
CS6801 MULTI-CORE ARCHITECTURE AND PROGRAMMING 

Unit 1 : MULTI-CORE PROCESSORS 

Part A 

1. Define multi-core processor. 

A multiprocessor system is one where there are multiple microprocessors plugged 

into the system board. When each processor can run only a single thread, there is a 

relatively simple relationship between the number of processors, CPUs, chips, and cores 

in a system—they are all equal 

 

2. Define SIMD systems? 

Single instruction, multiple data, or SIMD, systems are parallel systems. As the 

name suggests, SIMD systems operate on multiple data streams by applying the same 

instruction to multiple data items, so an abstract SIMD system can be thought of as 

having a single control unit and multiple ALUs. An instruction is broadcast from the 

control unit to the ALUs, and each ALU either applies the instruction to the current data 

item, or it is idle. 

 

3. Define MIMD systems? 

Multiple instruction, multiple data, or MIMD, systems support multiple 

simultaneous instruction streams operating on multiple data streams. Thus, MIMD 

systems typically consist of a collection of fully independent processing units or cores, 

each of which has its own control unit and its own ALU. 

 

4. What is shared memory system? 

In shared-memory systems with multiple multicore processors, the interconnect 

can either connect all the processors directly to main memory or each processor can have 

a direct connection to a block of main memory, and the processors can access each 

others’ blocks of main memory through special hardware built into the processors. 

 

5. What is distributed memory system? 

The most widely available distributed-memory systems are called clusters. They 

are composed of a collection of commodity systems—for example, PCs—connected by a 

commodity interconnection network—for example, Ethernet. In fact, the nodes of these 

systems, the individual computational units joined together by the communication 

network, are usually shared-memory systems with one or more multi-core processors. 

 

 

 

 



6. Define Bisection bandwidth? 

Bisection bandwidth is often used as a measure of network quality. It’s similar to 

bisection width. However, instead of counting the number of links joining the halves, it 

sums the bandwidth of the links. For example, if the links in a ring have a bandwidth of 

one billion bits per second, then the bisection bandwidth of the ring will be two billion 

bits per second or 2000 megabits per second. 

 

7. What is cache coherence? 

single processor systems provide no mechanism for insuring that when the caches 

of multiple processors store the same variable, an update by one processor to the 

cached variable is “seen” by the other processors. That is, that the cached value 

stored by the other processors is also updated. This is called the cache coherence 

problem. 

 

8. What is snooping cache coherence? 

The idea behind snooping comes from bus-based systems: When the cores share a 

bus, any signal transmitted on the bus can be “seen” by all the cores connected to the bus. 

Thus, when core 0 updates the copy of x stored in its cache, if it also broadcasts this 

information across the bus, and if core 1 is “snooping” the bus, it will see that x has been 

updated and it can mark its copy of x as invalid. 

 

9. What is directory based cache coherence? 

Directory-based cache coherence uses the data structure called a directory. The 

directory stores the status of each cache line. Typically, this data structure is distributed; 

in our example, each core/memory pair might be responsible for storing the part of the 

structure that specifies the status of the cache lines in its local memory. Thus, when a line 

is read into, say, core 0’s cache, the directory entry corresponding to that line would be 

updated indicating that core 0 has a copy of the line. When a variable is updated, the 

directory is consulted, and the cache controllers of the cores that have that variable’s 

cache line in their caches are invalidated. 

 

10. What is false sharing? 

False sharing is a term which applies when threads unwittingly impact the 

performance of each other while modifying independent variables sharing the same cache 

line. Write contention on cache lines is the single most limiting factor on achieving 

scalability for parallel threads of execution in an SMP system. 

 

11. What is linear speedup? 

If we run our program with p cores, one thread or process on each core, then our 

parallel program will run p times faster than the serial program. If we call the serial run-



time Tserial and our parallel run-time Tparallel, then the best we can hope for is Tparallel 

=Tserial /p. When this happens, we say that our parallel program has linear speedup. 

 

 

12. Define efficiency? 

It can be defined as ratio between speedup and no of cores in parallel system, 

 

 
13. Define Amdahl’s law? 

Unless virtually all of a serial program is parallelized, the possible speedup is 

going to be very limited—regardless of the number of cores available. Suppose, for 

example, that we’re able to parallelize 90% of a serial program. 

 

14. What is scalability in multi-core architecture? 

Suppose we run a parallel program with a fixed number of processes/threads and 

a fixed input size, and we obtain an efficiency E. Suppose we now increase the number of 

processes/threads that are used by the program. If we can find a corresponding rate of 

increase in the problem size so that the program always has efficiency E, then the 

program is scalable. 

 

15. What are the steps involved in parallel programming design? 

 Partitioning 

 Communication 

 Aggregation 

 Mapping 

16. Define centralized multicore architecture? 

The centralized multi core is the direct extension of the unicore architecture. The 

unicore uses the bus to connect a core with primary memory and input output core. The 

cache memory makes CPU always busy. In this, the addition cores are added to the bus 

and the entire core share the same primary memory. 

 

17. What is Ring Interconnect? 

The Ring Interconnect is superior to bus and it allows multiple simultaneous 

communications. In Ring Interconnect, it is simple to formulate the communication 

methodology in which source of the processors has to wait for other processors to 

complete their communication process. 



 

18. What are the different Interconnects in Direct Interconnect network? 

In direct interconnect, each switch is directly connected to the processor memory 

pairs and also the switches are connected to each other. It has following types. 

 Ring Interconnect 

 Toroidal Mesh Interconnect 

 Hybercube Interconnect 

 Fully connected Interconnect 

 

19. Define fully connected Interconnect? 

The complete direct fully interconnect ntwork is the direct interconnect. In this, 

each switch in the network is directly connected to every other switch . 

 

20. Define Omega indirect interconnect? 

In omega indirect interconnect, there are some communication path which cannot 

occur and process simultaneously. The construction of Omega indirect interconnect is 

less expensive than crossbar interconnect.  The omega interconnect make “2plog2(p)” 

switches for connections with p number of processors. 

 

Part B 

1. Explain the difference between SIMD and MIMD systems? 

SIMD systems 

In parallel computing, Flynn’s taxonomy  is frequently used to classify computer 

architectures. It classifies a system according to the number of instruction streams and the 

number of data streams it can simultaneously manage. A classical von Neumann system is 

therefore a single instruction stream, single data stream, or SISD system, since it executes a 

single instruction at a time and it can fetch or store one item of data at a time. Single instruction, 

multiple data, or SIMD, systems are parallel systems.  

 

As the name suggests, SIMD systems operate on multiple data streams by applying the 

same instruction to multiple data items, so an abstract SIMD system can be thought of as having 

a single control unit and multiple ALUs. An instruction is broadcast from the control unit to the 

ALUs, and each ALU either applies the instruction to the current data item, or it is idle. As an 

example, suppose we want to carry out a “vector addition.” That is, suppose we have two arrays 

x and y, each with n elements, and we want to add the elements of y to the elements of x: 

 

  for (i = 0; i < n; i++) 

x[i] += y[i]; 



 

Suppose further that our SIMD system has n ALUs. Then we could load x[i] and y[i] into 

the ith ALU, have the ith ALU add y[i] to x[i], and store the result in x[i]. If the system has m 

ALUs and m < n, we can simply execute the additions in blocks of m elements at a time. For 

example, if m =4 and n =15, we can first add elements 0 to 3, then elements 4 to 7, then elements 

8 to 11, and finally elements 12 to 14. Note that in the last group of elements in our example—

elements 12 to 14—we’re only operating on three elements of x and y, so one of the four ALUs 

will be idle. 

  

The requirement that all the ALUs execute the same instruction or are idle can seriously 

degrade the overall performance of a SIMD system. For example, suppose we only want to carry 

out the addition if y[i] is positive: 

for (i = 0; i < n; i++) 

if (y[i] > 0.0) x[i] += y[i]; 

 

In this setting, we must load each element of y into an ALU and determine whether it’s 

positive. If y[i] is positive, we can proceed to carry out the addition. Otherwise, the ALU storing 

y[i] will be idle while the other ALUs carry out the addition. 

 

Vector processors 

 Although what constitutes a vector processor has changed over the years, their key 

characteristic is that they can operate on arrays or vectors of data, while conventional CPUs 

operate on individual data elements or scalars. Typical recent systems have the following 

characteristics: 

 Vector registers. 

 Vectorized and pipelined functional units. 

 Vector instructions. 

 Interleaved memory. 

 Strided memory access and hardware scatter/gather. 

 

MIMD systems 

Multiple instruction, multiple data, or MIMD, systems support multiple simultaneous 

instruction streams operating on multiple data streams. Thus, MIMD systems typically consist of 

a collection of fully independent processing units or cores, each of which has its own control unit 

and its own ALU.    Furthermore, unlike SIMD systems, MIMD systems are usually 

asynchronous, that is, the processors can operate at their own pace. 

 



 In many MIMD systems there is no global clock, and there may be no relation between 

the system times on two different processors. In fact, unless the programmer imposes some 

synchronization, even if the processors are executing exactly the same sequence of instructions, 

at any given instant they may be executing different statements. there are two principal types of 

MIMD systems: shared-memory systems and distributed-memory systems.  

 

In a shared-memory system a collection of autonomous processors is connected to a 

memory system via an interconnection network, and each processor can access each memory 

location. In a shared-memory system, the processors usually communicate implicitly by 

accessing shared data structures. In a distributed-memory system, each processor is paired with 

its own private memory, and the processor-memory pairs communicate over an interconnection 

network. So in distributed-memory systems the processors usually communicate explicitly by 

sending messages or by using special functions that provide access to the memory of another 

processor. 

 

Shared-memory systems 

The most widely available shared-memory systems use one or more multicore 

processors.A multicore processor has multiple CPUs or cores on a single chip. Typically, the 

cores have private level 1 caches, while other caches may or may not be shared between the 

cores. 

 

 

                                       
                                             Figure 1.1: A shared-memory system 

 

 

 

Distributed-memory systems 

The most widely available distributed-memory systems are called clusters. They are 

composed of a collection of commodity systems—for example, PCs—connected by a 

commodity interconnection network—for example, Ethernet. In fact, the nodes of these systems, 

the individual computational units joined together by the communication network, are usually 

shared-memory systems with one or more multi core processors. To distinguish such systems 



from pure distributed-memory systems, they are sometimes called hybrid systems. Nowadays, 

it’s usually understood that a cluster will have shared-memory nodes. 

 

 

Figure 1.2: A Distributed memory system 

 

2. Explain about various types of interconnection networks? 

 

Interconnection networks 

The interconnect plays a decisive role in the performance of both distributed- and shared-

memory systems: even if the processors and memory have virtually unlimited performance, a 

slow interconnect will seriously degrade the overall performance of all but the simplest parallel 

program. 

 

Shared-memory interconnects 

Currently the two most widely used interconnects on shared-memory systems are buses 

and crossbars. Recall that a bus is a collection of parallel communication wires together with 

some hardware that controls access to the bus. The key characteristic of a bus is that the 

communication wires are shared by the devices that are connected to it. Buses have the virtue of 

low cost and flexibility; multiple devices can be connected to a bus with little additional cost. 

However, since the communication wires are shared, as the number of devices connected to the 

bus increases, the likelihood that there will be contention for use of the bus increases, and the 

expected performance of the bus decreases. 

 

 Therefore, if we connect a large number of processors to a bus, we would expect that the 

processors would frequently have to wait for access to main memory. Thus, as the size of shared-

memory systems increases, buses are rapidly being replaced by switched interconnects. As the 

name suggests, switched interconnects use switches to control the routing of data among the 

connected devices. As the name suggests, switched interconnects use switches to control the 

routing of data among the connected devices. 

 

 



  

 

Figure 1.3:  A crossbar switch connecting four processors (Pi) and four memory modules 

(Mj); 

 

Distributed-memory interconnects 

Distributed-memory interconnects are often divided into two groups: direct interconnects 

and indirect interconnects. 

 

 

 

Direct Interconnect 

 In a direct interconnect each switch is directly connected to a processor-memory pair, 

and the switches are connected to each other. Figure 1.4  shows a ring and a two-dimensional 

toroidal mesh. As before, the circles are switches, the squares are processors, and the lines are 

bidirectional links. A ring is superior to a simple bus since it allows multiple simultaneous 

communications. However, it’s easy to devise communication schemes in which some of the 

processors must wait for other processors to complete their communications. The toroidal mesh 

will be more expensive than the ring, because the switches are more complex—they must 

support five links instead of three—and if there are p processors, the number of links is 3p in a 

toroidal mesh, while it’s only 2p in a ring. However, it’s not difficult to convince yourself that 

the number of possible simultaneous communications patterns 

is greater with a mesh than with a ring. 

 

 

 

 

 

 



 
   

Figure 1.4: (a) A ring and (b) a toroidal mesh 

 

 

The bandwidth of a link is the rate at which it can transmit data. It’s usually given in 

megabits or megabytes per second. Bisection bandwidth is often used as a measure of network 

quality. It’s similar to bisection width. However, instead of counting the number of links joining 

the halves, it sums the bandwidth of the links. For example, if the links in a ring have a 

bandwidth of one billion bits per second, then the bisection bandwidth of the ring will be two 

billion bits per second or 2000 megabits per second. 

 

The hypercube is a highly connected direct interconnect that has been used in actual 

systems. Hypercubes are built inductively: A one-dimensional hypercube is a fully-connected 

system with two processors. A two-dimensional hypercube is built from two one-dimensional 

hypercubes by joining “corresponding” switches. 

 

 

 

 
Figure 1.5 : Two bisections of a ring: (a) only two communications can take place between the 

halves and (b) four simultaneous connections can take place 

 



Indirect Interconnects 

Indirect interconnects provide an alternative to direct interconnects. In an indirect 

interconnect, the switches may not be directly connected to a processor. They’re often shown 

with unidirectional links and a collection of processors, each of which has an outgoing and an 

incoming link, and a switching network.  

An omega network is shown in Figure 1.8. The switches are two-by-two crossbars . 

Observe that unlike the crossbar, there are communication that cannot occur simultaneously. For 

example, if processor 0 sends a message to processor 6, then processor 1 cannot simultaneously 

send a message to processor 7. On the other hand, the omega network is less expensive than the 

crossbar. The omega network uses ½ plog2(p) of the 2*2 crossbar switches, so it uses a total of 

2plog2(p) switches, while the crossbar uses p2. 

 

                

Figure1.6 :A bisection of a toroidal mesh 

 

 

                          

               Figure 1.7 : Generic  indirect network 

 

 



                        

  Figure 1.8: Omega network 

   

 

3. Explain various the performance issues in multi-core architecture? 

Speedup and efficiency 

Usually the best we can hope to do is to equally divide the work among the cores, while 

at the same time introducing no additional work for the cores. If we succeed in doing this, and 

we run our program with p cores, one thread or process on each core, then our parallel program 

will run p times faster than the serial program. If we call the serial run-time Tserial and our 

parallel run-time Tparallel, then the best we can hope for is Tparallel D Tserial=p. When this 

happens, we say that our parallel program has linear speedup. So if we define the speedup of a 

parallel program to be 

 

S =l
𝑇 𝑠𝑒𝑟𝑖𝑎𝑙

𝑇 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 

 

then linear speedup has S = p, which is unusual. Furthermore, as p increases, we expect S to 

become a smaller and smaller fraction of the ideal, linear speedup p. Another way of saying this 

is that S=p will probably get smaller and smaller as p increases. This value, S=p, is sometimes 

called the efficiency of the parallel program. If we substitute the formula for S, we see that the 

efficiency is 

 

                                



 

Amdahl’s law 

It says, roughly, that unless virtually all of a serial program is parallelized, the possible 

speedup is going to be very limited—regardless of the number of cores available. Suppose, for 

example, that we’re able to parallelize 90% of a serial program. Further suppose that the 

parallelization is “perfect,” that is, regardless of the number of cores p we use, the speedup of 

this part of the program will be p. If the serial run-time is Tserial= 20 seconds, then the run-time 

of the parallelized part will be 0.9*Tserial /p = 18/p and the run-time of the “unparallelized” part 

will be 0.1*Tserial = 2. The overall parallel run-time will be 

 

 

and the speedup will be 

 

Scalability 

The word “scalable” has a wide variety of informal uses. Indeed, we’ve used it several times 

already. Roughly speaking, a technology is scalable if it can handle ever-increasing problem 

sizes. However, in discussions of parallel program performance, scalability has a somewhat more 

formal definition. Suppose we run a parallel program with a fixed number of processes/threads 

and a fixed input size, and we obtain an efficiency E. Suppose we now increase the number of 

processes/threads that are used by the program. If we can find a corresponding rate of increase in 

the problem size so that the program always has efficiency E, then the program is scalable. 

