
MC5403- ADBDM UNIT - I : Relational Model

0

MMCC 55440033-- AADDVVAANNCCEEDD DDAATTAABBAASSEESS

AANNDD DDAATTAA MMIINNIINNGG

UNIT I: RELATIONAL MODEL

MC5403- ADBDM UNIT - I : Relational Model

1

Syllabus:

UNIT I RELATIONALMODEL 9

Data Model – Types of Data Models: – Entity Relationship Model – Relational Data Model –

Mapping Entity Relationship Model to Relational Model – Structured Query Language –

Database Normalization – Transaction Management.

Table of Contents

SL No. Topic Page No.

1 Introduction 02

2 Data Model 05

3 Types of Data Models 07

4 Entity Relationship Model 09

5 Relational Data Model 25

6 Mapping Entity Relationship Model to

Relational Model

38

7 Structured Query Language 59

8 Database Normalization 72

9 Transaction Management 84

10 Questions - UNIT – I (Use

Printout)

Total Pages: 95

MC5403- ADBDM UNIT - I : Relational Model

2

11.. IINNTTRROODDUUCCTTIIOONN

1.1 Introduction Data

1.1.1 Data and Information

 Data are plain facts.

 The word "data" is plural for "datum."

 Data is nothing but facts and statistics stored or free flowing over a network, generally

it's raw and unprocessed.

 When data are processed, organized, structured or presented in a given context so as to

make them useful, they are called Information.

 It is not enough to have data (such as statistics on the economy).

 Data themselves are fairly useless, but when these data are interpreted and processed to

determine its true meaning, they becomes useful and can be called Information.

For example: When you visit any website, they might store you IP address, that is data,

in return they might add a cookie in your browser, marking you that you visited the

website, that is data, your name, it's data, your age, it's data.

1.1.2 Database

A Database is a collection of related data organized in a way that data can be easily

accessed, managed and updated. Database can be software based or hardware based,

with one sole purpose, storing data

What is Database?

 A database is a data structure that stores organized information.

 Most databases contain multiple tables, which may each include several different

fields.

o For example, a company database may include tables for products, employees,

and financial records.

o Each of these tables would have different fields that are relevant to the

information stored in the table.

Definitions of Database :

MC5403- ADBDM UNIT - I : Relational Model

3

o An organized body of related information.

o In computing, a database can be defined as a structured collection of records

or data that is stored in a computer so that a program can consult it to answer

queries.

 The records retrieved in answer to queries become information that can be used to

make decisions.

 An organized collection of records presented in a standardized format searched by

computers. Web Pals, ID Weeks Library's Online Catalog, is a database.

 The periodical indexes available through the library are also databases.

 A collection of data organized for rapid search and retrieval by a computer.

1.1.3 DBMS (or) Database Management System

 A DBMS is a software that allows creation, definition and manipulation of database,

allowing users to store, process and analyse data easily.

 DBMS provides us with an interface or a tool, to perform various operations like

creating database, storing data in it, updating data, creating tables in the database and a

lot more.

 DBMS also provides protection and security to the databases. It also maintains data

consistency in case of multiple users.

What is DBMS?

 Collection of interrelated data

 Set of programs to access the data

 DBMS contains information about a particular enterprise

 DBMS provides an environment that is both convenient and efficient to use.

Here are some examples of popular DBMS used these days:

MySql, Oracle, SQL Server, IBM DB2, PostgreSQL, Amazon SimpleDB (cloud based) etc.

