
UNIT-II COMBINATIONAL CIRCUUITS
PART - A
1. Draw the truth table and logic circuit of half adder 		(NOV/DEC 2014)
[image: E:\new\Question bank odd sem\DE\UNIT II\Fig. 2. s1.eps]

2. Compare the function of Decoder and encoder 			(April/ May 2014)
	 Decoder
	Encoder

	It is a combinational circuit that convert binary information from n input lines to a maximum of 2n unique output lines
Decodes are used whenever an output or group of output is to be activated only on occurance of specific input combinations
Decoders are widely used in the memory system of computer
	An encoder has 2n input lines only one of which is activated at a given time and produces and n – bit output code depending on which input is activated.
The output lines generate binary code for the 2n variables

1.State the design procedure of combinational circuit.(NOV/DEC 2015)
The problem is stated.
The number of available input variables and required output variables is determined.
The input and output variables are assigned letter symbols.
The truth table that defines the required relationships between inputs and outputs is derived.
The simplified Boolean function for each output is obtained.
The logic diagram is drawn.
2. The combinational circuit that converts 2 coded inputs into 4 coded outputs. (APRIL/MAY 2015)
A decoder which has an n-bit binary input code and an output of 2n output code is called binary decoder.
3. What is Half adder and Full adder.(NOV/DEC 2016)
Half adder is a combinational circuit that performs the addition of two bits is called half adder. The input variables designate the augend and addend bits. The output variable produce the sum and carry.
Full adder is a combinational circuit that performs the addition of three bits is called full adder. It consists of three inputs and two outputs.
4.Define Priority Encoder (APRIL/MAY 2016)
Priority Encoder is an encoder circuit that includes the priority function. The operation of the priority encoder is such that if two or more inputs are equal to 1 at the same time the input having the highest priority will take precedence.
	
	
	
	
	
	
	

	D0
	D1
	D2
	D3
	X
	Y
	V

	0
	0
	0
	0
	X
	X
	0

	1
	0
	0
	0
	0
	0
	1

	X
	1
	0
	0
	0
	1
	1

	X
	X
	1
	0
	1
	0
	1

	X
	X
	X
	1
	1
	1
	1

	
	
	
	
	
	
	

	
	
	
	
	
	
	

5.How can you differentiate Demultiplexer from Decoder? (APRIL/MAY 2017)
Demultiplexer is a circuit that receives information on a single line and transmits this information on one of 2n possible output lines.
The selection of a specific output line is controlled by the bit values of n selection lines.
Decoder is the combinational circuit that converts binary information from n input lines to a maximum of 2n unique output lines.
There are no selection lines.
6. Convert a 2 to 4 line decoder with enabled input to 1*4 demultiplexer.(NOV/DEC 2014)
2 to 4 line decoder circuit consists of 2 inputs are decoded into four outputs each output representing one of the minterms of the 2 input variables. Enable input is 1 and only one of the outputs y0 to y3 is active for a given input.Enable is 0 then all the outputs are 0.
7. Define combinational logic.
When logic gates are connected together to produce a specified output for certain specified combinations of input variables, with no storage involved, the resulting circuit is called combinational logic.
8. Explain the design procedure for combinational circuits.
The problem definition
Determine the number of available input variables & required O/P variables.
Truth Table Construction
Obtain simplified Boolean expression for each O/P (using K-Map).
Obtain the logic diagram.
9. Define Half adder and full adder
Half Adder: The logic circuit that performs the addition of two bits is a half adder.
Full Adder: The circuit that performs the addition of three bits is a full adder.
9. Define Decoder?
A decoder is a multiple - input multiple output logic circuit that converts coded inputs into coded outputs where the input and output codes are different.
10. What is binary decoder?
A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2n outputs lines.
11. Define Encoder?
An encoder has 2n input lines and n output lines. In encoder the output lines generate the binary code corresponding to the input value.
12. What is priority Encoder?

A priority encoder is an encoder circuit that includes the priority function. In priority encoder, if 2 or more inputs are equal to 1 at the same time, the input having the highest priority will take precedence.
13. Define multiplexer & Demultiplexers?
Multiplexer is a digital switch. If allows digital information from several sources to be routed onto a single output line.
A Demultiplexer is a circuit that receives information on a single line and transmits this information on one of 2n possible output lines.
14. What is code conversion?
If two systems working with different binary codes are to be synchronized in operation, then we need digital circuit which converts one system of codes to the other. The process of conversion is referred to as code conversion.
15. What do you mean by analyzing a combinational circuit?
The reverse process for implementing a Boolean expression is called as analyzing a combinational circuit. (ie) the available logic diagram is analyzed step by step and finding the Boolean function.

16. List out the applications of comparators?

Comparators are used as a part of the address decoding circuitry in computers to select a specific input/output device for the storage of data.
They are used to actuate circuitry to drive the physical variable towards the reference value.
They are used in control applications.
17. What is digital comparator?
[image:]A comparator is a special combinational circuit designed primarily to compare the relative magnitude of two binary numbers.

			OUPUTS
Block diagram of n-bit Comparator
18.. What is carry look-ahead addition?