 

 

 

4. Explain various techniques used in cache coherence? 

 

Cache coherence 

Recall that CPU caches are managed by system hardware: programmers don’t have direct 

control over them. This has several important consequences for shared-memory systems. To 

understand these issues, suppose we have a shared memory system with two cores, each of 

which has its own private data cache. As long as the two cores only read shared data, there is no 

problem. For example, suppose that x is a shared variable that has been initialized to 2, y0 is 

private and owned by core 0, and y1 and z1 are private and owned by core 1. Now suppose the 

following statements are executed at the indicated times: 

 



 

 

Then the memory location for y0 will eventually get the value 2, and the memory 

location for y1 will eventually get the value 6. However, it’s not so clear what value z1 will get. 

It might at first appear that since core 0 updates x to 7 before the assignment to z1, z1 will get the 

value 4_7 D 28. However, at time 0, x is in the cache of core 1. So unless for some reason x is 

evicted from core 0’s cache and then reloaded into core 1’s cache, it actually appears that the 

original value x = 2 may be used, and z1 will get the value 4_2 D 8. 

 

 

                                   

                Figure 1.8 :A shared-memory system with two cores and two caches 

 

Snooping cache coherence 

There are two main approaches to insuring cache coherence: snooping cache coherence 

and directory-based cache coherence. The idea behind snooping comes from bus-based systems: 

When the cores share a bus, any signal transmitted on the bus can be “seen” by all the cores 

connected to the bus. Thus, when core 0 updates the copy of x stored in its cache, if it also 

broadcasts this information across the bus, and if core 1 is “snooping” the bus, it will see that x 

has been updated and it can mark its copy of x as invalid. This is more or less how snooping 

cache coherence works. The principal difference between our description and the actual 

snooping protocol is that the broadcast only informs the other cores that the cache line 

containing x has been updated, not that x has been updated. 

 



Directory-based cache coherence 

Unfortunately, in large networks broadcasts are expensive, and snooping cache coherence 

requires a broadcast every time a variable is updated . So snooping cache coherence isn’t 

scalable, because for larger systems it will cause performance to degrade. For example, suppose 

we have a system with the basic distributed-memory architecture . However, the system provides 

a single address space for all the memories. So, for example, core 0 can access the variable x 

stored in core 1’s memory, by simply executing a statement such as y = x. 

Directory-based cache coherence protocols attempt to solve this problem through the 

use of a data structure called a directory. The directory stores the status of each cache line. 

Typically, this data structure is distributed; in our example, each core/memory pair might be 

responsible for storing the part of the structure that specifies the status of the cache lines in its 

local memory. Thus, when a line is read into, say, core 0’s cache, the directory entry 

corresponding to that line would be updated indicating that core 0 has a copy of the line. When a 

variable is updated, the directory is consulted, and the cache controllers of the cores that have 

that variable’s cache line in their caches are invalidated. 

 

False sharing 

False sharing is a term which applies when threads unwittingly impact the performance 

of each other while modifying independent variables sharing the same cache line. Write 

contention on cache lines is the single most limiting factor on achieving scalability for parallel 

threads of execution in an SMP system. 

 

 

 

5. Explain about single core and multi-core architecture in detail? 

SINGLE-CORE PROCESSORS  

A single-core processor is a microprocessor with a single core on a chip, running 

a single thread at any one time. The term became common after the emergence of multi-

core processors (which have several independent processors on a single chip) to 

distinguish non-multi-core designs. For example, Intel released a Core 2 Solo and Core 2 

Duo, and one would refer to the former as the 'single-core' variant. Most microprocessors 

prior to the multi-core era are single-core. The class of many-core processors follows on 

from multi-core, in a progression showing increasing parallelism over time. 

Processors remained single-core until it was impossible to achieve performance 

gains from the increased clock speed and transistor count allowed by Moore's law (there 
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were diminishing returns to increasing the depth of a pipeline, increasing CPU 

cache sizes, or adding execution units). 

 

 

Problems of Single Core Processors:  

As we try to increase the clock speed of this processor, the amount of heat 

produced by the chip also increases. It is a big hindrance in the way of single core 

processors to continue evolving.  

 

             
 Figure 1.9: single-core architecture  

MULTI-CORE PROCESSORS  

A multi-core processor is a single computing component with two or more 

independent actual processing units (called "cores"), which are units that read and 

execute program instructions. The instructions are ordinary CPU instructions (such as 

add, move data, and branch), but the multiple cores can run multiple instructions at the 

same time, increasing overall speed for programs amenable to parallel computing. 

Manufacturers typically integrate the cores onto a single integrated circuit die (known as 

a chip multiprocessor or CMP), or onto multiple dies in a single chip package. 

A multi-core processor implements multiprocessing in a single physical package. 

Designers may couple cores in a multi-core device tightly or loosely. For example, cores 

may or may not share caches, and they may implement message passing or shared-

memory inter-core communication methods. Common network topologies to interconnect 

cores include bus, ring, two-dimensional mesh, and crossbar. 

 Homogeneous multi-core systems include only identical 

cores; heterogeneous multi-core systems have cores that are not identical 

(e.g. big.LITTLE have heterogeneous cores that share the same instruction set, 
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while AMD Accelerated Processing Units have cores that don't even share the same 

instruction set). Just as with single-processor systems, cores in multi-core systems may 

implement architectures such as VLIW, superscalar, vector, or multithreading. 

Multi-core processors are widely used across many application domains, 

including general-purpose, embedded, network, digital signal processing (DSP), 

and graphics (GPU). 

The improvement in performance gained by the use of a multi-core processor 

depends very much on the software algorithms used and their implementation. In 

particular, possible gains are limited by the fraction of the software that can run in 

parallel simultaneously on multiple cores; this effect is described by Amdahl's law. In the 

best case, so-called embarrassingly parallel problems may realize speedup factors near 

the number of cores, or even more if the problem is split up enough to fit within each 

core's cache(s), avoiding use of much slower main-system memory.  

Most applications, however, are not accelerated so much unless programmers 

invest a prohibitive amount of effort in re-factoring the whole problem. The 

parallelization of software is a significant ongoing topic of research. 

 

 
Figure 1.9: multi-core architecture 

 

 

Problems with multicore processors:  

According to Amdahl’s law, the performance of parallel computing is limited by its serial 

components. So, increasing the number of cores may not be the best solution. There is 

need to increase the clock speed of individual cores.  
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COMPARISON OF SINGLE-CORE PROCESSOR AND MULTI-CORE 

PROCESSOR  

 

 

Parameter  Single-Core Processor  Multi-Core Processor  

Number of cores 

on a die  

Single  Multiple  

Instruction 

Execution  

Can execute Single instruction at a time  Can execute multiple instructions 

by using multiple cores  

Gain  Speed up every program or software 

being executed  

Speed up the programs which are 

designed for multi-core processors  

Performance  Dependent on the clock frequency of 

the core  

Dependent on the frequency, 

number of cores and program to be 

executed  

Examples  Processor launched before 2005 like 

80386,486, AMD 29000, AMD K6, 

Pentium I,II,III etc.  

Processor launched after 2005 like 

Core-2-Duo,Athlon 64 X2, I3,I5 

and I7 etc.  

 

 

Unit 2 : PARALLEL PROGRAM CHALLENGES  

Part A 

1. Define data races problem?  

Data races are the most common programming error found in parallel code. A data race 

occurs when multiple threads use the same data item and one or more of those threads are 

updating it. 

 

2. What is mutex lock in synchronization? 

The simplest form of synchronization is a mutually exclusive (mutex) lock. Only one thread 

at a time can acquire a mutex lock, so they can be placed around a data structure to ensure that 

the data structure is modified by only one thread at a time.  Following coding shows how a 

mutex lock could be used to protect access to a variable ‘counter’. 

 

int counter; 

mutex_lock mutex; 

void Increment() 

{ 

acquire( &mutex ); 



counter++; 

release( &mutex ); 

} 

void Decrement() 

{ 

acquire( &mutex ); 

counter--; 

release( &mutex ); 

} 

 

3. What is critical region? give an example 

The region of code between the acquisition and release of a mutex lock is called a 

critical section, or critical region. Code in this region will be executed by only one thread 

at a time. As an example of a critical section, imagine that an operating system does not 

have an implementation of malloc() that is thread-safe, or safe for multiple threads to call 

at the same time. One way to fix this is to place the call to malloc() in a critical section 

by surrounding it with a mutex lock. 

 

4. Define spinlock in multicore architecture? 

  A spinlock is a mutual exclusion device that can have only two values: "locked" 

and "unlocked." It is usually implemented as a single bit in an integer value. Code 

wishing to take out a particular lock tests the relevant bit. If the lock is available, the 

"locked" bit is set and the code continues into the critical section. If, instead, the lock has 

been taken by somebody else, the code goes into a tight loop where it repeatedly checks 

the lock until it becomes available. This loop is the "spin" part of a spinlock. 

 

5. What are the difference between mutex lock and spinlock? 

Spin locks are essentially mutex locks. The difference between a mutex lock and a 

spinlock is that a thread waiting to acquire a spin lock will keep trying to acquire the lock 

without sleeping. In comparison, a mutex lock may sleep if it is unable to acquire the 

lock. The advantage of using spin locks is that they will acquire the lock as soon as it is 

released, whereas a mutex lock will need to be woken by the operating system before it 

can get the lock. 

 

6. What is semaphore? 

Semaphores are counters that can be either incremented or decremented. They can 

be used in situations where there is a finite limit to a resource and a mechanism is needed 

to impose that limit. An example might be a buffer that has a fixed size. Every time an 

element is added to a buffer, the number of available positions is decreased. Every time 

an element is removed, the number available is increased. 



 

7. What is reader-writer lock? 

A readerswriter lock (or multiple-reader lock) allows many threads to read the 

shared data but can then lock the readers threads out to allow one thread to acquire a 

writer lock to modify the data. A writer cannot acquire the write lock until all the readers 

have released their reader locks. 

 

8. What is barriers? 

There are situations where a number of threads have to all complete their work 

before any of the threads can start on the next task. In these situations, it is useful to have 

a barrier where the threads will wait until all are present. One common example of using 

a barrier arises when there is a dependence between different sections of code. For 

example, suppose a number of threads compute the values stored in a matrix. The 

variable total needs to be calculated using the values stored in the matrix. A barrier can 

be used to ensure that all the threads complete their computation of the matrix before the 

variable total is calculated. 

 

 

9. What  is deadlock  and livelock? 

where two or more threads cannot make progress because the resources that they 

need are held by the other threads. It is easiest to explain this with an example. Suppose 

two threads need to acquire mutex locks A and B to complete some task. If thread 1 has 

already acquired lock A and thread 2 has already acquired lock B, then A cannot make 

forward progress because it is waiting for lock B, and thread 2 cannot make progress 

because it is waiting for lock A. The two threads are deadlocked. 

 

A livelock traps threads in an unending loop releasing and acquiring locks. Livelocks can 

be caused by code to back out of deadlocks. 

 

 

Thread 1      Thread 2 

void update1()     void update2() 

{       { 

acquire(A);      acquire(B); 

acquire(B); <<< Thread 1    acquire(A); <<< Thread 2 

waits here      waits here 

variable1++;      variable1++; 

release(B);      release(B); 

release(A);      release(A); 

}       } 



 

 

10. What are the different communication methods for threads? 

Following are the communication methods used for threads, 

 Condition variables. 

 Signals 

 Message queues 

 Named pipes 

 

11. What is condition variable communication method? 

Condition variables communicate readiness between threads by enabling a thread 

to be woken up when a condition becomes true. Without condition variables, the waiting 

thread would have to use some form of polling to check whether the condition had 

become true. 

 

12. What is producer –consumer problem? 

The producer–consumer problem  is a classic example of a multi process  

synchronization problem. The problem describes two processes, the producer and the 

consumer, who share a common, fixed-size buffer used as a queue. The producer's job is 

to generate data, put it into the buffer, and start again. At the same time, the consumer is 

consuming the data (i.e., removing it from the buffer), one piece at a time. The problem is 

to make sure that the producer won't try to add data into the buffer if it's full and that the 

consumer won't try to remove data from an empty buffer. 

 

13. What is signal based communication? 

Signals are a UNIX mechanism where one process can send a signal to another 

process and have a handler in the receiving process perform some task upon the receipt of 

the message. Many features of UNIX are implemented using signals. Stopping a running 

application by pressing ^C causes a SIGKILL signal to be sent to the process. 

 

14. What is queue based communication? 

A message queue is a structure that can be shared between multiple processes. Messages 

can be placed into the queue and will be removed in the same order in which they were 

added. Constructing a message queue looks rather like constructing a shared memory 

segment. 

 

15.  What is pipes based communication? 

Named pipes are file-like objects that are given a specific name that can be shared 

https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Buffer_(computer_science)
https://en.wikipedia.org/wiki/Queue_(data_structure)


between processes. Any process can write into the pipe or read from the pipe. There is 

no concept of a “message”; the data is treated as a stream of bytes. The method for using 

a named pipe is much like the method for using a file: The pipe is opened, data is written 

into it or read from it, and then the pipe is closed. 

 

16. What is POSIX thread? 

POSIX Threads, usually referred to as Pthreads, is an execution model that exists 

independently from a language, as well as a parallel execution model. It allows a program 

to control multiple different flows of work that overlap in time. Each flow of work is 

referred to as a thread, and creation and control over these flows is achieved by making 

calls to the POSIX Threads API. 

17. Give the steps to create POSIX thread? 

#include <pthread.h> 

#include <stdio.h> 

void* thread_code( void * param ) 

{ 

printf( "In thread code\n" ); 

} 

int main() 

{ 

pthread_t thread; 

pthread_create( &thread, 0, &thread_code, 0 ); 

printf( "In main thread\n" ); 

} 

 

An application initially starts with a single thread, which is often referred to as the main 

thread or the master thread. Calling pthread_create() creates a new thread. It takes the 

following parameters: 

 A pointer to a pthread_t structure. The call will return the handle to the thread in 

this structure. 

 A pointer to a pthread attributes structure, which can be a null pointer if the 

default attributes are to be used. The details of this structure will be discussed 

later. 

 The address of the routine to be executed. 

 A value or pointer to be passed into the new thread as a parameter. 

 

18. Define safe Dead Lock? 

The safe Deadlock occurs when a thread T1 need to acquire a lock on Resouce R1 

which is already owned by the save thread T1. 

https://en.wikipedia.org/wiki/Execution_model
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19. What is recursive Deadlock? 

When the self deadlock condition occur between two threads T1 and T2, then it is 

said to be recursive deadlock. 

20. Mansion the four necessary condition to occur deadlock? 

 Mutual exclusive. 

 Hold and wait 

 Circular wait 

 No preemption 

 

 

 

 

 

 

 

 

 

Part B 

1. Explain about various types of synchronization primitives in detail? 

 

Synchronization Primitives 

Synchronization is used to coordinate the activity of multiple threads. There are various 

situations where it is necessary; this might be to ensure that shared resources are not accessed by 

multiple threads simultaneously or that all work on those resources is complete before new work 

starts. 