1.1.4 Database Applications:

 Banking: all transactions

 Airlines: reservations, schedules

 Universities: registration, grades

MC5403- ADBDM UNIT - I : Relational Model

4

 Sales: customers, products, purchases

 Manufacturing: production, inventory, orders, supply chain

 Human resources: employee records, salaries, tax deductions

 Databases touch all aspects of our lives

1.1.5 Characteristics of Database Management System

 Data Consistency

 Support Multiple user and Concurrent Access

 Query Language

 Security

1.1.6 Purpose of Database System

• In the early days, database applications were built on top of file systems

• Drawbacks of using file systems to store data:

– Data redundancy and inconsistency

• Multiple file formats, duplication of information in different files – Difficulty in accessing

data

• Need to write a new program to carry out each new task

– Data isolation — multiple files and formats

– Integrity problems

• Integrity constraints (e.g. account balance > 0) become part of program code

• Hard to add new constraints or change existing ones

– Atomicity of updates

• Failures may leave database in an inconsistent state with partial updates carried out

• E.g. transfer of funds from one account to another should either complete or not happen at all

– Concurrent access by multiple users

• Concurrent accessed needed for performance

• Uncontrolled concurrent accesses can lead to inconsistencies

– E.g. two people reading a balance and updating it at the same time

– Security problems

• Database systems offer solutions to all the above problems

1.1.7 Types of Database Management Systems

There are four structural types of database management systems:

MC5403- ADBDM UNIT - I : Relational Model

5

 Hierarchical databases.

 Network databases.

 Relational databases.

 Object-oriented databases

1.1.8 Advantages of DBMS

 Segregation of applicaion program.

 Minimal data duplicacy or data redundancy.

 Easy retrieval of data using the Query Language.

 Reduced development time and maintainance need.

 With Cloud Datacenters, we now have Database Management Systems capable of

storing almost infinite data.

 Seamless integration into the application programming languages which makes it very

easier to add a database to almost any application or website.

1.1.9 Disadvantages of DBMS

 It's Complexity

 Except MySQL, which is open source, licensed DBMSs are generally costly.

 They are large in size.

22.. DDAATTAA MMOODDEELL

2.1 Introduction

 A model is a representation of reality, 'real world' objects and events, associations.

 A collection of tools for describing

– data

– data relationships

– data semantics

– data constraints

What is Data Model?

 Data models define how the logical structure of a database is modeled.

 Data Models are fundamental entities to introduce abstraction in a DBMS.

MC5403- ADBDM UNIT - I : Relational Model

6

 Data models define how data is connected to each other and how they are processed and

stored inside the system.

2.2 Characteristics of Data Models

 The very first data model could be flat data-models, where all the data used are to be kept in

the same plane.

 Earlier data models were not so scientific, hence they were prone to introduce lots of

duplication and update anomalies.

 It is an abstraction that concentrates on the essential, inherent aspects an organization and

ignores the accidental properties.

 A data model represents the organization itself. It should provide the basic concepts and

notations that will allow database designers and end users unambiguously and accurately to

communicate their understanding of the organizational data.

 Data Model can be defined as an integrated collection of concepts for describing and

manipulating data, relationships between data, and constraints on the data in an

organization.

 A database model is the theoretical foundation of a database and fundamentally determines

in which manner data can be stored, organized, and manipulated in a database system.

 It thereby defines the infrastructure offered by a particular database system.

2.3 Uses of Data Models

• These models can be used in database design.

• It provides useful concepts that allow us to move from an informal description to precise

description.

• This model was developed to facilitate database design by allowing the specification of

overall logical structure of a database.

• It is extremely useful in mapping the meanings and interactions of real world enterprises

onto a conceptual schema.

• These models can be used for the conceptual design of database applications.

http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

MC5403- ADBDM UNIT - I : Relational Model

7

2.4 Components of a Data Model

A data model comprises of three components:

1) A structural part, consisting of a set of rules according to which databases can be

constructed.

2) A manipulative part, defining the types of operation that are allowed on the data (this

includes the operations that are used for updating or retrieving data from the database

and for changing the structure of the database).

3) Possibly a set of integrity rules, which ensures that the data is accurate.

Thus a data model can help the data designers, DB managers, DB administrators to

conceptualize, organize, design and Develop databases and also provides mechanism to

manage to the extent that will be useful for entire data science world.

33.. TTYYPPEESS OOFF DDAATTAA MMOODDEELL

3.1 Introduction

 The entire structure of a database can be described using a data model.

 A data model is a collection of conceptual tools for describing data.

