and airline reservation domains.

Conceptual Class Category | Examples
Physical or tangible objects Register, Airplane
Specifications, deigns or ProductSpecification
descriptions of things FlightDescription
Store
Places)
Airport
Sale
Transactions Payment
Reservation
Transaction line items SalesLineltem
Cashier
Roles of people .
Pilot
Store
Containers of other things Bin
Airplane
. . . Item
Things in a container
Passenger

1101 AMSCE - DEPARTMENT OF IT

OBJECT ORIENTED ANALYSIS AND DESIGN 175
Other computer or electro- Credit Payment Authorization
mechanical systems external | System
to the system AirTrafficControl
L SalesDepartment
Organizations . -
ObjectAirline
Sale
Payment
Meeting
Events .
Flight
Crash
Landing
o RefundPolicy
Rules and policies))
CancellationPolicy
ProductCatal
Catalogs rOquutL @08
PartsCatalog
Receipt
Records of finance, work, Ledger
contracts, legal matters EmploymentContract
MaintenancelLog
Financial instruments and LineOfCredit
services Stock
Manuals, documents, DailyPriceChangeList
reference papers, books RepairManual

Table 3.9: Use a Conceptual Class Category List

Finding Conceptual Classes with Noun Phrase Identification
#* Another useful technique (because of its simplicity) suggested
in [Abbot83] is linguistic analysis: identify the nouns and noun
phrases in textual descriptions of a domain, and consider them as
candidate conceptual classes or attributes.

% Care must be applied with this method; a mechanical noun-to-
class mapping isn’t possible, and words in natural languages are
ambiguous.

1101 AMSCE DEPARTMENT OF IT

Unit WISE SOLVED QUESTION PAPERS

¥ Nevertheless, it is another source of inspiration. The fully dressed
use cases are an excellent description to draw from for this analysis.

#* For example, the current scenario of the Process Sale use case can

be used.

Main Success Scenario (or Basic Flow):

1. Customer arrives at a POS checkout with goods and/or services to
purchase.

2. Cashier starts a new sale.
3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and
running total. Price calculated from a set of price rules.

Cashier repeats steps 2-3 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, a