 

Mutexes and Critical Regions 

The simplest form of synchronization is a mutually exclusive (mutex) lock. Only one 

thread at a time can acquire a mutex lock, so they can be placed around a data structure to ensure 

that the data structure is modified by only one thread at a time. 

 

int counter; 

mutex_lock mutex; 

void Increment() 

{ 

acquire( &mutex ); 

counter++; 



release( &mutex ); 

} 

void Decrement() 

{ 

acquire( &mutex ); 

counter--; 

release( &mutex ); 

} 

 

In this example, the two routines Increment() and Decrement() will either increment or 

decrement the variable counter. To modify the variable, a thread has to first acquire the mutex 

lock. Only one thread at a time can do this; all the other threads that want to acquire the lock 

need to wait until the thread holding the lock releases it. Both routines use the same mutex; 

consequently, only one thread at a time can either increment or decrement the variable counter. If 

multiple threads are attempting to acquire the same mutex at the same time, then only one thread 

will succeed, and the other threads will have to wait. This situation is known as a contended 

mutex. The region of code between the acquisition and release of a mutex lock is called a critical 

section, or critical region. Code in this region will be executed by only one thread at a time. 

 

 

 

Spin Locks 

Spin locks are essentially mutex locks. The difference between a mutex lock and a spin 

lock is that a thread waiting to acquire a spin lock will keep trying to acquire the lock without 

sleeping. In comparison, a mutex lock may sleep if it is unable to acquire the lock. The 

advantage of using spin locks is that they will acquire the lock as soon as it is released, whereas a 

mutex lock will need to be woken by the operating system before it can get the lock. The 

disadvantage is that a spin lock will spin on a virtual CPU monopolizing that resource. In 

comparison, a mutex lock will sleep and free the virtual CPU for another thread to use. 

 

Semaphores 

Semaphores are counters that can be either incremented or decremented. They can be 

used in situations where there is a finite limit to a resource and a mechanism is needed to impose 

that limit. An example might be a buffer that has a fixed size. Every time an element is added to 

a buffer, the number of available positions is decreased. Every time an element is removed, the 

number available is increased. 

Semaphores can also be used to mimic mutexes; if there is only one element in the 

semaphore, then it can be either acquired or available, exactly as a mutex can be either locked or 

unlocked. Semaphores will also signal or wake up threads that are waiting on them to use 

available resources; hence, they can be used for signaling between threads. For example, a thread 



might set a semaphore once it has completed some initialization. Other threads could wait on the 

semaphore and be signaled to start work once the initialization is complete. Depending on the 

implementation, the method that acquires a semaphore might be called wait, down, or acquire, 

and the method to release a semaphore might be called post, up, signal, or release. When the 

semaphore no longer has resources available, the threads requesting resources will block until 

resources are available. 

 

Readers-Writer Locks 

Data races are a concern only when shared data is modified. Multiple threads reading the 

shared data do not present a problem. Read-only data does not, therefore, need protection with 

some kind of lock. However, sometimes data that is typically read-only needs to be updated. A 

readerswriter lock (or multiple-reader lock) allows many threads to read the shared data but can 

then lock the readers threads out to allow one thread to acquire a writer lock to modify the data. 

A writer cannot acquire the write lock until all the readers have released their reader locks. For 

this reason, the locks tend to be biased toward writers; as soon as one is queued, the lock stops 

allowing further readers to enter. This action causes the number of readers holding the lock to 

diminish and will eventually allow the writer to get exclusive access to the lock. 

 

int readData( int cell1, int cell2 ) 

{ 

acquireReaderLock( &lock ); 

int result = data[cell] + data[cell2]; 

releaseReaderLock( &lock ); 

return result; 

} 

void writeData( int cell1, int cell2, int value ) 

{ 

acquireWriterLock( &lock ); 

data[cell1] += value; 

data[cell2] -= value; 

releaseWriterLock( &lock ); 

} 

 

Barriers 

There are situations where a number of threads have to all complete their work before 

any of the threads can start on the next task. In these situations, it is useful to have a barrier 

where the threads will wait until all are present. 

One common example of using a barrier arises when there is a dependence between 

different sections of code. For example, suppose a number of threads compute the values stored 



in a matrix. The variable total needs to be calculated using the values stored in the matrix. A 

barrier can be used to ensure that all the threads complete their computation of the matrix before 

the variable total is calculated. Following statements  shows a situation using a barrier to separate 

the calculation of a variable from its use. 

 

Compute_values_held_in_matrix(); 

Barrier(); 

total = Calculate_value_from_matrix(); 

 

DeadLock and LiveLock 

where two or more threads cannot make progress because the resources that they need are 

held by the other threads. It is easiest to explain this with an example. Suppose two threads need 

to acquire mutex locks A and B to complete some task. If thread 1 has already acquired lock A 

and thread 2 has already acquired lock B, then A cannot make forward progress because it is 

waiting for lock B, and thread 2 cannot make progress because it is waiting for lock A. The two 

threads are deadlocked. 

 

A livelock traps threads in an unending loop releasing and acquiring locks. Livelocks can 

be caused by code to back out of deadlocks. 

 

 

Thread 1      Thread 2 

void update1()     void update2() 

{       { 

acquire(A);      acquire(B); 

acquire(B); <<< Thread 1    acquire(A); <<< Thread 2 

waits here      waits here 

variable1++;      variable1++; 

release(B);      release(B); 

release(A);      release(A); 

}       } 

 

2. Explain about semaphore with example? 

Semaphores 

A semaphore is a counting and signaling mechanism. One use for it is to allow threads 

access to a specified number of items. If there is a single item, then a semaphore is essentially the 

same as a mutex, but it is more commonly useful in a situation where there are multiple items to 



be managed. Semaphores can also be used to signal between threads or processes, for example, 

to tell another thread that there is data present in a queue. There are two types of semaphores: 

named and unnamed semaphores. An unnamed semaphore is initialized with a call to sem_init(). 

This function takes three parameters. The first parameter is a pointer to the semaphore. The next 

is an integer to indicate whether the semaphore is shared between multiple processes or private 

to a single process. The final parameter is the value with which to initialize the semaphore. 

 

A semaphore created by a call to sem_init() is destroyed with a call to sem_destroy(). The 

code shown in following initializes a semaphore with a count of 10. The middle  parameter of the 

call to sem_init() is zero, and this makes the semaphore private to the thread; passing the value 

one rather than zero would enable the semaphore to be shared between multiple processes. 

 

 

 
 

A named semaphore is opened rather than initialized. The process for doing this is similar 

to opening a file. The call to sem_open() returns a pointer to a semaphore. The first parameter to 

the call is the name of the semaphore. The name must conform to the naming conventions for 

files on the operating system and must start with a single slash sign and contain no further slash 

signs. The next parameter is the set of flags. There are three combinations of flags that can be 

passed to the sem_open() call. If no flags are passed, the function will return a pointer to the 

existing named semaphore if it exists and if the semaphore has the appropriate permissions to be 

shared with the calling process. If the O_CREAT flag is passed, the semaphore will be created; if 

it does not exist or if it does exist, a pointer will be returned to the existing version. The flag 

O_EXCL can be passed with the O_CREAT flag. This will successfully return a semaphore only 

if that semaphore does not already exist. Creating a semaphore requires two additional 

parameters: the permissions that the semaphore should be created with and the initial value for 

the semaphore. Following piece of code shows an example of opening a semaphore with an 

initial value of 10, with read and write permissions for the user, the group, and all users. 

 



 

 

A named semaphore is closed by a call to sem_close(). This closes the connection to the 

semaphore but leaves the semaphore present on the machine. A call to sem_unlink() with the 

name of the semaphore will free the resources consumed by it but only once all the processes 

that have the semaphore open have closed their connection to it. The code shown in Listing 5.34 

will close and unlink the previously  opened semaphore.  

The semaphore is used through a combination of three methods. The function sem_wait() 

will attempt to decrement the semaphore. If the semaphore is already zero, the calling thread will 

wait until the semaphore becomes nonzero and then return, having decremented the semaphore. 

The call sem_trywait() will return immediately either having decremented the semaphore or if 

the semaphore is already zero. The call to sem_post() will increment the semaphore. One more 

call, sem_getvalue(), will write the current value of the semaphore into an integer variable. The 

following code shows a semaphore used in the same way as a mutex might be, to protect the 

increment of the variable count. 

 

 

 

 



3. Explain about mutex lock and barriers with example? 

Barriers 

There are situations where a program needs to wait until an entire group of threads has 

completed its work before further progress can be made. This is a barrier. A barrier is created by 

a call to pthread_barrier_init(). The call to initialize the barrier takes the following:  

 A pointer to the barrier to be initialized. 

 An optional attributes structure, this structure determines whether the barrier is 

            private to a process or shared across processes. 

 The number of threads that need to reach the barrier before any threads are 

              released. 

 

The resources consumed by a barrier can be released by a call to pthread_barrier_ destroy(). 

Each thread calls pthread_barrier_wait() when it reaches the barrier. This call will return when 

the appropriate number of threads has reached the barrier. The following code demonstrates 

using a barrier to cause the threads in an application to wait until all the threads have been 

created. 

 

#include <pthread.h> 

#include <stdio.h> 

pthread_barrier_t barrier; 

void * work( void* param) 

{ 

int id=(int)param; 

printf( "Thread arrived %i\n", id ); 

pthread_barrier_wait( &barrier ); 

printf( "Thread departed %i\n", id ); 

} 

int main() 

{ 

pthread_t threads[10]; 

pthread_barrier_init( &barrier, 0, 10 ); 

for ( int i=0; i<10; i++ ) 

{ 

pthread_create( &threads[i], 0, work, (void*)i ); 

} 

for ( int i=0; i<10; i++ ) 

{ 

pthread_join( threads[i], 0 ); 

} 



pthread_barrier_destroy( &barrier ); 

} 

 

 

 

Mutex Locks 

A mutex lock is a mechanism supported by the POSIX standard that can be acquired by 

only one thread at a time. Other threads that attempt to acquire the same mutex must wait until it 

is released by the thread that currently has it. 

 

Mutex Attributes 

Mutexes can be shared between multiple processes. By default, mutexes are private to a 

process. To create a mutex that can be shared between processes, it is necessary to set up the 

attributes for pthread_mutex_init(), as shown in following code. 

 

#include <pthread.h> 

int main() 

{ 

pthread_mutexattr_t attributes; 

pthread_mutex_t mutex; 

pthread_mutexattr_init( &attributes ); 

pthread_mutexattr_setpshared( &attributes, PTHREAD_PROCESS_SHARED ); 

pthread_mutex_init( &mutex, &attributes ); 

pthread_mutexattr_destroy( &attributes ); 

... 

} 

 

The attributes structure pthread_mutexattr_t is initialized with default values by a call to 

pthread_mutexattr_init(). A call to pthread_mutex_setpshared() with a pointer to the attribute 

structure and the value PTHREAD_PROCESS_SHARED sets the attributes to cause a shared 

mutex to be created. By default, mutexes are not shared between processes; calling 

pthread_mutex_setpshared() with the value PTHREAD_ PROCESS_PRIVATE restores the 

attribute to the default. These attributes are passed into the call to pthread_mutex_init() to set the 

attributes of the initialized mutex. Once the attributes have been used, they can be disposed of by 

a call to pthread_mutex_attr_destroy(). 

 

A mutex can have other attributes set using the same mechanism: 



 The type of mutex. This can be a normal mutex, a mutex that detects errors such as 

multiple attempts to lock the mutex, or a recursive mutex that can be locked multiple 

times and then needs to be unlocked the same number of times. 

 The protocol to follow when another thread is waiting for the mutex. This can be the 

default of no change to thread priority, that the thread holding the mutex inherits the 

priority of any higher-priority thread waiting for the mutex, or that the thread gets the 

highest priority associated with the mutexes held by it. 

 The priority ceiling of the mutex. This is the priority that any lower-priority thread will 

be elevated to while it holds the mutex. The attributes governing the priority of any 

thread holding the mutex are designed to avoid problems of priority inversion where a 

higher-priority thread is waiting for a lower-priority thread to release the mutex. 

 

4. Explain about deadlock and live lock with proper example? 

Dead lock is situation where two or more threads cannot make progress because the 

resources that they need are held by the other threads. It is easiest to explain this with an 

example. Suppose two threads need to acquire mutex locks A and B to complete some task. If 

thread 1 has already acquired lock A and thread 2 has already acquired lock B, then A cannot 

make forward progress because it is waiting for lock B, and thread 2 cannot make progress 

because it is waiting for lock A. The two threads are deadlocked. Listing in following shows this 

situation. 

 

Thread 1      Thread 2 

void update1()     void update2() 

{       { 

acquire(A);      acquire(B); 

acquire(B); <<< Thread 1    acquire(A); <<< Thread 2 

waits here      waits here 

variable1++;      variable1++; 

release(B);      release(B); 

release(A);      release(A); 

}       } 

 

The best way to avoid deadlocks is to ensure that threads always acquire the locks in the 

same order. So if thread 2 acquired the locks in the order A and then B, it would stall while 

waiting for lock A without having first acquired lock B. This would enable thread 1 to acquire B 

and then eventually release both locks, allowing thread 2 to make progress. A livelock traps 

threads in an unending loop releasing and acquiring locks. Livelocks can be caused by code to 



back out of deadlocks. In following code, the programmer has tried to implement a mechanism 

that avoids deadlocks. 

 

 If the thread cannot obtain the second lock it requires, it releases the lock that it already 

holds. The two routines update1() and update2() each have an outer loop. Routine update1() 

acquires lock A and then attempts to acquire lock B, whereas update2() does this in the opposite 

order. This is a classic deadlock opportunity, and to avoid it, the developer has written some 

code that causes the held lock to be released if it is not possible to acquire the second lock. The 

routine canAquire(), in this example, returns immediately either having acquired the lock or 

having failed to acquire the lock. 

 

 

 

Thread 1    Thread 2 

void update1()    void update2() 

{     { 

int done=0;    int done=0; 

while (!done)    while (!done) 

{     { 

acquire(A);    acquire(B); 

if ( canAcquire(B) )   if ( canAcquire(A) ) 

{     { 

variable1++;    variable2++; 

release(B);    release(A); 

release(A);    release(B); 

done=1;    done=1; 

}     } 

else     else 

{     { 

release(A);    release(B); 

}     } 

}     } 

}     } 

If two threads encounter this code at the same time, they will be trapped in a livelock of 

constantly acquiring and releasing mutexes, but it is very unlikely that either will make progress. 

Each thread acquires a lock and then attempts to acquire the second lock that it needs. If it fails 

to acquire the second lock, it releases the lock it is holding, before attempting to acquire both 

locks again. The thread exits the loop when it manages to successfully acquire both locks, which 

will eventually happen, but until then, the application will make no forward progress. 



 

 

 

 

5. Explain various methods for thread communication in UNIX based systems?  

Condition Variables 

 

Condition variables communicate readiness between threads by enabling a thread to be 

woken up when a condition becomes true. Without condition variables, the waiting thread would 

have to use some form of polling to check whether the condition had become true. Condition 

variables work in conjunction with a mutex. The mutex is there to ensure that only one thread at 

a time can access the variable. For example, the producer consumer model can be implemented 

using condition variables. Suppose an application has one producer thread and one consumer 

thread. The producer adds data onto a queue, and the consumer removes data from the queue. If 

there is no data on the queue, then the consumer needs to sleep until it is signaled that an item of 

data has been placed on the queue. Listing in following shows the pseudocode for a producer 

thread adding an item onto the queue. 