 The benefits of these data models do not limit its helping hand to the time bound and

situation bound bond with its depended peoples.

3.2 Categories of data models

Data models can be classified into following types.

1. Object Based Logical Models.

2. Record Based Logical Models.

3. Physical Models.

MC5403- ADBDM UNIT - I : Relational Model

8

1) Object Based Logical Models:

These models can be used in describing the data at the logical and view levels.

These models are having flexible structuring capabilities classified into following types.

a) The entity-relationship model.

b) The object-oriented model.

c) The semantic data model.

d) The functional data model.

2) Record Based Logical Models:

These models can also be used in describing the data at the logical and view levels.

These models can be used for both to specify the overall logical structure of the database and a

higher-level description.

These models can be classified into

a) Relational model.

b) Network model.

c) Hierarchal model.

3) Physical Models:

These models can be used in describing the data at the lowest level, i.e. physical level. These

models can be classified into

a) Unifying model

b) Frame memory model

The most popular example of a database model is the relational model.

MC5403- ADBDM UNIT - I : Relational Model

9

4. ENTITY – RELATIONSHIP MODEL (E-R MODEL)

4.1 Introduction

 The entity relationship model is a collection of basic objects called entities and

relationship among those objects.

 Entity-Relationship (ER) Model is based on the notion of real-world entities and

relationships among them.

 While formulating real-world scenario into the database model, the ER Model creates

entity set, relationship set, general attributes and constraints.

 ER Model is best used for the conceptual design of a database.

ER Model is based on −

a) Entities and their attributes.

b) Relationships among entities.

 An entity is a thing or object in the real world that is distinguishable from other objects.

 Entity-relationship model is a model used for design and representation of relationships

between data.

 The main data objects are termed as Entities, with their details defined as attributes,

some of these attributes are important and are used to identity the entity, and different

entities are related using relationships.

4.2 Basics of ER Model

There are two techniques used for the purpose of data base designing from the system

requirements and they are:

a) Top down Approach known as Entity-Relationship Modeling

b) Bottom Up approach known as Normalization.

• The Entity-Relationship (ER) model is a top down approach of designing database.

• It is a graphical technique, which is used to convert the requirement of the system to

graphical representation, so that it can become well understandable.

http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

MC5403- ADBDM UNIT - I : Relational Model

10

• It also provides the framework for designing of database.

• The Entity-Relationship (ER) model was originally proposed by Peter in 1976 as a way

to unify the network and relational database views.

• Simply stated, the ER model is a conceptual data model that views the real world as

entities and relationships.

• A basic component of the model is the Entity-Relationship diagram, which is used to

visually represent data objects.

 For the database designer, the utility of the ER model is:

• It maps well to the relational model. The constructs used in the ER model can easily be

transformed into relational tables.

• It is simple and easy to understand with a minimum of training. Therefore, the model can be

used by the database designer to communicate the design to the end user.

• In addition, the model can be used as a design plan by the database developer to implement a

data model in specific database management software.

4.3 Elements of E-R Model

The major elements or components of a ERD are the participating elements while creating it.

These concepts are explained below.

The ER elements are:

a) Entity and Entity Set

b) Attributes And Types of Attributes.

c) Keys

MC5403- ADBDM UNIT - I : Relational Model

11

d) Relationships

a) Entity − An entity in an ER Model is a real-world entity having properties

called attributes. Every attribute is defined by its set of values called domain.

o For example, in a school database, a student is considered as an entity. Student

has various attributes like name, age, class, etc.

o Entity Representation : A Simple rectangular box represents an Entity.

An Entity is generally a real-world object which has characteristics and holds

relationships in a DBMS.

If a Student is an Entity, then the complete dataset of all the students will be

the Entity Set

Entity set: The set of all entities of the same type is termed as an entity set.

Entity type:

An entity type defines a collection of entities that have the same attributes.

Example:

For a School Management Software, we will have to

store Student information, Teacher information, Classes, Subjects taught in each class etc.

Considering the above example, Student is an entity, Teacher is an entity,

similarly, Class, Subjectetc are also entities.

b) Relationship − The logical association among entities is called relationship.