The speed with which an addition is performed limited by the time required for the carries to propagate or ripple through all of the stage of the adder. One method of speeding up the process is by eliminating the ripple carry delay.
19. Give other name for Multiplexer and Demultiplexer.
Multiplexer is otherwise called as Data selector.
Demultiplexer is otherwise called as Data distributor.
20. What is the function of the enable input in a Multiplexer?
The function of the enable input in a MUX is to control the operation of the unit.
21.List out the applications of decoder?
Decoders are used in counter system.
They are used in analog to digital converter.
Decoder outputs can be used to drive a display system.
22. Application of Mux.
They are used as a data selector to select one output of many data inputs.
They can be used to implement combinational logic circuits
They are used in time multiplexing systems.
They are used in frequency multiplexing systems.
They are used in A/D & D/A Converter.
They are used in data acquisition system.
23. Difference between Decoder & Demux.
	S.No
	Decoder
	Demux
	

	1
	Decoder is a many inputs to many
	Demux is a single input to many
	

	
	outputs device.
	outputs.
	

	
	
	
	

	
	
	The selection of specific output line is
	

	2
	There are no selection lines.
	controlled by the value of selection
	

	
	
	lines.
	

PART - B
1. Realization of NOT, AND, OR, using NAND and NOR gates
[image: E:\new\Question bank odd sem\DE\UNIT IV\Fig. 1.s7.eps]
[image: E:\new\Question bank odd sem\DE\UNIT IV\Fig. 1.s8.eps]
2. Show that if all the gates in a two level AND OR gate networks are replaced by NAND gates the output Function does not change (April/May 2017)
Solution:-
The implementation of Boolean function with NAND gate requires that function be simplified in the sum on product form.
Now we apply demorgan’s theorem
e.g. Consider the function

	
This can be implemented in 2 levels by using only NAND gates
[image: E:\new\Question bank odd sem\DE\UNIT V\Fig. 1. s1.eps]
Example: Given the Boolean function

	
[image: E:\new\Question bank odd sem\DE\UNIT V\Fig. 1. s2.eps]

	
NAND Realization

[image: E:\new\Question bank odd sem\DE\UNIT V\Fig. 1. s4.eps]
Obtain the AND OR implementation and also its implementation using NOR gates

	

[image: E:\new\Question bank odd sem\DE\UNIT V\Fig. 1. s3.eps]
Using Demorgan’s theorem we write

	
Thus the expression a Boolean function in product of sums of form and applying Demorgan’s theorem it can be realized by only NOR gates.
[image: E:\new\Question bank odd sem\DE\UNIT V\Fig. 1. s5.eps]

1. Draw the logic diagram and draw the truth table of Half adder, Full adder, Half subtrator & Full subtrator.
→Half adder
The circuit that performs the addition of two bits is called half adder
→ Full adder
The circuit that performs the addition of three bits is called full adder
→ Halfsubtractor
The circuit that performs the subtraction of two bits is called half subtractor
→ Full subtractor

The circuit that performs the subtraction of three bits is called half subtractor

HALF ADDER:-
Truth table:-
	 X
	Y
	C
	S

	0
0
1
1
	0
1
0
1
	0
0
0
1
	0
1
1
0

S=xy1+x1y
=xy
C=xy.
[image: E:\new\DE\UNIT II\Fig. 2. 1.eps]
FULL ADDER:-
TRUTH TABLE:-
	 X
	Y
	Z
	C
	S

	0
0
0
0
1
1
1
1
	0
0
1
1
0
0
1
1
	0
1
0
1
0
1
0
1
	0
0
0
1
0
1
1
1
	0
1
1
0
1
0
0
1

[image: E:\new\DE\UNIT II\Fig. 2. 2.eps]
[image: E:\new\DE\UNIT II\Fig. 2. 3.eps]

Implementation of full adder with two half adder and an OR gate.
 2. Explain in detail about 4- BIT BINARY ADDER /4- BIT RIPPLE CARRY ADDER and subtrator
4- BIT BINARY ADDER /4- BIT RIPPLE CARRY ADDER:-
A binary adder is a digital circuit that
Subscript: 	3	 2	1	0