 

Producer Thread Adding an Item to the Queue 

Acquire Mutex(); 

Add Item to Queue(); 

If ( Only One Item on Queue ) 

{ 

Signal Conditions Met(); 

} 

Release Mutex(); 

 

The producer thread needs to signal a waiting consumer thread only if the queue was 

empty and it has just added a new item into that queue. If there were multiple items already on 

the queue, then the consumer thread must be busy processing those items and cannot be sleeping. 

If there were no items in the queue, then it is possible that the consumer thread is sleeping and 

needs to be woken up. 

 

 

 

Code for Consumer Thread Removing Items from Queue 

 

Acquire Mutex(); 

Repeat 

Item = 0; 



If ( No Items on Queue() ) 

{ 

Wait on Condition Variable(); 

} 

If (Item on Queue()) 

{ 

Item = remove from Queue(); 

} 

Until ( Item != 0 ); 

Release Mutex(); 

The consumer thread will wait on the condition variable if the queue is empty. When the 

producer thread signals it to wake up, it will first check to see whether there is anything on the 

queue. It is quite possible for the consumer thread to be woken only to find the queue empty; it is 

important to realize that the thread waking up does not imply that the condition is now true, 

which is why the code is in a repeat loop in the example. If there is an item on the queue, then 

the consumer thread can handle that item; otherwise, it returns to sleep. 

 

Signals and Events 

Signals are a UNIX mechanism where one process can send a signal to another process 

and have a handler in the receiving process perform some task upon the receipt of the message. 

Many features of UNIX are implemented using signals. Stopping a running application by 

pressing ^C causes a SIGKILL signal to be sent to the process. Windows has a similar 

mechanism for events. The handling of keyboard presses and mouse moves are performed 

through the event mechanism. Pressing one of the buttons on the mouse will cause a click event 

to be sent to the target window. Signals and events are really optimized for sending limited or no 

data along with the signal, and as such they are probably not the best mechanism for 

communication when compared to other options. Listing in following shows how a signal 

handler is typically installed and how a signal can be sent to that handler. Once the signal handler 

is installed, sending a signal to that thread will cause the signal handler to be executed. 

 

Installing and Using a Signal Handler 

 

void signalHandler(void *signal) 

{ 

... 

} 

int main() 

{ 

installHandler( SIGNAL, signalHandler ); 

sendSignal( SIGNAL ); 



} 

 

Message Queues 

A message queue is a structure that can be shared between multiple processes. Messages 

can be placed into the queue and will be removed in the same order in which they were added. 

Constructing a message queue looks rather like constructing a shared memory segment. The first 

thing needed is a descriptor, typically the location of a file in the file system. This descriptor can 

either be used to create the message queue or be used to attach to an existing message queue. 

Once the queue is configured, processes can place messages into it or remove messages from it. 

Once the queue is finished, it needs to be deleted. Listing in following shows code for creating 

and placing messages into a queue. This code is also responsible for removing the queue after 

use. 

 

 

 

Creating and Placing Messages into a Queue 

 

ID = Open Message Queue Queue( Descriptor ); 

Put Message in Queue( ID, Message ); 

... 

Close Message Queue( ID ); 

Delete Message Queue( Description ); 

 

 

Opening a Queue and Receiving Messages 

 

ID=Open Message Queue ID(Descriptor); 

Message=Remove Message from Queue(ID); 

... 

Close Message Queue(ID); 

 

Named Pipes 

Named pipes are file-like objects that are given a specific name that can be shared 

between processes. Any process can write into the pipe or read from the pipe. There is no 

concept of a “message”; the data is treated as a stream of bytes. The method for using a named 

pipe is much like the method for using a file: The pipe is opened, data is written into it or read 

from it, and then the pipe is closed. Listing in following shows the steps necessary to set up and 



write data into a pipe, before closing and deleting the pipe. One process needs to actually make 

the pipe, and once it has been created, it can be opened and used for either reading or writing. 

Once the process has completed, the pipe can be closed, and one of the processes using it should 

also be responsible for deleting it. 

 

Setting Up and Writing into a Pipe 

 

Make Pipe( Descriptor ); 

ID = Open Pipe( Descriptor ); 

Write Pipe( ID, Message, sizeof(Message) ); 

... 

Close Pipe( ID ); 

Delete Pipe( Descriptor ); 

 

Opening an Existing Pipe to Receive Messages 

 

ID=Open Pipe( Descriptor ); 

Read Pipe( ID, buffer, sizeof(buffer) ); 

... 

Close Pipe( ID ); 

 

 

Unit 3:  SHARED MEMORY PROGRAMMING WITH OpenMP 

 

Part A 

 

1. Define openMP programming ? 

Like Pthreads, OpenMP is an API for shared-memory parallel programming. The 

“MP” in OpenMP stands for “multiprocessing,” a term that is synonymous with 

shared-memory parallel computing. Thus, OpenMP is designed for systems in which 

each thread or process can potentially have access to all available memory, and, when 

we’re programming with OpenMP, we view our system as a collection of cores or 

CPUs, all of which have access to main memory. 

 

2. Write a procedure to run openMP program? 

 



To compile this with gcc we need to include the fopenmp option: 

 

$ gcc  -g  -Wall -fopenmp -o omp -hello omp -hello.c 

 

       To run the program, we specify the number of threads on the command line. 

For example, we might run the program with four threads and type 

$ ./omp hello 4 

 

 

 

3. What is SECTIONS Directive? 

The SECTIONS directive is a non-iterative work-sharing construct. It specifies that 

the enclosed section(s) of code are to be divided among the threads in the team. 

Independent SECTION directives are nested within a SECTIONS directive. Each 

SECTION is executed once by a thread in the team. Different sections may be 

executed by different threads. It is possible for a thread to execute more than one 

section if it is quick enough and the implementation permits such. 

4. What is SINGLE Directive? 

The SINGLE directive specifies that the enclosed code is to be executed by only one 

thread in the team. May be useful when dealing with sections of code that are not 

thread safe (such as I/O) 

5. What is the purpose of TASK construct in openMP? 

The TASK construct defines an explicit task, which may be executed by the 

encountering thread, or deferred for execution by any other thread in the team.The 

data environment of the task is determined by the data sharing attribute clauses. 

6. What is the purpose of FLUSH operation in openMP? 

Even when variables used by threads are supposed to be shared, the compiler may 

take liberties and optimize them as register variables. This can skew concurrent 

observations of the variable. The flush directive can be used to ensure that the value 

observed in one thread is also the value observed by other threads. 

7. Write the steps to move data between threads? 

To move the value of a shared var from thread a to thread b, do the following in 

exactly this order:  



 Write var on thread a 

 Flush var on thread a 

 Flush var on thread b  

 Read var on thread b 

 

8. Define task parallelism? 

Task parallelism (also known as function parallelism and control parallelism) is a 

form of parallelization of computer code across multiple processors in parallel 

computingenvironments. Task parallelism focuses on distributing tasks—concretely 

performed by processes or threads—across different processors. It contrasts to data 

parallelism as another form of parallelism. 

 

9. What is the thread-level parallelism? 

Thread-level parallelism (TLP) is the parallelism inherent in an application that runs 

multiple threads at once. This type of parallelism is found largely in applications 

written for commercial servers such as databases. By running many threads at once, 

these applications are able to tolerate the high amounts of I/O and memory system 

latency their workloads can incur - while one thread is delayed waiting for a memory 

or disk access, other threads can do useful work. 

 

10. What is the need for CRITICAL construct? 

The critical construct restricts the execution of the associated statement / block to a 

single thread at time. The critical construct may optionally contain a global name that 

identifies the type of the critical construct. No two threads can execute 

a critical construct of the same name at the same time. 

 

11. Define thread safe? Give an example. 

 

A block of code is thread-safe if it can be simultaneously executed by multiple 

threads without causing problems. As an example, suppose we want to use multiple 

threads to “tokenize” a file. Let’s suppose that the file consists of ordinary English 

text, and that the tokens are just contiguous sequences of characters separated from 

the rest of the text by white space—spaces, tabs, or newlines. A simple approach to 

this problem is to divide the input file into lines of text and assign the lines to the 

threads in a round-robin fashion: the first line goes to thread 0, the second goes to 

thread 1, . . . , the tth goes to thread t, the t+1st goes to thread 0, and so on. 

 

12. How to reduce false sharing in multi core architecture? 

 changing the structure and use of shared data into private data, 
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 increasing the problem size (iteration length), 

 changing the mapping of iterations to processors to give each processor more 

work per iteration (chunk size), 

 utilizing the compiler's optimization features to eliminate memory loads and 

stores 

13. what is BARRIER Directive? 

The BARRIER directive synchronizes all threads in the team.When a BARRIER 

directive is reached, a thread will wait at that point until all other threads have 

reached that barrier. All threads then resume executing in parallel the code that 

follows the barrier. 

14. What are the different work sharing constructs in opemMP? 

 

 Do-For Directive 

 Section Directive 

 Single Directive 

 

 

 

15. What are the main components of openMP API? 

The OpenMP API is comprised of three distinct components. They are 

 Compiler Directives  

 Runtime Library Routines  

 Environment Variables  

 

16. Mention the difference between parallel and parallel for directive? 

The difference between parallel, parallel for and for is as follows: 

 A team is the group of threads that execute currently. 

o At the program beginning, the team consists of a single thread. 

o A parallel construct splits the current thread into a new team of threads for 

the duration of the next block/statement, after which the team merges back 

into one. 



 for divides the work of the for-loop among the threads of the current team. It does 

not create threads, it only divides the work amongst the threads of the currently 

executing team. 

 parallel for is a shorthand for two commands at once: parallel and for. Parallel 

creates a new team, and for splits that team to handle different portions of the 

loop. 

17. What are the unique features of openMP? 

 Open MP consists of set of compiler directions and library support functions. 

 It work along with programming language like Fortran, C and C++ 

 It provides shared memory parallel programming 

 Special pre-processor instructions are used in C,C++  to implement open mp 

parallel program known as “pragma”. 

 

18. List the different directives used in OpenMP? 

 Parallel 

 Parallel For 

 Critical 

 For 

 Single 

 Sections 

 Master 

 No wait 

 Barrier 

 Atomic 

 Flush 

 Task 

 

19. What is parallel for Directive? 

The parallel for directive instructs the system to parallelize the ‘for’ loop by 

dividing the loop iterations among the threads. It is different from parallel directive 

and make block partitioning of the for loop in which if there are n iteration in the for 

loop, it divides as ‘n/threadcount’ that is assigned to thread ‘0’and the next 

‘n/threadcount’ that is assigned to thread 1 and so on. 

 

 

20. What is parallel section directive? 

The parallel section directive is open MP make concurrent execution of the same 

code by multiple threads, and the syntax is as follows, 

 



# pragma omp parallel sections 

{ 

//block of code 

} 

 

 

Part B 

1. Explain about Openmp work sharing construct in detail. 

Work-Sharing Constructs 

 A work-sharing construct divides the execution of the enclosed code region among the 

members of the team that encounter it. 

 Work-sharing constructs do not launch new threads 

 There is no implied barrier upon entry to a work-sharing construct, however there is an 

implied barrier at the end of a work sharing construct. 

 Types of Work-Sharing Constructs: 

NOTE: The Fortran workshare construct is not shown here. 

DO / for - shares iterations 

of a loop across the team. 

Represents a type of "data 

parallelism". 

SECTIONS - breaks work 

into separate, discrete 

sections. Each section is 

executed by a thread. Can 

be used to implement a 

type of "functional 

parallelism". 

SINGLE - serializes a section 

of code 



 

 

 

Figure 3.1 different  workflow construct of openMP 

 Restrictions: 

 A work-sharing construct must be enclosed dynamically within a parallel region in order 

for the directive to execute in parallel. 

 Work-sharing constructs must be encountered by all members of a team or none at all 

 Successive work-sharing constructs must be encountered in the same order by all 

members of a team 

DO / for Directive 

 Purpose: 

 The DO / for directive specifies that the iterations of the loop immediately following it 

must be executed in parallel by the team. This assumes a parallel region has already been 

initiated, otherwise it executes in serial on a single processor. 

Format: 

#pragma omp for [clause ...]  newline  

                schedule (type [,chunk])  



                ordered 

                private (list)  

                firstprivate (list)  

                lastprivate (list)  

                shared (list)  

                reduction (operator: list)  

                collapse (n)  

                nowait  

 

   for_loop 

 

 Clauses: 

 SCHEDULE: Describes how iterations of the loop are divided among the threads in the 

team. The default schedule is implementation dependent. 

STATIC 

Loop iterations are divided into pieces of size chunk and then statically assigned 

to threads. If chunk is not specified, the iterations are evenly (if possible) divided 

contiguously among the threads. 

DYNAMIC 

Loop iterations are divided into pieces of size chunk, and dynamically scheduled 

among the threads; when a thread finishes one chunk, it is dynamically assigned another. 

The default chunk size is 1. 

 

GUIDED 

Iterations are dynamically assigned to threads in blocks as threads request them 

until no blocks remain to be assigned. Similar to DYNAMIC except that the block size 

decreases each time a parcel of work is given to a thread. The size of the initial block is 

proportional to: 

 

number_of_iterations / number_of_threads 

Subsequent blocks are proportional to 

number_of_iterations_remaining / number_of_threads 

The chunk parameter defines the minimum block size. The default chunk size is 1. 

 

RUNTIME 

The scheduling decision is deferred until runtime by the environment variable 

OMP_SCHEDULE. It is illegal to specify a chunk size for this clause. 

AUTO 



The scheduling decision is delegated to the compiler and/or runtime system. 

 NO WAIT / nowait: If specified, then threads do not synchronize at the end of the 

parallel loop. 

 ORDERED: Specifies that the iterations of the loop must be executed as they would be 

in a serial program. 

 COLLAPSE: Specifies how many loops in a nested loop should be collapsed into one 

large iteration space and divided according to the schedule clause. The sequential 

execution of the iterations in all associated loops determines the order of the iterations in 

the collapsed iteration space. 

 Restrictions 

 The DO loop can not be a DO WHILE loop, or a loop without loop control. Also, the 

loop iteration variable must be an integer and the loop control parameters must be the 

same for all threads. 

 Program correctness must not depend upon which thread executes a particular iteration. 

 It is illegal to branch (goto) out of a loop associated with a DO/for directive. 

 The chunk size must be specified as a loop invarient integer expression, as there is no 

synchronization during its evaluation by different threads. 

 ORDERED, COLLAPSE and SCHEDULE clauses may appear once each. 

 See the OpenMP specification document for additional restrictions. 

 

Example 

#include <omp.h> 

 #define N 1000 

 #define CHUNKSIZE 100 

 

 main(int argc, char *argv[]) { 

 

 int i, chunk; 

 float a[N], b[N], c[N]; 

 

 /* Some initializations */ 

 for (i=0; i < N; i++) 

   a[i] = b[i] = i * 1.0; 

 chunk = CHUNKSIZE; 

 

 #pragma omp parallel shared(a,b,c,chunk) private(i) 



   { 

 

   #pragma omp for schedule(dynamic,chunk) nowait 

   for (i=0; i < N; i++) 

     c[i] = a[i] + b[i]; 

 

   }   /* end of parallel region */ 

 

 } 

 

SECTIONS Directive 

 Purpose: 

 The SECTIONS directive is a non-iterative work-sharing construct. It specifies that the 

enclosed section(s) of code are to be divided among the threads in the team. 

 Independent SECTION directives are nested within a SECTIONS directive. Each 

SECTION is executed once by a thread in the team. Different sections may be executed 

by different threads. It is possible for a thread to execute more than one section if it is 

quick enough and the implementation permits such. 

Clauses: 

 There is an implied barrier at the end of a SECTIONS directive, unless 

the NOWAIT/nowait clause is used. 