Relationships are mapped with entities in various ways.

c) Mapping cardinalities define the number of association between two entities.

Mapping cardinalities −

o one to one

MC5403- ADBDM UNIT - I : Relational Model

12

o one to many

o many to one

o many to many

ER- Diagram Notations

ER- Diagram is a visual representation of data that describe how data is related to each other.

 Rectangles: This symbol represent entity types

 Ellipses : Symbol represent attributes

 Diamonds: This symbol represents relationship types

 Lines: It links attributes to entity types and entity types with other relationship types

 Primary key: attributes are underlined

 Double Ellipses: Represent multi-valued attributes

ER Model: Attributes

Attributes

An Attribute describes a property or characterstic of an entity.

An entity is represented by a set of attributes. Attributes are descriptive properties possessed by

each member of an entity set.

MC5403- ADBDM UNIT - I : Relational Model

13

Example:

A possible attributes of customer entity are customer name, customer id, Customer Street,

customer city.

For example, Name, Age, Address etc can be attributes of a Student. An attribute is

represented using eclipse.

Attributes for any Entity

Ellipse is used to represent attributes of any entity. It is connected to the entity.

Key Attribute

Key attribute represents the main characterstic of an Entity.

It is used to represent a Primary key.

Ellipse with the text underlined, represents Key Attribute.

Single valued and multi valued attributes

Single valued attributes: attributes with a single value for a particular entity are called

single valued attributes.

Multi valued attributes : Attributes with a set of value for a particular entity are

called multivalued attributes.

stored and derived attributes

Stored attributes: The attributes stored in a data base are called stored attributes.

Derived attributes: The attributes that are derived from the stored attributes are called derived

attributes.

Example :

MC5403- ADBDM UNIT - I : Relational Model

14

If a Student is an Entity, then student's roll no., student's name, student's age,

student's gender etc will be its attributes.

An attribute can be of many types, here are different types of attributes defined in ER database

model:

1. Simple attribute: The attributes with values that are atomic and cannot be broken down

further are simple attributes. For example, student's age.

2. Composite attribute: A composite attribute is made up of more than one simple attribute.

For example, student's address will contain, house no., street name, pincode etc.

Composite Attribute for any Entity

A composite attribute is the attribute, which also has attributes.

3. Derived attribute: These are the attributes which are not present in the whole database

management system, but are derived using other attributes. For example, average age of

students in a class.

Derived Attribute for any Entity

Derived attributes are those which are derived based on other attributes, for example, age can

be derived from date of birth.

To represent a derived attribute, another dotted ellipse is created inside the main ellipse.

4. Single-valued attribute: As the name suggests, they have a single value.

5. Multi-valued attribute: And, they can have multiple values.

Multivalued Attribute for any Entity

Double Ellipse, one inside another, represents the attribute which can have multiple values.

MC5403- ADBDM UNIT - I : Relational Model

15

Key Attribute for any Entity

To represent a Key attribute, the attribute name inside the Ellipse is underlined.

Relationships

 A relationship is an association among several entities.

 When an Entity is related to another Entity, they are said to have a relationship.

Example: A depositor relationship associates a customer with each account that he/she has.

Example

For example, A Class Entity is related to Student entity, because students study in classes,

hence this is a relationship.

Depending upon the number of entities involved, a degree is assigned to relationships.

For example, if 2 entities are involved, it is said to be Binary relationship, if 3 entities are

involved, it is said to be Ternary relationship, and so on

There are three types of relationship that exist between Entities.

1. Binary Relationship

2. Recursive Relationship

3. Ternary Relationship

Relationship set

Relationship set : The set of all relationships of the same type is termed as a relationship set.

Relationships between Entities - Weak and Strong

Rhombus is used to setup relationships between two or more entities.

MC5403- ADBDM UNIT - I : Relational Model

16

Degree of relationship set

The degree of relationship type is the number of participating entity types.

i) Key attribute

ii) Value set

Key attribute : An entity type usually has an attribute whose values are distinct from

each individual entity in the collection. Such an attribute is called a key attribute.