Input carry	

Augend		

Addend 		
Sum		1	1	1	1	Si

Output carry	
BINARY SUBTRACTOR:-
A-B can be done by taking 2’s complement of B and adding 1 to A
A-B =A+(2’s complement of B)
 =A+(1’s complement +1 to B)
[image: E:\new\DE\UNIT II\Fig. 2. 4.eps]
4- BIT BINARY ADDER/SUBTRACTOR:-
[image: E:\new\DE\UNIT II\Fig. 2. 5.eps]Produces the arithmetic sum of two binary nos, it can be constructed with adders connected in cascade, connected to the input carry of the next full adder in the chain
[image: E:\new\DE\UNIT II\Fig. 2. 6.eps]
A→ A3A2A1A1
B→B3A2B1B0
C→ input carry to the adder & it ripples thus the full adders to the output carry c4.
C4→output carry.
S→S3S2S1S0→Sum bits
n→ bit adder requires n-full adders.
e.g:- A=1 0 1 1
 B=0 0 1 1
Mode input M controls the operation
M=0 → Circuit is an adder
M=1 → Circuit is a subtractor.
Each exclusive OR-gate receives input M and one of the inputs of B.
i.) M=0 ⟹ B0=B
Full adders receive the value of the input carry is 0 and circuit performs A+B
ii.) M=1 ⟹ B1=B1+1
(1’s comp of B)+1= 2’s complement
= A+(-B)=A-B+-B
V= C4C3 is used for detecting over flow.
3. How is the CARRY- LOOK AHEAD ADDER faster than a ripple carry adder?Explain in detail with neat sketches.(Nov/Dec 2014)
* The addition of two binary nos, in parallel implies that all bits of addend and augend are available at computation time.
* The total propagation delay is equal to the propagation delay of a typical gate times the number of gate levels in CKT.
* The longest propagation delay times in an adder is the time it takes the carry to propagation through the full adders.
* Since each bit of the sum output depends on the value of input carry, the value of si in any adder will be in its steady state final value only after the input carry to the stage has propagated.
* Carry propagation is the limiting factor are the speed which two nos, are added.
* The most widely used technique to reduce the carry propation is carry look ahead.
[image: E:\new\DE\UNIT II\Fig. 2. 7.eps]
P1=A1B1
G1=A1B1
The output sum and carry,
S1=P1G1
C1+1=G1+P1
G1 Carry generate
P1 Carry propagate.
C0=input carry
C1=G0+P0C0
C2=G1+P1C1
 =G1+P1 (G0+P0C0)
 =G1+P1G0+P1P0C0
C3= G2+P2C2
 =G2+P2 (G1+P1G0+P1P0C0)
 =G2+P2G1+P2P1G0+P2P1P0C0
The three Boolean functions for C1C2 and C3 are implemented in the carry look ahead generation as shown below:-
[image: E:\new\DE\UNIT II\Fig. 2. 8.eps]
The construction of a 4 bit adder with acarry lookahead scheme below:-
[image: E:\new\DE\UNIT II\Fig. 2. 9.eps]
The outputs S0 S3 have equal propagation delays.
4. Explain detail about DECIMAL/BCD ADDER: (APRIL/MAY 2014)
DECIMAL/BCD ADDER:-
* consider addition of two decimal digits in BCD, together with a input carry from a previous stage.
* Each input digit does not exceed 9 the output cannot be greater than
 9+9+1 19
One decimal second decimal input carry
* Apply two BCD digits to a 4- bit binary adder. The adder will form the sum in binary (from 0 to 19)
Binary sum: Z0 Z1 Z2 Z3
Binary carry: k
The condition for a correction and an output carry can be expressed as
C=k+z8z4
This binary sum carry is to be converted to BCD sum are present in the table below:
	
		Binary SUM				BCD SUM	
	Decimal
	 K
	Z0
	Z1
	Z2
	Z3

	0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
	0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
	0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
	0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
	0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
	0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

	 C
	S0
	S1
	S2
	S3

	0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
	0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
	0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
	0
0
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
0
	0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

[image: E:\new\DE\UNIT II\Fig. 2. 10.eps]

5. Explain in detail about DECODER:-
DECODER:-
* A decoder is a combinational circuit that converts binary information from ‘n’ input lines to a maximum of ‘2n’ unique output lines.
* If n-bit coded information lap unused combinations, the decoder m,ay have fewers than 2n outputs.
* Purpose of decoder is the generate 2n(or) fewer minterms of variables.
⟹ n to m lines decoder where m 2n.
* Decoders may or may not have ENABLE(E) input.
* Decoders can be constructed using AND or NAND gates.

When C = 1 it is necessary to add 0110 to the binary sum and provide an output carry for the next stage.
2 to 4 line Decoder
	F
	A
	B
	D0
	D1
	D2
	D3

	1
	x
	X
	1
	1
	1
	1

	0
	0
	0
	0
	1
	1
	1

	0
	0
	1
	1
	0
	1
	1

	0
	1
	0
	1
	1
	0
	1

	0
	1
	1
	1
	1
	1
	0

[image: E:\new\DE\UNIT II\Fig. 2. 11.eps]
⟹ Using AND gate
	E
	A
	B
	D0
	D1
	D2
	D3

	0
	x
	X
	0
	0
	0
	0

	1
	0
	0
	1
	0
	0
	0

	1
	0
	1
	0
	1
	0
	0

	1
	1
	0
	0
	0
	1
	0

	1
	1
	1
	0
	0
	0
	1

D0=A1B1E
D1=A1BE
D2=AB1E
D3=ABE
[image: E:\new\DE\UNIT II\Fig. 2. 12.eps]

3 to 8 line decoder:-⟹ Using AND gate:
	Inputs
	Outputs

	X
	Y
	Z
	D0
	D1
	D2
	D3
	D4
	D5
	D6
	D7

	0
0
0
0
1
1
1
1
	0
0
1
1
0
0
1
1
	0
1
0
1
0
1
0
1
	1
0
0
0
0
0
0
0
	0
1
0
0
0
0
0
0
	0
0
1
0
0
0
0
0
	0
0
0
1
0
0
0
0
	0
0
0
0
1
0
0
0
	0
0
0
0
0
1
0
0
	0
0
0
0
0
0
1
0
	0
0
0
0
0
0
0
1