 Format: 

#pragma omp sections [clause ...]  newline  

                     private (list)  

                     firstprivate (list)  

                     lastprivate (list)  

                     reduction (operator: list)  

                     nowait 

  { 

 

  #pragma omp section   newline  

 

     structured_block 



 

  #pragma omp section   newline  

 

     structured_block 

 

  } 

 Restrictions: 

 It is illegal to branch (goto) into or out of section blocks. 

 SECTION directives must occur within the lexical extent of an enclosing SECTIONS 

directive (no orphan SECTIONs). 

Example: 

#include <omp.h> 

 #define N 1000 

 

 main(int argc, char *argv[]) { 

 

 int i; 

 float a[N], b[N], c[N], d[N]; 

 

 /* Some initializations */ 

 for (i=0; i < N; i++) { 

   a[i] = i * 1.5; 

   b[i] = i + 22.35; 

   } 

 

 #pragma omp parallel shared(a,b,c,d) private(i) 

   { 

 

   #pragma omp sections nowait 

     { 

 

     #pragma omp section 

     for (i=0; i < N; i++) 

       c[i] = a[i] + b[i]; 

 

     #pragma omp section 



     for (i=0; i < N; i++) 

       d[i] = a[i] * b[i]; 

 

     }  /* end of sections */ 

 

   }  /* end of parallel region */ 

} 

SINGLE Directive 

Purpose: 

 The SINGLE directive specifies that the enclosed code is to be executed by only one 

thread in the team. 

 May be useful when dealing with sections of code that are not thread safe (such as I/O) 

Format: 

#pragma omp single [clause ...]  newline  

                   private (list)  

                   firstprivate (list)  

                   nowait 

 

     structured_block 

Clauses: 

 Threads in the team that do not execute the SINGLE directive, wait at the end of the 

enclosed code block, unless a NOWAIT/nowait clause is specified. 

Restrictions: 

 It is illegal to branch into or out of a SINGLE block. 

2. Explain about execution model of openMP in detail 

Shared Memory Model: 

OpenMP is designed for multi-processor/core, shared memory machines. The underlying 

architecture can be shared memory UMA or NUMA. 



 

 

Uniform Memory Access Non-Uniform Memory Access 

 Thread Based Parallelism: 

 OpenMP programs accomplish parallelism exclusively through the use of threads. 

 A thread of execution is the smallest unit of processing that can be scheduled by an 

operating system. The idea of a subroutine that can be scheduled to run autonomously 

might help explain what a thread is. 

 Threads exist within the resources of a single process. Without the process, they cease to 

exist. 

 Typically, the number of threads match the number of machine processors/cores. 

However, the actual use of threads is up to the application. 

 Explicit Parallelism: 

 OpenMP is an explicit (not automatic) programming model, offering the programmer full 

control over parallelization. 

 Parallelization can be as simple as taking a serial program and inserting compiler 

directives.... 

 Or as complex as inserting subroutines to set multiple levels of parallelism, locks and 

even nested locks. 

 

 Fork - Join Model: 



 OpenMP uses the fork-join model of parallel 

execution: 

 
 All OpenMP programs begin as a single process: the master thread. The master thread 

executes sequentially until the first parallel region construct is encountered. 

 FORK: the master thread then creates a team of parallel threads. 

 The statements in the program that are enclosed by the parallel region construct are then 

executed in parallel among the various team threads. 

 JOIN: When the team threads complete the statements in the parallel region construct, 

they synchronize and terminate, leaving only the master thread. 

 The number of parallel regions and the threads that comprise them are arbitrary. 

 Compiler Directive Based: 

 Most OpenMP parallelism is specified through the use of compiler directives which are 

imbedded in C/C++ or Fortran source code. 

 Nested Parallelism: 

 The API provides for the placement of parallel regions inside other parallel regions. 

 Implementations may or may not support this feature. 

 Dynamic Threads: 

 The API provides for the runtime environment to dynamically alter the number of threads 

used to execute parallel regions. Intended to promote more efficient use of resources, if 

possible. 

 Implementations may or may not support this feature. 

I/O: 



 OpenMP specifies nothing about parallel I/O. This is particularly important if multiple 

threads attempt to write/read from the same file. 

 If every thread conducts I/O to a different file, the issues are not as significant. 

 It is entirely up to the programmer to ensure that I/O is conducted correctly within the 

context of a multi-threaded program. 

Example Program: 

 

 

Compiling and running OpenMP programs 

To compile this with gcc we need to include the -fopenmp option: 

 

$ gcc  -g  -Wall   -fopenmp  -o omp _hello  omp_ hello.c 

To run the program, we specify the number of threads on the command line.  For example, we 

might run the program with four threads and type 

 

   $ ./omp hello 4 

 

 

 

 

 



3. Explain about how loop is handled in open mp with example? 

 

The parallel for directive 

  OpenMP provides the parallel for directive for parallizing the the looping construct. 

Using it, we can parallelize the serial trapezoidal rule 

 

h = (b-a)/n; 

approx = (f(a) + f(b))/2.0; 

for (i = 1; i <= n1; i++) 

approx += f(a + i_h); 

approx = h_approx; 

 

by simply placing a directive immediately before the for loop: 

 

h = (b-a)/n; 

approx = (f(a) + f(b))/2.0; 

# pragma omp parallel for num_ threads(thread count)  

reduction(+: approx) 

for (i = 1; i <= n-1; i++) 

approx += f(a + i*h); 

approx = h*approx; 

 

 

Like the parallel directive, the parallel for directive forks a team of threads to execute the 

following structured block. However, the structured block following the parallel for directive 

must be a for loop. Furthermore, with the parallel for directive the system parallelizes the for 

loop by dividing the iterations of the loop among the threads. The parallel for directive is 

therefore very different from the parallel directive, because in a block that is preceded by a 

parallel directive, in general, the work must be divided among the threads by the threads 

themselves. 

 

 

In a for loop that has been parallelized with a parallel for directive, the default 

partitioning, that is, of the iterations among the threads is up to the system. However, most 

systems use roughly a block partitioning, that is, if there are m iterations, then roughly the first 

m=thread count are assigned to thread 0, the next m=thread count are assigned to thread 1, and so 

on. Note that it was essential that we made approx a reduction variable. 

 If we hadn’t, it would have been an ordinary shared variable, and the body of the loop 

approx += f(a + i*h); would be an unprotected critical section. However, speaking of scope, the 

default scope for all variables in a parallel directive is shared, but in our parallel for if the loop 



variable i were shared, the variable update, i++, would also be an unprotected critical section. 

Hence, in a loop that is parallelized with a parallel for directive, the default scope of the loop 

variable is private; in our code, each thread in the team has its own copy of i. 

 

 

 

Caveats 

This is truly wonderful: It may be possible to parallelize a serial program that consists of 

one large for loop by just adding a single parallel for directive. It may be possible to 

incrementally parallelize a serial program that has many for loops by successively placing 

parallel for directives before each loop. However, things may not be quite as rosy as they seem. 

There are several caveats associated with the use of the parallel for directive. First, OpenMP will 

only parallelize for loops. It won’t parallelize while loops or do-while loops. This may not seem 

to be too much of a limitation, since any code that uses a while loop or a do-while loop can be 

converted to equivalent code that uses a for loop instead. 

 

However, OpenMP will only parallelize for loops for which the number of iterations 

can be determined  

 from the for statement itself (that is, the code for (. . . ; . . . ; . . .)),and  

 prior to execution of the loop. 

 

For example, the “infinite loop” 

for ( ; ; )  

{ . . . 

} 

 

cannot be parallelized. Similarly, the loop 

 

for (i = 0; i < n; i++) { 

 if ( . . . ) break; 

. . . 

} 

cannot be parallelized, since the number of iterations can’t be determined from the for statement 

alone. This for loop is also not a structured block, since the break adds another point of exit 

from the loop. 

In fact, OpenMP will only parallelize for loops that are in canonical form. Loops in canonical 

form take one of the forms shown in figure. The variables and expressions in this template are 

subject to some fairly obvious restrictions:  

 The variable index must have integer or pointer type (e.g., it can’t be a float).  



 The expressions start, end, and incr must have a compatible type. For example,if index is 

a pointer, then incr must have integer type.  

 The expressions start, end, and incr must not change during execution of the loop.  

 During execution of the loop, the variable index can only be modified by the 

“increment expression” in the for statement. 

 

 

 

 
 

 

Data dependences 

A more insidious problem occurs in loops in which the computation in one iteration 

depends on the results of one or more previous iterations. As an example, consider the following 

code, which computes the first n fibonacci numbers: 

 

fibo[0] = fibo[1] = 1; 

for (i = 2; i < n; i++) 

fibo[i] = fibo[i-1] + fibo[i-2]; 

 

let’s try parallelizing the for loop with a parallel for directive: 

 

 

fibo[0] = fibo[1] = 1; 

# pragma omp parallel for num threads(thread count) 

for (i = 2; i < n; i++) 

fibo[i] = fibo[i-1] + fibo[i-2]; 

 

 

The compiler will create an executable without complaint. However, if we try running it 

with more than one thread, we may find that the results are, at best, unpredictable. For example, 

on one of our systems if we try using two threads to compute the first 10 Fibonacci numbers, we 

sometimes get 

1 1 2 3 5 8 13 21 34 55, 

which is correct. However, we also occasionally get 



1 1 2 3 5 8 0 0 0 0. 

 

 

Finding loop-carried dependences 

Perhaps the first thing to observe is that when we’re attempting to use a parallel for 

directive, we only need to worry about loop-carried dependences. We don’t need to worry about 

more general data dependences.  

 

For example, in the loop 

for (i = 0; i < n; i++) { 

  x[i] = a + i_h; 

 y[i] = exp(x[i]); 

} 

there is a data dependence between Lines 2 and 3. However, there is no problem with the 

parallelization 

 

 # pragma omp parallel for num threads(thread count) 

 for (i = 0; i < n; i++)  { 

 x[i] = a + i_h; 

 y[i] = exp(x[i]); 

 } 

since the computation of x[i] and its subsequent use will always be assigned to the same 

thread. Also observe that at least one of the statements must write or update the variable in order 

for the statements to represent a dependence, so in order to detect a loop carried dependence, we 

should only concern ourselves with variables that are updated by the loop body. That is, we 

should look for variables that are read or written in one iteration, and written in another. 

 

 

4. Explain about various Open MP Directives? 

 

The open MP parallel shared memory programming has number of directives to support 

parallel programming. The open MP compiler directive in C or C++ is called 

“PRAGMA”. The pragma is used to communicate the information to the compiler. The 

information that are provided by the pragma help the compiler to optimize the program. 

The pragma begins with “#” character and the syntax is as follows. 

 

#pargma omp  <pragma directive of openMP> 

 

ATOMIC Directive 



Purpose: 

The ATOMIC directive specifies that a specific memory location must be updated atomically, 

rather than letting multiple threads attempt to write to it. In essence, this directive provides a 

mini-CRITICAL section. 

Format: 

#pragma omp atomic  newline 

 

   statement_expression 

Restrictions: 

 The directive applies only to a single, immediately following statement 

 An atomic statement must follow a specific syntax. See the most recent OpenMP specs 

for this. 

BARRIER Directive 

Purpose: 

 The BARRIER directive synchronizes all threads in the team. 

 When a BARRIER directive is reached, a thread will wait at that point until all other 

threads have reached that barrier. All threads then resume executing in parallel the code 

that follows the barrier. 

Format: 

#pragma omp barrier  newline 

 

Restrictions: 

 All threads in a team (or none) must execute the BARRIER region. 

 The sequence of work-sharing regions and barrier regions encountered must be the same 

for every thread in a team. 

CRITICAL Directive 

Purpose: 



 The CRITICAL directive specifies a region of code that must be executed by only one 

thread at a time. 

Format: 

#pragma omp critical [ name ]  newline 

 

   structured_block 

Restrictions: 

 It is illegal to branch into or out of a CRITICAL block. 

 

MASTER Directive 

 Purpose: 

 The MASTER directive specifies a region that is to be executed only by the master thread 

of the team. All other threads on the team skip this section of code 

 There is no implied barrier associated with this directive 

 Format: 

#pragma omp master  newline 

 

   structured_block 

Restrictions: 

 It is illegal to branch into or out of MASTER block. 

TASK Construct 

Purpose: 

 The TASK construct defines an explicit task, which may be executed by the encountering 

thread, or deferred for execution by any other thread in the team. 

 The data environment of the task is determined by the data sharing attribute clauses. 

 Task execution is subject to task scheduling 

Format: 



#pragma omp task [clause ...]  newline  

                   if (scalar expression)  

                   final (scalar expression)  

                   untied 

                   default (shared | none) 

                   mergeable 

                   private (list)  

                   firstprivate (list)  

                   shared (list)  

 

     structured_block 

 

SINGLE Directive 

 Purpose: 

 The SINGLE directive specifies that the enclosed code is to be executed by only one 

thread in the team. 

 May be useful when dealing with sections of code that are not thread safe (such as I/O) 

Format: 

#pragma omp single [clause ...]  newline  

                   private (list)  

                   firstprivate (list)  

                   nowait 

 

     structured_block 

Clauses: 

 Threads in the team that do not execute the SINGLE directive, wait at the end of the 

enclosed code block, unless a NOWAIT/nowait clause is specified. 

Restrictions: 

 It is illegal to branch into or out of a SINGLE block. 

SECTIONS Directive 

Purpose: 

 The SECTIONS directive is a non-iterative work-sharing construct. It specifies that the 

enclosed section(s) of code are to be divided among the threads in the team. 



 Independent SECTION directives are nested within a SECTIONS directive. Each 

SECTION is executed once by a thread in the team. Different sections may be executed 

by different threads. It is possible for a thread to execute more than one section if it is 

quick enough and the implementation permits such. 

Format: 

#pragma omp sections [clause ...]  newline  

                     private (list)  

                     firstprivate (list)  

                     lastprivate (list)  

                     reduction (operator: list)  

                     nowait 

  { 

 

  #pragma omp section   newline  

 

     structured_block 

 

  #pragma omp section   newline  

 

     structured_block 

 

  } 

 

Clauses: 

 There is an implied barrier at the end of a SECTIONS directive, unless 

the NOWAIT/nowait clause is us 

Restrictions: 

 It is illegal to branch (goto) into or out of section blocks. 

 SECTION directives must occur within the lexical extent of an enclosing SECTIONS 

directive (no orphan SECTIONs). 

 

Parallel Directive  



The  parallel open MP directive is one which start multiple threads. It instructs the 

runtime system to execute the structured block of code in parallel 

Parallel directive may fork or several threads  to execute the structured block. 

The structured block of code is one which has a single entry the exit point. 

The number of threads that are generated for structured code block is system dependent. 

The group of threads executing the code block is called as team. 

The thread before executed before parallel thread is called master thread. 

The threads that are executed by the parallel directive is called slave threads. 

 

Format : 

#pargma omp parallel 

{ 

//block of code 

} 

For Directive  

The for directive is used to instruct the loop scheduling and partitioning information to be 

instructed to the compiler.  

The scheduling type can be as follows 

Static 

Loop iterations are divided into pieces of size chunk and then statically assigned 

to threads. If chunk is not specified, the iterations are evenly (if possible) divided 

contiguously among the threads. 

 

Dynamic 



Loop iterations are divided into pieces of size chunk, and dynamically scheduled 

among the threads; when a thread finishes one chunk, it is dynamically assigned another. 

The default chunk size is 1. 

 

Guided 

Iterations are dynamically assigned to threads in blocks as threads request them until no 

blocks remain to be assigned. Similar to DYNAMIC except that the block size decreases each 

time a parcel of work is given to a thread. 

Runtime 

The scheduling decision is deferred until runtime by the environment variable 

OMP_SCHEDULE. It is illegal to specify a chunk size for this clause.  

 

Auto  

The scheduling decision is delegated to the compiler and/or runtime system. 