Value set: Each simple attribute of an entity type is associated with a value set that

specifies the set of values that may be assigned to that attribute for each individual entity.

Cardinality

Mapping cardinalities or cardinality ratios express the number of entities to which another

entity can be associated. Mapping cardinalities must be one of the following:

• One to one

• One to many

• Many to one

• Many to many

• While creating relationship between two entities, we may often need to face the

cardinality problem.

• This simply means that how many entities of the first set are related to how many

entities of the second set.

Cardinality can be of the following three types.

a) One-to-One

• Only one entity of the first set is related to only one entity of the second set. E.g. A

teacher teaches a student.

MC5403- ADBDM UNIT - I : Relational Model

17

• Only one teacher is teaching only one student.

This can be expressed in the followingdiagram as:

b) One-to-Many

• Only one entity of the first set is related to multiple entities of the second set.

• E.g. A teacher teaches students. Only one teacher is teaching many students.

This can be expressed in the following diagram as:

c) Many-to-One

• Multiple entities of the first set are related to multiple entities of the second set.

E.g. Teachers teach a student.

• Many teachers are teaching only one student.

This can be expressed in the followingdiagram as:

MC5403- ADBDM UNIT - I : Relational Model

18

d) Many-to-Many

• Multiple entities of the first set is related to multiple entities of the second set.

E.g. Teachers teach students.

• In any school or college many teachers are teaching many students.

• This can be considered as a two way one-to-many relationship.

This can be expressed in the following diagram as:

Weak and strong entity sets

Weak entity set: entity set that do not have key attribute of their own are called weak entity

sets. Strong entity set: Entity set that has a primary key is termed a strong entity set.

• Based on the concept of foreign key, there may arise a situation when we have to relate

an entity having a primary key of its own and an entity not having a primary key of its

own.

• In such a case, the entity having its own primary key is called a strong entity and the

entity not having its own primary key is called a weak entity.

• Whenever we need to relate a strong and a weak entity together, the ERD would change

just a little.

Example:

MC5403- ADBDM UNIT - I : Relational Model

19

• Say, for example, we have a statement “A Student lives in a Home.” STUDENT is

obviously a strong entity having a primary key Roll.

• But HOME may not have a unique primary key, as its only attribute Address may be

shared by many homes (what if it is a housing estate?).

• HOME is a weak entity in this case.

The ERD of this statement would be like the following

As you can see, the weak entity itself and the relationship linking a strong and weak entity must

have double border.

4.3 How to Prepare an ERD(Entity Relationship Diagram) ?

There are 3 major steps for preparing an E-R Diagram (ERD)

Step 1: Prepare a written Document

Let us take a very simple example and we try to reach a fully organized database from it.

 Let us look at the following simple statement:

A boy eats an ice cream.

This is a description of a real word activity, and we may consider the above statement as a

written document (very short, of course).

Step 2 : Prepare the ERD

• Now we have to prepare the ERD.

• Before doing that we have to process the statement a little.

MC5403- ADBDM UNIT - I : Relational Model

20

o We can see that the sentence contains a subject (boy), an object (ice cream) and a

verb (eats) that defines the relationship between the subject and the object.

Consider the nouns as entities (boy and ice cream) and the verb (eats) as a

relationship.

o To plot them in the diagram, put the nouns within rectangles and the relationship

within a diamond.

o Also, show the relationship with a directed arrow, starting from the subject entity

(boy) towards the object entity (ice cream).

• Well, fine. Up to this point the ERD shows how boy and ice cream are related.

• Now, every boy must have a name, address, phone number etc. and every ice cream has

a manufacturer, flavor, price etc. Without these the diagram is not complete.

• These items which we mentioned here are known as attributes, and they must be

incorporated in the ERD as connected ovals.

• But can only entities have attributes? Certainly not.

• If we want then the relationship must have their attributes too.

• These attribute do not inform anything more either about the boy or the ice cream, but

they provide additional information about the relationships between the boy and the ice

cream.