D0= x1 y1 z1	D1= x1y1z1	D2= x1y z1	
D3= x1 y z	D4= x y1 z1	D5= x y1 z
D6= x y z1	D7= x y z
[image: E:\new\DE\UNIT II\Fig. 2. 13.eps]
1. A combinational circuit is specified by the following three Boolean functions:-
F1= x1y1z1+xz
F2=xy1z1+x1y
F2=x1y1z+ xy
Design the circuit with a decoder & external gates
F1= x1y1z1+xz
 =x1y1z1+xz(y+y1)
 =x1y1z1+xyz+xy1z ⟹m (0,5,7)
F2=x1y1z1+x1y
 =xy1z1+x1yz+x1yz1 ⟹m (2,3,4)
F3= x1y1z+xy
 =x1y1z+xyz+xyz1 ⟹m (1,6,7)
I/P :- 3[x,y,z] 	o/p:- 8
[image: E:\new\DE\UNIT II\Fig. 2. 14.eps]
Construct a 5×32 line decoder with four 3×8 line decoders with enable and a 2 to 4 line decoder
[image: E:\new\DE\UNIT II\Fig. 2. 15.eps]

6. A combinational circuit is defined by the following three Boolean function:
F1 (A1 B1 C)=(2,4,7)
F2 (A1 B1 C)=(0,3)
F3 (A1 B1 C)=(0,2,3,4,7)
Implement the circuit with a decoder constructed with NAND gates and NAND 9 AND connected to the decoder’s output.
[image: E:\new\DE\UNIT II\Fig. 2. 16.eps]
7. Explain the operation of BCD TO SEVEN SEGMENT DECODER (NOV/DEC 2015)
BCD TO SEVEN SEGMENT DECODER
A BCD to even segment decoder is a combinational circuit that converts a decimal digit in BCD to an appropriate code for the selection of segments in a display indicator used for displaying the decimal digit. The seven outputs of the decoder (a,b,c,d,e,f,g) select the corresponding segments in the display as shown below:-
[image: E:\new\DE\UNIT II\Fig. 2. 17.eps]
The numeric display closer to represent the decimal digit is shown below:-
[image: E:\new\DE\UNIT II\Fig. 2. 18.eps]
	BCD input
	Decimal
	Numerical designation

	A
	B
	C
	D
	
	a
	b
	c
	d
	e
	f
	g

	0
0
0
0
0
0
0
0
1
1
	0
0
0
0
1
1
1
1
0
0
	0
0
1
1
0
0
1
1
0
0
	0
1
0
1
0
1
0
1
0
1
	0
1
2
3
4
5
6
7
8
9
	1
0
1
1
0
1
1
1
1
1
	1
1
1
1
1
0
0
1
1
1
	1
1
0
1
1
1
1
1
1
1
	1
0
1
1
0
1
1
0
1
1
	1
0
1
0
0
0
1
0
1
0
	1
0
0
0
1
1
1
0
1
1
	0
0
1
1
1
1
1
0
1
1

K – MAP
[image: E:\new\DE\UNIT II\Fig. 2. 19.eps]

[image: E:\new\DE\UNIT II\Fig. 2. 20.eps]
7. Design an excess -3 to binary decode using the unused combinations as don’t care. (NOV/DEC 2016)
	Excess - 3
	BCD

	E3
	E2
	E1
	E0
	B3
	B2
	B1
	B0

	0
0
0
0
0
1
1
1
1
1
	0
1
1
1
1
0
0
0
0
1
	1
0
0
1
1
0
0
1
1
0
	1
0
1
0
1
0
1
0
1
0
	0
0
0
0
0
0
0
0
1
1
	0
0
0
0
1
1
1
1
0
0
	0
0
1
1
0
0
1
1
0
0
	0
1
0
1
0
1
0
1
0
1

8. Explain in detail about MULTIPLEXER (APRIL/MAY 2016)
MULTIPLEXER
A multiplexer is a combinational circuit that select binary information from one of many input lines and directs it to a single output line.
 The selection of a particular input line is controlled by a set of selection lines.
2n- input lines 		n- selection lines 	1- output lines
2 x 1 MUX:-
[image: E:\new\DE\UNIT II\Fig. 2. 21.eps]
Design a 4 x 1 Multiplexer circuit
 (
S
0
S
1
I
1
I
0
I
3
Y
I
2
2 X 1
MUX
)
	 S1
	S0
	Y

	0
0
1
1
	0
1
0
1
	I0
I1
I2
I3

[image: E:\new\DE\UNIT II\Fig. 2. 22.eps]
Quadruple two to line MUX
[image: E:\new\DE\UNIT II\Fig. 2. 23.eps]

Function table
	 S
	O/P Y

	0
	Select A

	1
	Select B

All Boolean functions are can be implemented using a multiplexer for implementing a Boolean function of ‘n’ variables, (n-1) variables of functions are connected to the selection inputs of MUX. Remaining single variable of function is used for data inputs.
1. Implement f(x, y, z)=(1, 2, 6, 7) using MUX
X, y, z 3 variables
2 variables → used for selection inputs.
 z used an data inputs.
	 X
	Y
	Z
	F

	0
0
0
0
1
1
1
1
	0
0
1
1
0
0
1
1
	0
1
0
1
0
1
0
1
	0
1 F = Z
1
0 F = Z1
0
0 F = 0
1
1 F = 1

[image: E:\new\DE\UNIT II\Fig. 2. 24.eps]
2. Implement f(A, B, C, D) (1, 3, 4, 11, 12, 13, 14, 15) using multiplexer
A, B, C, D 4 variables
∴ 3 selection lines ⟹ (A, B, C)
 ∴ 8×1 MUX
	 A
	B
	C
	D
	F
	