 

Format: 

#pragma omp for [clause ...]  newline  

                schedule (type [,chunk])  

                ordered 

                private (list)  

                firstprivate (list)  

                lastprivate (list)  

                shared (list)  

                reduction (operator: list)  

                collapse (n)  

                nowait  

 

   for_loop 

Parallel For 

The parallel for directive instructs the system to parallelize the ‘for’ loop by dividing the 

loop iterations among the threads. It is different from parallel directive and make block 

partitioning of the for loop in which if there are n iteration in the for loop, it divides as 

‘n/threadcount’ that is assigned to thread ‘0’and the next ‘n/threadcount’ that is assigned to 

thread 1 and so on. 



Format  

#pragma omp Parallel For 

{ 

//block of code 

} 

Flush Directive 

 Purpose: 

 The FLUSH directive identifies a synchronization point at which the implementation 

must provide a consistent view of memory. Thread-visible variables are written back to 

memory at this point. 

 Open mp explicitly make a developer to indicate the code where the variable needs to be 

saved to memory or loaded from memory using Flush directive. 

Format 

 #pragma omp flush (list)  newline 

 

 

5. Explain the various Library functions in OpenMP in detail. 

OMP_SET_NUM_THREADS 

Purpose: 

 Sets the number of threads that will be used in the next parallel region. Must be a postive 

integer. 

Format: 

#include <omp.h> 

void omp_set_num_threads(int num_threads) 

Notes & Restrictions: 



 The dynamic threads mechanism modifies the effect of this routine. 

o Enabled: specifies the maximum number of threads that can be used for any 

parallel region by the dynamic threads mechanism. 

o Disabled: specifies exact number of threads to use until next call to this routine. 

 This routine can only be called from the serial portions of the code 

 This call has precedence over the OMP_NUM_THREADS environment variable 

 

OMP_GET_NUM_THREADS 

Purpose: 

 Returns the number of threads that are currently in the team executing the parallel region 

from which it is called. 

 Format: 

#include <omp.h> 

int omp_get_num_threads(void) 

 Notes & Restrictions: 

 If this call is made from a serial portion of the program, or a nested parallel region that is 

serialized, it will return 1. 

 The default number of threads is implementation dependent. 

 

OMP_GET_MAX_THREADS 

 Purpose: 

 Returns the maximum value that can be returned by a call to the 

OMP_GET_NUM_THREADS function. 

Format 

#include <omp.h> 

int omp_get_max_threads(void) 



 Notes & Restrictions: 

 Generally reflects the number of threads as set by the OMP_NUM_THREADS 

environment variable or the OMP_SET_NUM_THREADS() library routine. 

 May be called from both serial and parallel regions of code. 

 

OMP_GET_THREAD_NUM 

 Purpose: 

 Returns the thread number of the thread, within the team, making this call. This number 

will be between 0 and OMP_GET_NUM_THREADS-1. The master thread of the team is 

thread 0 

 Format: 

#include <omp.h> 

int omp_get_thread_num(void) 

Notes & Restrictions: 

 If called from a nested parallel region, or a serial region, this function will return 0. 

 

OMP_GET_THREAD_LIMIT 

 Purpose: 

 Returns the maximum number of OpenMP threads available to a program. 

 Format: 

#include <omp.h> 

int omp_get_thread_limit (void) 

 Notes: 

 Also see the OMP_THREAD_LIMIT environment variable. 



 

OMP_GET_NUM_PROCS 

 Purpose: 

 Returns the number of processors that are available to the program. 

 Format: 

#include <omp.h> 

int omp_get_num_procs(void) 

 

OMP_IN_PARALLEL 

 Purpose: 

 May be called to determine if the section of code which is executing is parallel or not. 

 Format: 

#include <omp.h> 

int omp_in_parallel(void) 

 Notes & Restrictions: 

 For C/C++, it will return a non-zero integer if parallel, and zero otherwise. 

OMP_SET_DYNAMIC 

 Purpose: 

 Enables or disables dynamic adjustment (by the run time system) of the number of 

threads available for execution of parallel regions. 

 Format: 

#include <omp.h> 



void omp_set_dynamic(int dynamic_threads) 

 Notes & Restrictions: 

 For C/C++, if dynamic_threads evaluates to non-zero, then the mechanism is enabled, 

otherwise it is disabled. 

 The OMP_SET_DYNAMIC subroutine has precedence over the OMP_DYNAMIC 

environment variable. 

 The default setting is implementation dependent. 

 Must be called from a serial section of the program. 

 

OMP_GET_DYNAMIC 

 Purpose: 

 Used to determine if dynamic thread adjustment is enabled or not. 

 Format: 

#include <omp.h> 

int omp_get_dynamic(void) 

 Notes & Restrictions: 

 For C/C++, non-zero will be returned if dynamic thread adjustment is enabled, and zero 

otherwise. 

 

OMP_SET_NESTED 

 Purpose: 

 Used to enable or disable nested parallelism. 

 Format: 

#include <omp.h> 

void omp_set_nested(int nested) 



 Notes & Restrictions: 

 For C/C++, if nested evaluates to non-zero, nested parallelism is enabled; otherwise it is 

disabled. 

 The default is for nested parallelism to be disabled. 

 This call has precedence over the OMP_NESTED environment variable 

 

 

 

Unit 4: DISTRIBUTED MEMORY PROGRAMMING WITH MPI 

Part A 

1. What is the difference between distributed and shared memory architecture? 

In computer science, distributed shared memory (DSM) is a form of memory architecture 

where the (physically separate) memories can be addressed as one (logically shared) 

address space. Here, the term "shared" does not mean that there is a single centralized 

memory but "shared" essentially means that the address space is shared (same physical 

address on two processors refers to the same location in memory). 

 

2. What is difference between MPI_INIT and MPI_FINALIZE method? 

MPI Init tells the MPI system to do all of the necessary setup. For example, it might allocate 

storage for message buffers, and it might decide which process gets which rank. As a rule of 

thumb, no other MPI functions should be called before the program calls MPI Init. 

MPI Finalize tells the MPI system that we’re done using MPI, and that any resources 

allocated for MPI can be freed. 

 

3. What is communicator in MPI? 

In MPI a communicator is a collection of processes that can send messages to each 

other. One of the purposes of MPI Init is to define a communicator that consists of 

all of the processes started by the user when she started the program. 

 

4. What is the purpose of MPI_SEND and MPI_Recv method? 

In MPI one process can send message to other process through the MPI_send method. It 

has the following syntax: 

int MPI Send(void *msg buf _p , int msg size _ in, MPI Datatype  msg type  

int dest , int tag , MPI Comm communicator ); 

 

The first three arguments, msg buf p, msg size, and msg type, determine the contents 



of the message. The remaining arguments, dest, tag, and communicator, 

determine the destination of the message. 

 

In MPI MPI_Recv method used by the destination process to receive the message form 

source . it has the following format. 

int MPI Recv( void *msg buf p , int buf size , MPI Datatype buf type , int source , int 

tag , MPI Comm communicator , MPI _Status *status _p); 

 

Thus, the first three arguments specify the memory available for receiving the 

message: msg buf p points to the block of memory, buf size determines the number of 

objects that can be stored in the block, and buf type indicates the type of the objects. The 

next three arguments identify the message. The source argument specifies the process 

from which the message should be received. The tag argument should match the tag 

argument of the message being sent, and the communicator argument must match the 

communicator used by the sending process. 

 

5. Define trapezoidal rule? 

we can use the trapezoidal rule to approximate the area between the graph of a function, y 

= f (x), two vertical lines, and the x-axis. The basic idea is to divide the interval on the x-

axis into n equal subintervals. Then we approximate the area lying between the graph and 

each subinterval by a trapezoid whose base is the subinterval, whose vertical sides are the 

vertical lines through the endpoints of the subinterval, and whose fourth side is the secant 

line joining the points where the vertical lines cross the graph. 

 

 

6. Why MPI_Reduce is used  in MPI communication? 

Similar to MPI_Gather, MPI_Reduce takes an array of input elements on each process 

and returns an array of output elements to the root process. The output elements contain 

the reduced result. The prototype for MPI_Reduce looks like this: 

MPI_Reduce( void* send_data,  void* recv_data, int count, MPI_Datatype datatype, 

    MPI_Op op,  int root,  MPI_Comm communicator) 

 

 

7. Define collective communications? 

Unlike the MPI Send-MPI Recv pair, the global-sum function may involve more than 

two processes. In fact, in trapezoidal rule program it will involve all the processes 

in MPI COMM WORLD. In MPI parlance, communication functions that involve all the 

processes in a communicator are called collective communications. 

 



8. What is point to point communication? 

Communication between two process using MPI _Send ( )  and MPI _Recv( ) methods is 

called as point –point communication. 

 

 

 

9. Difference between collective and point to point communication? 

Point-to-point communications are matched on the basis of tags and communicators. 

Collective communications don’t use tags, so they’re matched solely on the basis of the 

communicator and the order in which they’re called. 

 

10. Define broadcast in MPI? 

A collective communication in which data belonging to a single process is sent to all of 

the processes in the communicator is called a broadcast 

 

11. What is cyclic partition? 

An alternative to a block partition is a cyclic partition. In a cyclic partition, we assign the 

components in a round robin fashion.  For an example when n =12 and comm._sz =3. 

Process 0 gets component 0, process 1 gets component 1, process 2 gets component 2, 

process 0 gets component 3, and so on 

 

12. What is block-cyclic partition? 

The idea here is that instead 

of using a cyclic distribution of individual components, we use a cyclic distribution 

of blocks of components, so a block-cyclic distribution isn’t fully specified 

until we decide how large the blocks are. 

 

13. What is MPI_Scatter function? 

MPI_Scatter is a collective routine that is very similar  to MPI_Bcast. 

 MPI_Scatterinvolves a designated root process sending data to all processes in a 

communicator. The primary difference between MPI_Bcast  and MPI_Scatteris small but 

important. MPI_Bcast sends the same piece of data to all processes 

while MPI_Scatter sends chunks of an array to different processes.  

 

14. Difference between MPI_Gather and MPI_AllGather? 

MPI_Gather is the inverse of MPI_Scatter. Instead of spreading elements from one 

process to many processes, MPI_Gather takes elements from many processes and gathers 

them to one single process. This routine is highly useful to many parallel algorithms, such 

as parallel sorting and searching. 

 



Given a set of elements distributed across all processes, MPI_Allgather will gather all of 

the elements to all the processes. In the most basic sense, MPI_Allgather is 

an MPI_Gather followed by an MPI_Bcast. It follows many to many communication 

pattern. 

 

15. How to create derived data type in MPI? 

In MPI, a derived datatype can be used to represent any collection of data items 

in memory by storing both the types of the items and their relative locations in 

memory. 

We can use MPI Type create struct to build a derived datatype that consists of 

individual elements that have different basic types: 

 

int MPI Type create struct( int count, int array of blocklengths[] , MPI __Aint array of 

displacements[] , MPI_ Datatype array of types[] , MPI _Datatype  *new type_ p ); 

 

 

 

16. What is MPI? 

Programming model for distributed memory system is done through message passing 

interface(MPI). Message passing model is the communication system followed by the 

component of the distributed memory system. The two processes in the different memory 

core communicate with each other through message passing model. 

 

17. Write the procedure to compile and run the MPI program? 

Comilation can be done by following command 

$mpicc  -g  -o  hellompi     hellompi.c 

Execution of MPI program done by following command 

$mpiexec –n  1  ./hellompi 

 

18. What is MPI_Comm_Size construct in MPI? 

When two process need to send and receive the message, then we need to use 

communicators. In MPI program, the communicator is a collection of process that can be 

send message to each other. 

Syntax of the “MPI_Comm_Size” as follows, 

Int MPI_Comm_Size(MPI_Comm comm, int* commpointer); 



 

19. What is MPI_Comm_Rank Construct in MPI? 

Generally all the processes within the communicators are ordered. The rank of a process 

is the position in the communicator list in the overall order. The process can know its 

rank within its communicator by calling this function. The syntax is given below, 

 

Int MPI_Comm_Rank(MPI_Comm comm, int *myRankPointer); 

 

20. What is MPI_Abort construct in MPI? 

This function is used to abort all process in the specified communicator and it returns 

error code to the calling function and its syntax as follows 

Int MPI_Abort(MPI_Comm communicator, int errorcode); 

21. What is MPI_Barrier? 

The function “MPI_Barrier” is called to perform barrier synchronization among all the 

processes in the specified communicator and it is a collective communication function 

and syntax is as follows, 

 

Int MPI_Barrier(MPI_Comm Comm); 

 

 

 

 

Part B 

 

1. Explain about collective or Tree based communication among process using 

MPI with an example? 

 

Collective communication 

Each process with rank greater than 0 is “telling process 0 what to do” and then quitting. 

That is, each process with rank greater than 0 is, in effect, saying “add this number into the 

total.” Process 0 is doing nearly all the work in computing the global sum, while the other 

processes are doing almost nothing. Sometimes it does happen that this is the best we can do in a 

parallel program, but if we imagine that we have eight students, each of whom has a number, and 

we want to find the sum of all eight numbers, we can certainly come up with a more equitable 



distribution of the work than having seven of the eight give their numbers to one of the students 

and having the first do the addition. 

 

Tree-structured communication 

 

Binary tree structured can be used for process communication which is shown( Figure 

4.1) . In this diagram, initially students or processes 1, 3, 5, and 7 send their values to processes 

0, 2, 4, and 6, respectively. Then processes 0, 2, 4, and 6 add the received values to their original 

values, and the process is repeated 

twice: 

1. a. Processes 2 and 6 send their new values to processes 0 and 4, respectively. 

    b. Processes 0 and 4 add the received values into their new values. 

2. a. Process 4 sends its newest value to process 0. 

    b. Process 0 adds the received value to its newest value. 

This solution may not seem ideal, since half the processes (1, 3, 5, and 7) are doing the 

same amount of work that they did in the original scheme. However, if you think about it, the 

original scheme required comm _sz-1 =seven receives and seven adds by process 0, while the 

new scheme only requires three, and all the other processes do no more than two receives and 

adds. Furthermore, the new scheme has a property by which a lot of the work is done 

concurrently by different processes. For example, in the first phase, the receives and adds by 

processes 0, 2, 4, and 6 can all take place simultaneously. So, if the processes start at roughly the 

same time, the total time required to compute the global sum will be the time required by process 

0, that is, three receives and three additions. We’ve thus reduced the overall time by more than 

50%. Furthermore, if we use more processes, we can do even better. For example, if comm._sz = 

1024, then the original scheme requires process 0 to do 1023 receives and additions, while it can 

be shown that the new scheme requires process 0 to do only 10 receives and additions. This 

improves the original scheme by more than a factor of 100! 

 

 

 

 

 
 



Figure 4.1:  A tree structured global sum  

 

 

MPI Reduce 

With virtually limitless possibilities, it’s unreasonable to expect each MPI programmer to 

write an optimal global-sum function, so MPI specifically protects programmers against this trap 

of endless optimization by requiring that MPI implementations include implementations of 

global sums. This places the burden of optimization on the developer of the MPI implementation, 

rather than the application developer. The assumption here is that the developer of the MPI 

implementation should know enough about both the hardware and the system software so that 

she can make better decisions about implementation details.  

Now, a “global-sum function” will obviously require communication. However, unlike 

the MPI Send-MPI Recv pair, the global-sum function may involve more than two processes. To 

distinguish between collective communications and functions such as MPI Send and MPI Recv, 

MPI Send and MPI Recv are often called point-to-point communications. In fact, global sum is 

just a special case of an entire class of collective communications. For example, it might happen 

that instead of finding the sum of a collection of comm sz numbers distributed among the 

processes, we want to find the maximum or the minimum or the product or any one of many 

other possibilities. MPI generalized the global-sum function so that any one of these possibilities 

can be implemented with a single function: 

 

 
 

MPI Allreduce 

However, it’s not difficult to imagine a situation in which all of the processes need the 

result of a global sum in order to complete some larger computation. In this situation, we 

encounter some of the same problems we encountered with our original global sum. For 

example, if we use a tree to compute a global sum, we might “reverse” the branches to distribute 

the global sum . Alternatively, we might have the processes exchange partial results instead of 

using one-way communications. Such a communication pattern is sometimes called a butterfly . 

Once again, we don’t want to have to decide on which structure to use, or how to code it for 

optimal performance. Fortunately, MPI provides a variant of MPI Reduce that will store the 

result on all the processes in the communicator: 



 

 

 

 
 

Broadcast 

A collective communication in which data belonging to a single process is sent to all of 

the processes in the communicator is called a broadcast, and you’ve probably guessed that MPI 

provides a broadcast function: 

 

 

 
 

Gather and AllGeather 

 

MPI_Gather is the inverse of MPI_Scatter. Instead of spreading elements from one 

process to many processes, MPI_Gather takes elements from many processes and gathers 

them to one single process. This routine is highly useful to many parallel algorithms, such 

as parallel sorting and searching. 

 

Given a set of elements distributed across all processes, MPI_Allgather will gather all of 

the elements to all the processes. In the most basic sense, MPI_Allgather is 

an MPI_Gather followed by an MPI_Bcast. It follows many to many communication 

pattern. 

 

 

 



 
 

 

 
 

 

2. Explain the derived data types creation in MPI programs? 

 

MPI DERIVED DATATYPES 

 

In MPI, a derived datatype can be used to represent any collection of data items in 

memory by storing both the types of the items and their relative locations in memory. The idea 

here is that if a function that sends data knows the types and the relative locations in memory of 

a collection of data items, it can collect the items from memory before they are sent. Similarly, a 

function that receives data can distribute the items into their correct destinations in memory 

when they’re received. As an example, in our trapezoidal rule, we needed to call MPI Bcast three 

times: once for the left endpoint a, once for the right endpoint b, and once for the number of 

trapezoids n.  

As an alternative, we could build a single derived datatype that consists of two doubles 

and one int. If we do this, we’ll only need one call to MPI Bcast. On process 0, a,b, and n will be 

sent with the one call, while on the other processes, the values will be received with the call. 

Formally, a derived datatype consists of a sequence of basic MPI datatypes together with a 

displacement for each of the datatypes. In trapezoidal rule, suppose that on process 0 the 

variables a, b, and n are stored in memory locations with the following addresses: 

 



 
 

 

Then the following derived datatype could represent these data items: 

{(MPI_DOUBLE,0), (MPI_DOUBLE,16), (MPI_INT,24). 

 

The first element of each pair corresponds to the type of the data, and the second element 

of each pair is the displacement of the data element from the beginning of the type. We’ve 

assumed that the type begins with a, so it has displacement 0, and the other elements have 

displacements measured, in bytes, from a: b is 40-24=16 bytes beyond the start of a, and n is 48-

24=24 bytes beyond the start of a. We can use MPI Type create struct to build a derived datatype 

that consists of individual elements that have different basic types: 

 

 

 
 

 

3. Explain about MPI send and receive process with an example? 

MPI Send 

Each process can send message to other by calling MPI_Send method. The syntax of this 

method is given below, 

 

 

 
 



The first three arguments, msg_buf_p, msg_size, and msg_type, determine the contents of the 

message. The remaining arguments, dest, tag, and communicator, determine the destination of 

the message. 

 

The first argument, msg_buf_p, is a pointer to the block of memory containing the 

contents of the message. In our program, this is just the string containing the message, greeting. 

The second and third arguments, msg_size and msg_type, determine the amount of data to be 

sent. In our program, the msg _size argument is the number of characters in the message plus one 

character for the ‘/0’ character that terminates C strings. The msg_type argument is MPI CHAR. 

These two arguments together tell the system that the message contains strlen(greeting)+1 chars. 

Since C types (int, char, and so on.) can’t be passed as arguments to functions, MPI defines a 

special type, MPI Datatype, that is used for the msg_type argument. 

 

MPI also defines a number of constant values for this type. Which is shown in following figure. 

 

 

 
 

 

MPI Recv 

 

A process can receive message from source by calling MPI_Recv method. The syntrax of this 

method is given below,  

 

 

 



 
 

 

 

 

 

Thus, the first three arguments specify the memory available for receiving the message: 

msg_buf_p points to the block of memory, buf_size determines the number of objects that can be 

stored in the block, and buf_ type indicates the type of the objects. The next three arguments 

identify the message. The source argument specifies the process from which the message should 

be received. The tag argument should match the tag argument of the message being sent, and the 

communicator argument must match the communicator used by the sending process. 

 

 

Message matching 

Suppose process q calls MPI Send with  

MPI_Send(send _buf _p, send _buf _sz, send _type, dest, send _tag, Send_ comm); 

Also suppose that process r calls MPI Recv with 

MPI _Recv(recv_buf _p, recv _buf _sz, recv _type, src, recv_ tag, 

recv _comm, &status); 

Then the message sent by q with the above call to MPI Send can be received by r with the call to 

MPI_Recv if  

 recv _comm = send _comm,  

 recv _tag = send _tag,  

 dest = r,  

 src = q. 

These conditions aren’t quite enough for the message to be successfully received, however. The 

parameters specified by the first three pairs of arguments, send _buf _p/recv _buf _p, send_ buf 

_sz/recv _buf _sz, and send_ type/recv _type, must specify compatible buffers. 

 

 

 

 

 



4. Explain about performance evaluation of MPI programs with example? 

 

Speedup and efficiency 

we run our program with p cores, one thread or process on each core, then our parallel 

program will run p times faster than the serial program. If we call the serial run-time Tserial and 

our parallel run-time Tparallel, then the best we can hope for is Tparallel =Tserial/p. When this 

happens, we say that our parallel program has linear speedup. In practice, we’re unlikely to get 

linear speedup because the use of multiple processes/threads almost invariably introduces some 

overhead. For example, shared memory programs will almost always have critical sections, 

which will require that we use some mutual exclusion mechanism such as a mutex. The calls to 

the mutex functions are overhead that’s not present in the serial program, and the use of the 

mutex forces the parallel program to serialize execution of the critical section. Distributed-

memory programs will almost always need to transmit data across the network, which is usually 

much slower than local memory access. Serial programs, on the other hand, won’t have these 

overheads. Thus, it will be very unusual for us to find that our parallel programs get linear 

speedup. Furthermore, it’s likely that the overheads will increase as we increase the number of 

processes or threads, that is, more threads will probably mean more threads need to access a 

critical section. More processes will probably mean more data needs to be transmitted across the 

network. So if we define the speedup of a parallel program to be 

 

     S =Tserial /Tparallel 

 

then linear speedup has S D p, which is unusual. Furthermore, as p increases, we expect S to 

become a smaller and smaller fraction of the ideal, linear speedup p. S=p, is sometimes called the 

efficiency of the parallel program. If we substitute the formula for S, we see that the efficiency is 

 

                                         
 

 

Amdahl’s law 

Back in the 1960s, Gene Amdahl made an observation that’s become known as 

Amdahl’s law. It says, roughly, that unless virtually all of a serial program is parallelized, the 

possible speedup is going to be very limited—regardless of the number of cores available. 

Suppose, for example, that we’re able to parallelize 90% of a serial program. Further suppose 

that the parallelization is “perfect,” that is, regardless of the number of cores p we use, the 

speedup of this part of the program will be p. If the serial run-time is Tserial= 20 seconds, then 



the run-time of the parallelized part will be 0.9*Tserial/p = 18/p and the run-time of the 

“unparallelized” part will be 0.1*Tserial = 2. The overall parallel run-time will be 

 

 

and the speedup will be 

 

 
 

 

Scalability 

 

A technology is scalable if it can handle ever-increasing problem sizes. However, in 

discussions of parallel program performance, scalability has a somewhat more formal definition. 

Suppose we run a parallel program with a fixed number of processes/threads and a fixed input 

size, and we obtain efficiency E. Suppose we now increase the number of processes/threads that 

are used by the program. If we can find a corresponding rate of increase in the problem size so 

that the program always has efficiency E, then the program is scalable. 

As an example, suppose that Tserial = n, where the units of Tserial are in microseconds, and n is 

also the problem size. Also suppose that Tparallel = n/p+1. Then 

                                                    
To see if the program is scalable, we increase the number of processes/threads by a factor 

of k, and we want to find the factor x that we need to increase the problem size by so that E is 

unchanged. The number of processes/threads will be kp and the problem size will be xn, and we 

want to solve the following equation for x: 

 

                                                       
Well, if x = k, there will be a common factor of k in the denominator xn+kp= kn+kp = k(n+p), 

and we can reduce the fraction to get 

 

                                        



In other words, if we increase the problem size at the same rate that we increase the number of 

processes/threads, then the efficiency will be unchanged, and our program is scalable. 

 

5. Explain about various MPI Library functions in detail. 

 

 

MPI_Comm_Size  

When two process need to send and receive the message, then we need to use 

communicators. In MPI program, the communicator is a collection of process that can be 

send message to each other. 

Syntax of the “MPI_Comm_Size” as follows, 

Int MPI_Comm_Size(MPI_Comm comm, int* commpointer); 

 

MPI_Comm_Rank  

Generally all the processes within the communicators are ordered. The rank of a process 

is the position in the communicator list in the overall order. The process can know its 

rank within its communicator by calling this function. The syntax is given below, 

 

Int MPI_Comm_Rank(MPI_Comm comm, int *myRankPointer); 

 

MPI_Abort  

This function is used to abort all process in the specified communicator and it returns 

error code to the calling function and its syntax as follows 

Int MPI_Abort(MPI_Comm communicator, int errorcode); 

 MPI_Barrier 

The function “MPI_Barrier” is called to perform barrier synchronization among all the 

processes in the specified communicator and it is a collective communication function 

and syntax is as follows, 

 

Int MPI_Barrier(MPI_Comm Comm); 

 

MPI_Reduce  



Similar to MPI_Gather, MPI_Reduce takes an array of input elements on each process 

and returns an array of output elements to the root process. The output elements contain 

the reduced result. The prototype for MPI_Reduce looks like this: 

MPI_Reduce( void* send_data,  void* recv_data, int count, MPI_Datatype datatype, 

 MPI_Op op,  int root,  MPI_Comm communicator) 

 

MPI_Address 

This function returns the byte address of location in array offset and its syntax is as follows 

Int MPI_Address(void * location, MPI_A int * offset); 

 

 

 

MPI_Allgether 

MPI_Allgather will gather all of the elements to all the processes. In the most basic 

sense, MPI_Allgather is an MPI_Gather followed by an MPI_Bcast. It follows many to 

many communication pattern. The format of this method is as follows, 

 

MPI_Allreduce 

This function is called to perform count reduction and it is collective communication function. 

When this function returns, all the process have the results of the reductions and syntax is as 

follows, 

 



MPI_Bcast 

This function is called to allow one process to broadcast a message to all other process in the 

communicator and its syntax is as follows, 

 

 

MPI_Get_processor_name 

Returns the processor name. Also returns the length of the name. The buffer for "name" 

must be at least MPI_MAX_PROCESSOR_NAME characters in size. What is returned into 

"name" is implementation dependent - may not be the same as the output of the "hostname" or 

"host" shell commands. And syntax is given as follow, 

 

MPI_Get_processor_name (&name,&resultlength) 

 

MPI_Initialized 

Indicates whether MPI_Init has been called - returns flag as either logical true (1) or 

false(0). MPI requires that MPI_Init be called once and only once by each process. This may 

pose a problem for modules that want to use MPI and are prepared to call MPI_Init if necessary. 

MPI_Initialized solves this problem. And syntax is given as follow, 

 

MPI_Initialized (&flag)  

MPI_Finalize 

Terminates the MPI execution environment. This function should be the last MPI routine called 

in every MPI program - no other MPI routines may be called after it. And syntax is given as 

follow, 

 

MPI_Finalize () 

 

MPI_Scatter 

Data movement operation. Distributes distinct messages from a single source task to each 

task in the group. And syntax is given as follow,  

 



MPI_Scatter(&sendbuf,sendcnt,sendtype,&recvbuf,  

...... recvcnt,recvtype,root,comm)  

MPI_Gather 

Data movement operation. Gathers distinct messages from each task in the group to a 

single destination task. This routine is the reverse operation of MPI_Scatter.  

  

MPI_Gather(&sendbuf,sendcnt,sendtype,&recvbuf,  

...... recvcount,recvtype,root,comm) 

 

 

Unit 5 : PARALLEL PROGRAM DEVELOPMENT 

Part A 

 

1. Define n-Body solver? 

An n-body solver is a program that finds the solution to an n-body problem by simulating 

the behavior of the particles. The input to the problem is the mass, position, and 

velocity of each particle at the start of the simulation, and the output is typically the 

position and velocity of each particle at a sequence of user-specified times, or simply 

the position and velocity of each particle at the end of a user-specified time period. 

 

2. What is ring pass? 

In a ring pass, we imagine the processes as being interconnected in a ring shown in 

figure. Process 0 communicates directly with processes 1 and comm._sz-1, process 1 

communicates with processes 0 and 2, and so on. The communication in a ring pass takes 

place in phases, and during each phase each process sends data to its “lower-ranked” 

neighbor, and receives data from its “higher-ranked” neighbor. Thus, 0 will send to 

comm._sz-1 and receive from 1. 1 will send to 0 and receive from 2, and so on. 

 

 

                                                     
    FIG 1: process in ring structure 



 

3. What is the problem in recursive depth-first search? 

Since function calls are expensive, recursion can be slow. It also has the disadvantage 

that at any given instant of time only the current tree node is accessible. This could 

be a problem when we try to parallelize tree search by dividing tree nodes among the 

threads or processes. 

 

4. Define non-recursive depth first search? 

The basic idea is modeled on recursive implementation. Recall that recursive function 

calls can be implemented by pushing the current state of the recursive function onto the 

run-time stack. Thus, we can try to eliminate recursion by pushing necessary data on our 

own stack before branching deeper into the tree, and when we need to go back up the 

tree—either because we’ve reached a leaf or because we’ve found a node that can’t lead 

to a better solution—we can pop the stack. 

 

5. What is dynamic mapping of tasks? 

In a dynamic scheme, if one thread/process runs out of useful work, it can obtain 

additional work from another thread/process. 

 

6. What is static parallelization in pthread? 

In static parallelization, a single thread uses breadth-first search to generate enough 

partial tours so that each thread gets at least one partial tour. Then each thread takes its 

partial tours and runs iterative tree search on them. 

 

7. What is dynamic parallelization in pthread? 

when a thread runs out of work instead of immediately exiting the while loop, the thread 

waits to see if another thread can provide more work. On the other hand, if a thread that 

still has work in its stack finds that there is at least one thread without work, and its stack 

has at least two tours, it can “split” its stack and provide work for one of the threads. 

 

8. What is travelling sales man problem? 

Given a set of cities and distance between every pair of cities, the problem is to find the 

shortest possible route that visits every city exactly once and returns to the starting point. 

 

9. What are the different modes for send operations in MPI? 

MPI provides four modes for sends: 

 standard 

 synchronous 

 ready 

 buffered. 



 

10. What is non-blocking send in MPI? 

 

A non-blocking send command really means a send start. The function call 

returns as soon as possible, i.e., as soon as other parts of the operating system and/or 

hardware can take over. But the send process itself may not be complete still for a long 

time. A separate send complete call is necessary to verify that the data has been copied 

out of the send buffer and that the buffer can now be used for another communication. 