	0
0
	0
0
	0
0
	0
1
	0
1
	F = D

	0
0
	0
0
	1
1
	0
1
	0
1
	F = D

	0
0
	1
1
	0
0
	0
1
	1
0
	F = D1

	0
0
	1
1
	1
1
	0
1
	0
0
	F = 0

	1
1
	0
0
	0
0
	0
1
	0
0
	F = 0

	1
1
	0
0
	1
1
	0
1
	0
1
	F = D

	1
1
	1
1
	0
0
	0
1
	1
1
	F = 1

	1
1
	1
1
	1
1
	0
1
	1
1
	F = 1

[image: E:\new\DE\UNIT II\Fig. 2. 25.eps]
3. Realize a full adder using 4×1 MUX (APRIL/MAY 2017)
	 A
	B
	C
	Sum
	Carry
	Output

	0
0
	0
0
	0
1
	0
1
	0
0
	Sum = C
Carry = 0

	0
0
	1
1
	0
1
	1
0
	0
1
	
Sum =
Carry = C

	1
1
	0
0
	0
1
	1
0
	0
1
	
Sum =
Carry = C

	1
1
	1
1
	0
1
	0
1
	1
1
	Sum = C
Carry = 1

A,B,C 3 variables 	∴(A, B) 2 selection inputs.
[image: E:\new\DE\UNIT II\Fig. 2. 26.eps]
	 S0
	S1
	Sum

	0
0
1
1
	0
1
0
1
	C

C

	 S0
	S1
	Carry

	0
0
1
1
	0
1
0
1
	0
C
C
1

4. Implement the following function with a MUX f(A, B, C, D) = (0, 1, 3, 4, 8, 9, 5)
A, B, C, D ⟹ 4 variables
A, B, C selection lines
 D one data input.	8×1 MUX
	A
	B
	C
	D
	F
	

	 0
0
	0
0
	0
0
	0
1
	1
1
	F=1

	0
0
	0
0
	1
1
	0
1
	0
1
	F=D

	0
0
	1
1
	0
0
	0
1
	1
0
	F=D1

	0
0
	1
1
	1
1
	0
1
	0
0
	F=0

	1
1
	0
0
	0
0
	0
1
	1
1
	F=1

	1
1
	0
0
	1
1
	0
1
	0
0
	F=0

	1
1
	1
1
	0
0
	0
1
	0
0
	F=0

	1
1
	1
1
	1
1
	0
1
	0
1
	F=D

[image: E:\new\DE\UNIT II\Fig. 2. 27.eps]
5. Implement a 16×1 MUX with two 8×1 MUX and one 2×1 MUX use Block Diagram (APRIL/MAY 2014)
[image: E:\new\DE\UNIT II\Fig. 2. 28.eps]
Function table:
	 A
	B
	C
	S
	Output

	0
0
0
0
1
1
1
1
	0
0
1
1
0
0
1
1
	0
1
0
1
0
1
0
1
	0
0
0
0
0
0
0
0
	I0
I1
I2
I3
I4
I5
I6
I7

	0
0
0
0
1
1
1
1
	0
0
1
1
0
0
1
1
	0
1
0
1
0
1
0
1
	1
1
1
1
1
1
1
1
	I8
I9
I10
I11
I12
I13
I14
I15

6. Realize the following Boolean expression using a 8×1 MUX

Selection table
	 A
	B
	C
	Y

	0
0
0
0
1
1
1
1
	0
0
1
1
0
0
1
1
	0
1
0
1
0
1
0
1
	0
1
1
0
0
1
0
1

[image: E:\new\DE\UNIT II\Fig. 2. 29.eps]
3. Implement the following, Boolean function with 4×1 MUX and external gates
F(A, B, C, D)	 (1, 3, 4, 11, 12, 13, 14, 15)	A,B selection line
						C,D data variables
	 Selection line
	 Data variable
	F
	

	A
	B
	C
	D
	
	

	0
0
0
0
	0
0
0
0
	0
0
1
1
	0
1
0
1
	0
1
0
1
	F = D

	0
0
0
0
	1
1
1
1
	0
0
1
1
	0
1
0
1
	1
0
0
0
	F = C’D’

	0
1
1
1
	0
0
0
0
	0
0
1
1
	0
1
0
1
	0
0
0
1
	F = CD

	1
1
1
[bookmark: _GoBack]1
	1
1
1
1
	0
0
1
1
	0
1
0
1
	1
1
1
1
	F = 1

[image: E:\new\DE\UNIT II\Fig. 2. 30.eps]
[image: E:\new\DE\UNIT II\Fig. 2. 31.eps]
9. Explain in detail about MAGNITUIDE COMPARATOR:-
MAGNITUIDE COMPARATOR:-
⟹ A magnitude comparator is a Combinational circuit that comparer two numbers A and B and determines their relative magnitude.
⟹ The outcome of the comparision is specified by the three binary variables that indicate whether A>B , A=B or A<B
* 2-BIT MAGNITUDE COMPARATOR:-
	Inputs outputs