 

11. Define Traffic Circle system? 

Traffic circle system is a method of handling traffic at an intersection without 

using signal lights. Many countries use the provision of concurrent movement of multiple 

cars in the same direction. The traffic feeds from four roads on four direction . 

o Every vehicle moves around the circle in a counter clockwise direction. 

o Totally there are 16 section in the traffic circle system. 

o During the single step, all vehicles inside the circle move to the next 

section in the counter clockwise direction  

12. Define Neutron Transport system? 

The source medium emits neutrons  against homogenous medium with high plate 

thickness with infinite height. The neutrons that are emitted in the homogenous medium 

may be of following type, 

 Reflected Neutrons Type 

 Absorbed Neutrons Type 

 Transmitted Neutrons Type 

We need to compute the frequency at which each of these events occurs as a function of 

plate thickness. 

13. Define Room Assignment Problem? 

With the given n value as even number of students, our aim is to assign them to “n/2” 

rooms in the conference hall residence to minimize the assignment time. A complete 

survey has been made and the table is created in which (i,j) of the table denotes the extent 

to which student “i” and “j” are likely to get on each order. The entry [i,j] in the table is 

equal to the entry [j,i] and this problem is solved using simulated annealing method. 

  

14. Give the format of MPI_Pack method in MPI communication? 

The format of MPI_Pack method is given below, 

 



 
15. Give the format of MPI_Pack method in MPI communication? 

The format of MPI_Pack method is given below, 

 
16. What is the need of split_stack in MPI? 

The MPI version of Split stack packs the contents of the new stack into 

contiguous memory and sends the block of contiguous memory, which is unpacked by 

the receiver into a new stack. 

 

17. Give the format of MPI_Pack_Size construct in MPI? 

The amount of storage that’s needed for the data that’s transmitted can be 

determined with a call to MPI_Pack_size: 

 

 
 

 

 

 

18. Define NP-complete problem? 

They are a subset of NP problems with the property that all other NP problems 

can be reduced to any of them in polynomial time. So, they are the hardest problems 

in NP, in terms of running time. If it can be showed that any NPC Problem is in P, then 

all problems in NP will be in P , and hence P=NP=NPC. 



 

19. What is NP-hard (NPH) problem? 

These problems need not have any bound on their running time. If any 

NPC Problem is polynomial time reducible to a problem XX, that problem XX belongs 

to NP Hard class. Hence, all NP Complete problems are also NPH. In other words if 

a NPH problem is non-deterministic polynomial time solvable, it is a NPC problem. 

Example of a NP problem that is not NPC is Halting Problem. 

 

20. Give the pseudo code of n-body solver problem? 

Get input data; 

 for each timestep { 

 if (timestep output)  

Print positions and velocities of particles; 

 for each particle q 

Compute total force on q; 

 for each particle q 

Compute position and velocity of q; 

} 

Print positions and velocities of particles; 

 

 

Part B 

1. Explain briefly about n-Body solver problem with example? 

TWO n-BODY SOLVERS 

In an n-body problem, we need to find the positions and velocities of a collection of 

interacting particles over a period of time. For example, an astrophysicist might want to know 

the positions and velocities of a collection of stars, while a chemist might want to know the 

positions and velocities of a collection of molecules or atoms. An n-body solver is a program that 

finds the solution to an n-body problem by simulating the behavior of the particles. The input to 

the problem is the mass, position, and velocity of each particle at the start of the simulation, and 

the output is typically the position and velocity of each particle at a sequence of user-specified 

times, or simply the position and velocity of each particle at the end of a user-specified time 

period. 

 

The problem 

For the sake of explicitness, let’s write an n-body solver that simulates the motions of 

planets or stars.We’ll use Newton’s second law of motion and his law of universal gravitation to 

determine the positions and velocities. Thus, if particle q has position sq(t) at time t, and particle 

k has position sk(t), then the force on particle q exerted by particle k is given by 

https://en.wikipedia.org/wiki/Halting_problem


 

 
Here, G is the gravitational constant and mq and mk are the masses of particles q and k, 

respectively. Also, the notation |sq(t)-sk(t)| represents the distance from particle k to particle q. 

If our n particles are numbered 0, 1, 2, : : : ,n-1, then the total force on particle q is given by 

 

 
 

 

 

the acceleration of an object is given by the second derivative of its position and that Newton’s 

second law of motion states that the force on an object is given by its mass multiplied by its 

acceleration, so if the acceleration of particle q is aq(t), then Fq(t) =mqaq(t) = mqs”q(t), where 

s”q(t) is the second derivative of the position sq(t). Thus, we can use above Formula  to find the 

acceleration of particle q: 

 

 
 

a serial n-body solver can be based on the following pseudocode: 

 

 
 



2. Explain about recursive and non recursive depth first search in detail with example? 

Recursive depth-first search 

Using depth-first search we can systematically visit each node of the tree that could 

possibly lead to a least-cost solution. The simplest formulation of depth-first search uses 

recursion. 

 

The algorithm makes use of several global variables: 

 n: the total number of cities in the problem  

 digraph: a data structure representing the input digraph 

 hometown: a data structure representing vertex or city 0, the salesperson’s hometown  

 best tour: a data structure representing the best tour so far 

 

The function City_count examines the partial tour tour to see if there are n cities on the 

partial tour. If there are, we know that we simply need to return to the hometown to complete the 

tour, and we can check to see if the complete tour has a lower cost than the current “best tour” by 

calling Best _tour. If it does, we can replace the current best tour with this tour by calling the 

function Update_ best_tour. Note that before the first call to Depth _first_ search, the best_ tour 

variable should be initialized so that its cost is greater than the cost of any possible least-cost 

tour. If the partial tour tour hasn’t visited n cities, we can continue branching down in the tree by 

“expanding the current node,” in other words, by trying to visit other cities from the city last 

visited in the partial tour. To do this we simply loop through the cities. The function Feasible 

checks to see if the city or vertex has already been visited, and, if not, whether it can possibly 

lead to a least-cost tour. If the city is feasible, we add it to the tour, and recursively call Depth 

_first _search. 

 

 
 

 

Nonrecursive depth-first search 



Since function calls are expensive, recursion can be slow. It also has the disadvantage 

that at any given instant of time only the current tree node is accessible. This could be a problem 

when we try to parallelize tree search by dividing tree nodes among the threads or processes. It is 

possible to write a nonrecursive depth-first search. The basic idea is modeled on recursive 

implementation. Recall that recursive function calls can be implemented by pushing the current 

state of the recursive function onto the run-time stack. Thus, we can try to eliminate recursion by 

pushing necessary data on our own stack before branching deeper into the tree, and when we 

need to go back up the tree—either because we’ve reached a leaf or because we’ve found a node 

that can’t lead to a better solution—we can pop the stack. 

 

 
 

3. Explain about different methods for parallelizing the tree search using pthread? 

A static parallelization of tree search using pthreads 

In our static parallelization, a single thread uses breadth-first search to generate enough 

partial tours so that each thread gets at least one partial tour. Then each thread takes its partial 

tours and runs iterative tree search on them. We can use the pseudocode shown in following 

Program on each thread. 

 



 
 

To implement the Best _tour function, a thread should compare the cost of its current tour 

with the cost of the global best tour. Since multiple threads may be simultaneously accessing the 

global best cost, it might at first seem that there will be a race condition. However, the Best _tour 

function only reads the global best cost, so there won’t be any conflict with threads that are also 

checking the best cost. If a thread is updating the global best cost, then a thread that is just 

checking it will either read the old value or the new, updated value. While we would prefer that it 

get the new value, we can’t insure this without using some very costly locking strategy. For 

example, threads wanting to execute Best _tour or Update _best _tour could wait on a single 

mutex. 

 

On the other hand, we call Update _best _tour with the intention of writing to the best 

tour structure, and this clearly can cause a race condition if two threads call it simultaneously. To 

avoid this problem, we can protect the body of the Update _best _tour function with a mutex. 

Thus, correct pseudocode for Update_ best_ tour should look something like this: 

 

 

 
 

 

A dynamic parallelization of tree search using pthreads 

If the initial distribution of subtrees doesn’t do a good job of distributing the work among 

the threads, the static parallelization provides no means of redistributing work. The threads with 

“small” subtrees will finish early, while the threads with large subtrees will continue to work. It’s 



not difficult to imagine that one thread gets the lion’s share of the work because the edges in its 

initial tours are very cheap, while the edges in the other threads’ initial tours are very expensive.  

  

To address this issue, we can try to dynamically redistribute the work as the computation 

proceeds. To do this, we can replace the test !Empty(my_ stack) controlling execution of the 

while loop with more complex code. The basic idea is that when a thread runs out of work—that 

is, !Empty(my stack) becomes false—instead of immediately exiting the while loop, the thread 

waits to see if another thread can provide more work.  

 

On the other hand, if a thread that still has work in its stack finds that there is at least one 

thread without work, and its stack has at least two tours, it can “split” its stack and provide work 

for one of the threads. Pthreads condition variables provide a natural way to implement this. 

When a thread runs out of work it can call pthread _cond_ wait and go to sleep. When a thread 

with work finds that there is at least one thread waiting for work, after splitting its stack, it can 

call pthread _cond _signal.  

 

When a thread is awakened it can take one of the halves of the split stack and return to work. 

This idea can be extended to handle termination. If we maintain a count of the number of threads 

that are in pthread cond wait, then when a thread whose stack is empty finds that thread_ count-1 

threads are already waiting, it can call pthread _cond _broadcast and as the threads awaken, 

they’ll see that all the threads have run out of work and quit. 

 

4. Explain about parallelizing the tree search using open MP? 

Parallelizing the tree-search programs using OpenMP 

The issues involved in implementing the static and dynamic parallel tree-search programs 

using OpenMP are the same as the issues involved in implementing the programs using Pthreads. 

There are almost no substantive differences between a static implementation that uses OpenMP 

and one that uses Pthreads. However, a couple of points should be mentioned: 

 

1. When a single thread executes some code in the Pthreads version, the test if (my rank == 

whatever) can be replaced by the OpenMP directive 

 

# pragma omp single 

 

This will insure that the following structured block of code will be executed by one thread in the 

team, and the other threads in the team will wait in an implicit barrier at the end of the block 

until the executing thread is finished. When whatever is 0 (as it is in each test in the Pthreads 

program), the test can also be replaced by the OpenMP directive 

 

# pragma omp master 



 

This will insure that thread 0 executes the following structured block of code. However, the 

master directive doesn’t put an implicit barrier at the end of the block, so it may be necessary to 

also add a barrier directive after a structured block that has been modified by a master directive. 

 

2. The Pthreads mutex that protects the best tour can be replaced by a single critical directive 

placed either inside the Update best tour function or immediately before the call to Update_ best 

_tour. This is the only potential source of a race condition after the distribution of the initial 

tours, so the simple critical directive won’t cause a thread to block unnecessarily. 

 

OpenMP provides a lock object omp _lock _t and the following functions for acquiring and 

relinquishing the lock, respectively: 

 

void omp _set_ lock(omp _lock_ t*  lock _p /* in/out */); 

void omp _unset _lock(omp _lock _t*  lock_ p /* in/out */); 

 

It also provides the function  

Int  omp _test _lock(omp _lock _t*  lock_ p /* in/out */); 

 

which is analogous to pthread _mutex _trylock; it attempts to acquire the lock *lock _p, and if it 

succeeds it returns true (or nonzero). If the lock is being used by some other thread, it returns 

immediately with return value false (or zero).  

If we examine the pseudocode for the Pthreads Terminated function in following  Program. we 

see that in order to adapt the Pthreads version to OpenMP, we need to emulate the functionality 

of the Pthreads function calls in Lines 6, 17, and 22, respectively.  

pthread _cond _signal(&term _cond _var); 

pthread_ cond_ broadcast(&term _cond _var); 

pthread _cond _wait(&term cond _var, &term _mutex); 

  



 
 

 

Recall that a thread that has entered the condition wait by calling pthread _cond 

_wait(&term_ cond _var, &term _mutex); is waiting for either of two events:  

 Another thread has split its stack and created work for the waiting thread.  

 All of the threads have run out of work. 

Perhaps the simplest solution to emulating a condition wait in OpenMP is to use busy-waiting. 

Since there are two conditions a waiting thread should test for, we can use two different variables 

in the busy-wait loop: 

 



 
 

Initialization of the two variables is crucial: If awakened _thread has the value of some 

thread’s rank, that thread will exit immediately from the while, but there may be no work 

available. Similarly, if work _remains is initialized to 0, all the threads will exit the while loop 

immediately and quit. 

 

 

5. Explain about MPI based tree search dynamic portioning ? 

Implementation of tree search using MPI and dynamic partitioning 

 

In an MPI program that dynamically partitions the search tree, we can try to emulate the 

dynamic partitioning that we used in the Pthreads and OpenMP programs. Recall that in those 

programs, before each pass through the main while loop in the search function, a thread called a 

boolean-valued function called Terminated. When a thread ran out of work—that is, its stack was 

empty—it went into a condition wait (Pthreads) or a busy-wait (OpenMP) until it either received 

additional work or it was notified that there was no more work. In the first case, it returned to 

searching for a best tour. In the second case, it quit. A thread that had at least two records on its 

stack would give half of its stack to one of the waiting threads. 

  

Much of this can be emulated in a distributed-memory setting. When a process runs out 

of work, there’s no condition wait, but it can enter a busy-wait, in which it waits to either receive 

more work or notification that the program is terminating. Similarly, a process with work can 

split its stack and send work to an idle process. The key difference is that there is no central 

repository of information on which processes are waiting for work, so a process that splits its 

stack can’t just dequeue a queue of waiting processes or call a function such as pthread cond 

signal. It needs to “know” a process that’s waiting for work so it can send the waiting process 

more work. Thus, rather than simply going into a busy-wait for additional work or termination, a 

process that has run out of work should send a request for work to 

another process. If it does this, then, when a process enters the Terminated function, it can check 

to see if there’s a request for work from some other process. If there is, and the process that has 

just entered Terminated has work, it can send part of its stack to the requesting process. If there 

is a request, and the process has no work available, it can send a rejection. Thus, when we have 

distributed-memory, pseudocode for our Terminated function can look something like the 

pseudocode shown in Program 



 

 

 

 

My _avail_ tour_ count The function My_ avail_ tour _count can simply return the size of the 

process’ stack. It can also make use of a “cutoff length.” When a partial tour has already visited 

most of the cities, there will be very little work associated with the subtree rooted at the partial 

tour. Since sending a partial tour is likely to be a relatively expensive operation, it may make 

sense to only send partial tours with fewer than some cutoff number of edges. 

 

Fulfill _request 

If a process has enough work so that it can usefully split its stack, it calls Fulfill _request 

(Line 2). Fulfill_request uses MPI_Iprobe to check for a request for work from another process. 



If there is a request, it receives it, splits its stack, and sends work to the requesting process. If 

there isn’t a request for work, the process just returns. 

 

Splitting the stack 

A Split _stack function is called by Fulfill _request. It uses the same basic algorithm as 

the Pthreads and OpenMP functions, that is, alternate partial tours with fewer than split _cutoff 

cities are collected for sending to the process that has requested work. However, in the shared-

memory programs, we simply copy the tours (which are pointers) from the original stack to a 

new stack. Unfortunately, because of the pointers involved in the new stack, such a data structure 

cannot be simply sent to another process . Thus, the MPI version of Split _stack packs the 

contents of the new stack into contiguous memory and sends the block of contiguous memory, 

which is unpacked by the receiver into a new stack. MPI provides a function, MPI _Pack, for 

packing data into a buffer of contiguous memory. It also provides a function, MPI_ Unpack, for 

unpacking data from a buffer 

 

 

 

 

MPI _Pack takes the data in data to be packed and packs it into contig _buf. The 

*position _p argument keeps track of where we are in contig _buf. When the function is called, it 

should refer to the first available location in contig _buf before data _to_ be_ packed is added. 

When the function returns, it should refer to the first available location in contig _buf after data 

_to_ be_ packed has been added. 
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