	A1
	A0
	B1
	B0
	A>B
	A=B
	A<B

	0
	0
	0
	0
	0
	 1
	0

	0
	0
	0
	1
	0
	0
	1

	0
	0
	1
	0
	0
	0
	1

	0
	0
	1
	1
	0
	0
	1

	0
	1
	0
	0
	1
	0
	0

	0
	1
	0
	1
	0
	1
	0

	0
	1
	1
	0
	0
	0
	1

	0
	1
	1
	1
	0
	0
	1

	1
	0
	0
	0
	1
	0
	0

	1
	0
	0
	1
	1
	0
	0

	1
	0
	1
	0
	0
	1
	0

	1
	0
	1
	1
	0
	0
	1

	1
	1
	0
	0
	1
	0
	0

	1
	1
	0
	1
	1
	0
	0

	1
	1
	1
	0
	1
	0
	0

	1
	1
	1
	1
	0
	1
	0

[image: E:\new\DE\UNIT II\Fig. 2. 32.eps]

[image: E:\new\DE\UNIT II\Fig. 2. 33.eps]

	
[image: E:\new\DE\UNIT II\Fig. 2. 34.eps]

	
[image: E:\new\DE\UNIT II\Fig. 2. 35.eps]
Circuit for comparing two n- bit nos, has 22n entries, in the truth table and becomes, two cumbersome even with n=3. Hence algorithm is uses to design of higher comparators.
10. Design a 4- BIT MAGNAITUDE COMPARATROR with 3 outputs:A>B,A=B,A<B.(NOV/DEC 2015)
			A A3 A2 A1 A0
			B → B3 B2 B1 B0
i) Two nos, are equal if all pairs of significant digits are equal
A3=B3 , A2=B2 , A1=B1 A0=B0
⟹ Equity relatuion of each pair of bits can be expressed logically with an EX or function AS Xi=AiBi+Ai1Bi1 for i=0, 1, 2, 3.
⟹ Where xi=1, only if the pairs of bits in position, i are equal.
⟹ For equality to exist, all xi variables must be equal to 1 (A=B) =x3x2x1x0
⟹ (A=B)=1 on;y if all pairs of digits of the two nos, are equal.
(ii) To determine it A<b (or) A>B, the relative magnitude of pairs of significant digits. Starting from the MSB (Most Significant Position) are to be inspected.
If the two digits are equal, next LSB (Lower significant Bits) pairs are compared. This comparision continuous until a pair of unequal digits are reaches
(A>B) =A3B31+ x3A2A21 + x3x2A1B11 + x3x2x1A0B0
(A<B) =A31B3 + x3A21B2 + x3A21B2 + x3x2A11B1 + x3x2x1A01B0
(A=B) = x3x2x1x0
Where, xi = AiBi + Ai1B11
I = 0, 1, 2, 3
(A>B) = A3B31 + x3A2B21 + x3x2x1A0B01
(A<B) = A31B3 + x3A21B2 + x3x2A11B1 + x3x2x1A01B0
[image: E:\new\DE\UNIT II\Fig. 2. 36.eps]
[image: E:\new\DE\UNIT II\Fig. 2. 37.eps]

[image: E:\new\DE\UNIT II\Fig. 2. 38.eps]

10. A majority circuit is a combinational circuit whose output is equal to 1 of thje input variable have 1’s than 0’s. The output is 0 otherwise. Design a 3- input majority circuit
	Input
	Output

	A
	B
	C
	X

	0
	0
	0
	0

	0
	0
	1
	0

	0
	1
	0
	0

	0
	1
	1
	1

	1
	0
	0
	0

	1
	0
	1
	1

	1
	1
	0
	1

	1
	1
	1
	1

K – map
[image: E:\new\DE\UNIT II\Fig. 2. 39.eps]

Logic diagram
[image: E:\new\DE\UNIT II\Fig. 2. 40.eps]
BINARY CODES FOR DECIMAL FOR DECIMAL DIGITS:
	Decimal Digits
	BCD 8 4 2 1
	2 4 2 1
	Excess-3
	8 4 -2 1

	0
	0 0 0 0
	0 0 0 0
	0 0 1 1
	0 0 0 0

	1
	0 0 0 1
	0 0 0 1
	0 1 0 0
	0 1 1 1

	2
	0 0 1 0
	0 0 1 0
	0 1 0 1
	0 1 1 0

	3
	0 0 1 1
	0 0 1 1
	0 1 1 0
	0 1 0 1

	4
	0 1 0 0
	0 1 0 0
	0 1 1 1
	0 1 0 0

	5
	0 1 0 1
	0 1 0 1
	0 1 1 0
	1 0 1 1

	6
	0 1 1 0
	0 1 1 0
	0 1 1 1
	1 0 1 0

	7
	0 1 1 1
	0 1 1 1
	1 0 0 0
	1 0 0 1

	8
	1 0 0 0
	1 1 1 0
	1 0 0 1
	1 0 0 0

	9
	1 0 0 1
	1 1 1 1
	1 0 1 0
	1 1 1 1

Remaining are don’t care conditions.
11. Explain in detail about Odd function & Even Function (APRIL/MAY 2015)
Odd function
Even function
ODD FUNCTION:
EX- OR operation with three or more variables can be converts into an ordinary Boolean function.

Multiple variable EX-OR function is defines as an odd function
[image: E:\new\DE\UNIT II\Fig. 2. 41.eps]

[image: E:\new\DE\UNIT II\Fig. 2. 42.eps]
EVEN FUNCTION
Complement of ODD function is EVEN function EX- NOR is even function

[image: E:\new\DE\UNIT II\Fig. 2. 43.eps]
12. Explain in detail about PARITY GENERATION AND CHECKING 		(Nov / Dec 2016)
PARITY GENERATION AND CHECKING
EX-OR function are useful in systems requiring error – detection and correction codes
⟹ Parity bit is used for detecting error during transmission of binary information.
⟹ The message including the parity bit is transmitted then checked at recovering end for errors.
⟹ An error is detected if the checked parity does not correspond with the one transmitted.
⟹ The circuit that generates the parity bit in transistor is called parity generator.
⟹ The circuit that checks parity in receives is called parity receiver.
Message ⟶ parity generator ⟶[message + binary bit] Transistor medium ⟶ [parity checker]⟶ message
3-bit even parity generation & 4-bit even parity checker.
Consider 3-bit message to be transmitted together with an even parity bit
X, y, z ⟶ message (input to circuit)
P⟶ parity bit is output.
For ever parity, the bit P must be generated to make the total number of 1’s even (including p)
EVEN – PARITY GENERATOR TRUTH TABLE
	Three Bit Message
	Parity Bit

	X
	Y
	Z
	

	0
	0
	0
	0

	0
	0
	1
	1

	0
	1
	0
	1

	0
	1
	1
	0

	1
	0
	0
	1

	1
	0
	1
	0

	1
	1
	0
	0

	1
	1
	1
	1

[image: E:\new\DE\UNIT II\Fig. 2. 44.eps]

The 3 bits in message +1 parity bit (total= 4 bits)
 Are transmitted to their checker circuit to check for possible errors in transmission.
If received bits have even no of 1’s ⟹ No error
If received bits have odd no of 1’s ⟹ Errors (indicates one bit has changed during transmission)
If errors, output of parity checker C=1 (odd 1’s)
If no error, output of parity checker C=0 (even 1’s)

EVEN PARITY CHECKER TRUTH TABLE
	Four bit received
	PEC

	X
	y
	z
	P

	0
	0
	0
	0
	0

	0
	0
	0
	1
	1

	0
	0
	1
	0
	1

	0
	0
	1
	1
	0

	0
	1
	0
	0
	1

	0
	1
	0
	1
	0

	0
	1
	1
	0
	0

	0
	1
	1
	1
	1

	1
	0
	0
	0
	1

	1
	0
	0
	1
	0

	1
	0
	1
	0
	0

	1
	0
	1
	1
	1

	1
	1
	0
	0
	0

	1
	1
	0
	1
	1

	1
	1
	1
	0
	1

	1
	1
	1
	1
	0

[image: E:\new\DE\UNIT II\Fig. 2. 45.eps]

13. Explain in detail about 4 bit SERIAL ADDER(april/may 2016)
 (
Initial
Clear pulse
clk
B
reg
Sum
reg
A
reg
A
B
C
in
S
C
out
S
3
S
2
S
1
S
0
Q D
A
3
A
2
A
1
A
0
B
3
B
2
B
1
B
0
)

The diagram of a 4-bit serial adder is shown above:
* 2 shift registers A&B are used to store the numbers to be added serially.
* A single full adder is used to add one pair of bits at a time along with the carry.
* D flip-flop i.e carry flip-flop is used to store the carry output of the full-adder, so that it can be added to the next significant position of the number in shift registers.
* The contents of the shift registers shift from left to right & their outputs starting from A0& B0 are fed into a single full adder along with the output of carry flip-flop up on application of each clock pulse.
* Sum output of the full adder is fed to MSB (S3) of the sum registers.
* For each succeeding clock pulse, the contents of both the shift registers are shifted once to the right & new sum bit & new carry bit are transferred to sum register & carry flip-flop respectively.
Example:
A3 A2 A1 A0		B3 B2 B1 B0
0 1 1 1		0 0 1 0

Cin =0,		 carry flip-flop has been initially cleared to 0 state.
Before first clock pulse applied
A0 =1,	B0 =0 & Cin=0		
Sum =1		count =0
Ist clock pulse:	
when the first clock pulse occurs, the value in A&B register shift from left to right by one bit.
Sum (s) is transferred to S3 of sum registers and the count is transferred to carry flip-flop.
image5.wmf
YABCDE

YABCDE

YABCDE

=++

=

=

gg

gg

image72.wmf

image73.wmf
1

1

1

1

111111

(ABC)(ABC(AB)C

(AB)C.ABC

ABC.(AB)C

(AB)(AB)(AB)C(AB)C

ABCABCABCABC

(0,3,5,6)

ÅÅ=ÅÅ+Å

=ÅÅ

éù

éù

=Å+Å+

ëû

ëû

=ÅÅ+Å+Å

=+++

=å

oleObject24.bin

image74.wmf

image75.wmf

image76.wmf
PXYZ

xyzxyzxyzxyz

x(yzyz)x(yzyz)

x(yz)x(yz)

xyz.

\=ÅÅ

+++

+++

Å+Å

ÅÅ

oleObject25.bin

image77.wmf
CXYZP

=ÅÅÅ

oleObject26.bin

image78.wmf

oleObject1.bin

image79.wmf
xyzpxyzpxyzpyzpxyzpxyzpxyzpxyzp

xy(zpzp)xy(zpzp)xy(zpzp)xy(zpzp)

xy(zp)xy(zp)xy(zp)xy(zp)

zp(xyxy)zp(xyxy)

zp(xy)zp(xy)

xyzp

++++++

Þ+++++++

ÞÅ+Å+Å+Å

ÞÅ++Å+

ÞÅÅ+ÅÅ

ÞÅÅÅ

oleObject27.bin

image80.wmf
CLR

uuuuuv

oleObject28.bin

image6.wmf

image7.wmf
(

)

(

)

FABCDE

=++

oleObject2.bin

image8.wmf

image9.wmf
(

)

(

)

FABCDE

ABAB

CDECDE

FABCDE

=++

+=

+=

=

g

g

ggg

oleObject3.bin

image10.wmf

image11.wmf
(

)

(

)

(

)

YABCDAD

=+++

oleObject4.bin

image12.wmf

image13.wmf
(

)

(

)

(

)

123

1

2

3

123

YABCDAD

YABCDAD

YYYY

YAB

YCD

YAD

YYYY

=+++

=+++++

=++

=+

=+

=+

=++

oleObject5.bin

image14.wmf

image15.wmf

image16.wmf

image17.wmf

image18.wmf
111111

11111

1

sxyzxyzxyzxyz

z(xyxy)z(xyxy)

z(xy)z(xy)

sxyz

SXYZ.

=+++

=+++

=Å+Å

=ÅÅ

=ÅÅ

oleObject6.bin

image19.wmf
11

11

11

11

Cxyxzyz

or

xyxz(yy)yz(xx)

xyxyzxyzxyzxyz

xy(1z)xyzxyz

CXYXYZXYZ

=++

=++++

=++++

=+++

=++

oleObject7.bin

image20.wmf
21

30

CC

CC

0110Ci

oleObject8.bin

image21.wmf
310

2

AAA

A

1011Ai

oleObject9.bin

image22.wmf
10

32

BB

BB

0011Bi

oleObject10.bin

image23.wmf
21

43

CC

CC

0011Ci1

+

oleObject11.bin

image24.wmf

image25.wmf

image26.wmf

image27.wmf

image28.wmf

image29.wmf

image30.wmf

image31.wmf
111

0

111

11

2

1

3

DABE

DABE

DABE

DABE

=

=

=

=

oleObject12.bin

image32.wmf

image33.wmf

image34.wmf

image35.wmf

image36.wmf

image37.wmf

image38.wmf

image39.wmf

image40.wmf

image41.wmf
1111

1111

1111

111

1

dAB(DC)BCDCD

dAB(DC)BCDCD

dABCDBCDCD

dA(BCD)CD

gABCCDBC

ACD(BC)

=++++

=++++

=+++

=+Å+

=+++

=++Å

oleObject13.bin

image1.wmf

image42.wmf

image43.wmf

image44.wmf
100101102103

ySSISSISSISSI

=+++

oleObject14.bin

image45.wmf

image46.wmf

image47.wmf

image48.wmf

image49.wmf
C

oleObject15.bin

image2.jpeg
INPUTS
A B

n-bit
comparator

A>B A=B A<B

oleObject16.bin

image50.wmf

image51.wmf
C

oleObject17.bin

oleObject18.bin

image52.wmf

image53.wmf

image54.wmf
yABCABCABCABC

y(1,2,5,7)

=+++

=å

oleObject19.bin

image55.wmf

image3.wmf

image56.wmf

image57.wmf

image58.wmf

image59.wmf

image60.wmf
1

01010010101010

11000

0001100

1

0000111

0011

(AB)AABBAABBAABBAABB

AB(ABAB)AB(ABAB)

(ABAB)(ABAB

(AB)(AB)(AB)

==+++

=+++

=++

==ÅÅ

oleObject20.bin

image61.wmf

image62.wmf
10001011

0

0111

(AB)AABABBAB

(AB)ABBAB

<=++

>=+

oleObject21.bin

image63.wmf

image4.wmf

image64.wmf

image65.wmf

image66.wmf

image67.wmf

image68.wmf

image69.wmf
11111

111111

1111111

11111

111111

m

ABC(ABAB)C(ABAB)C

(AB)C(AB)C(ABAB)C(AB)(AB)C

(ABAB)C(AAABABBB)C

(ABAB)C(ABAB)C

ABCABCABCABC

(1,2,4,7)

ÅÅ=+++

=Å+Å=++++

=+++++

=+++

=+++

=

å

oleObject22.bin

image70.wmf

image71.wmf
1111

11111111

1111111

FABC

e.g4inputoddfunction

ABCD(ABAB)(CDCD)

(ABAB)(CDCD)(ABAB)(CDCD)

(ABAB)(CDCD)(ABAB)(CDCD)

(1,2,4,7,8,11,13,14)

=ÅÅ

-

ÅÅÅ=+Å+

=+++++

=+++++

=å

oleObject23.bin