MC5403- ADBDM UNIT - I : Relational Model

21

Step 3: Convert Entity into Table

We are almost complete now. If you look carefully, we now have defined structures for at least

three tables like the following:

• However, this is still not a working database, because by definition, database should be

“collection of related tables.”

• To make them connected, the tables must have some common attributes.

If we chose the attribute Name of the Boy table to play the role of the common attribute, then

the revised structure of the above tables become something like the following.

MC5403- ADBDM UNIT - I : Relational Model

22

• This is as complete as it can be.

• We now have information about the boy, about the ice cream he has eaten and about the

date and time when the eating was done.

4.4 Advantages and Disadvantages of E-R Data Model

4.4.1 Advantages of E-R Data Model

Following are advantages of an E-R Model:

a) Straightforward relation representation: Having designed an E-R diagram for a

database application, the relational representation of the database model becomes

relatively straightforward.

b) Easy conversion for E-R to other data model: Conversion from E-R diagram to a

network or hierarchical data model can· easily be accomplished.

c) Graphical representation for better understanding: An E-R model gives graphical and

diagrammatical representation of various entities, its attributes and relationships between

entities. This is turn helps in the clear understanding of the data structure and in

minimizing redundancy and other problems.

4.4.2 Disadvantages of E-R Data Model

MC5403- ADBDM UNIT - I : Relational Model

23

Following are disadvantages of an E-R Model:

a) No industry standard for notation: There is no industry standard notation for

developing an E-R diagram.

b) Popular for high-level design: The E-R data model is especially popular for high level.

Excercises:

1) Draw a E-R Diagram for Library Management System.

2) Draw a E-R Diagram for a Banking System

MC5403- ADBDM UNIT - I : Relational Model

24

 E-R Diagram for Banking System

MC5403- ADBDM UNIT - I : Relational Model

25

5. RELATIONAL DATA DMODEL

5.1 Introduction

 The Relational Model is a depiction of how each piece of stored information relates to

the other stored information.

 It shows how tables are linked, what type of links are between tables, what keys are

used, what information is referenced between tables.

 It's an essential part of developing a normalized database structure to prevent repeat and

redundant data storage.

 The basic idea behind the relational model is that a database consists of a series of

unordered tables (or relations) that can be manipulated using non-procedural operations

that return tables.

 This model was in vast contrast to the more traditional database theories of the time that

were much more complicated, less flexible and dependent on the physical storage

methods of the data..

 The RELATIONAL database model is based on the Relational Algebra, set theory and

predicate logic.

It is commonly thought that the word relational in the relational model comes from the fact that

you relate together tables in a relational database.

 Relational model stores data in the form of tables.

 This concept purposed by Dr. E.F. Codd, a researcher of IBM in the year 1960s.

What is Relational Model?

The relational model uses a collection of tables to represent both data and the relationships

among those data.

 Relational Model represents how data is stored in Relational Databases.

 A relational database stores data in the form of relations (tables).

 The relational model represents the database as a collection of relations.

 A relation is nothing but a table of values. Every row in the table represents a collection

of related data values.

MC5403- ADBDM UNIT - I : Relational Model

26

 These rows in the table denote a real-world entity or relationship.

 The table name and column names are helpful to interpret the meaning of values in each

row.

 The data are represented as a set of relations. In the relational model, data are stored as

tables. However, the physical storage of the data is independent of the way the data are

logically organized.

 Attribute, Tables, Tuple, Relation Schema, Degree, Cardinality, Column, Relation

instance, are some important components of Relational Model

 Relational Integrity constraints are referred to conditions which must be present for a

valid relation

 Domain constraints can be violated if an attribute value is not appearing in the

corresponding domain or it is not of the appropriate data type

 Insert, Select, Modify and Delete are operations performed in Relational Model

 The relational database is only concerned with data and not with a structure which can

improve the performance of the model

Basic rules on Relational

 Data need to be represented as a collection of relations

 Each relation should be depicted clearly in the table

 Rows should contain data about instances of an entity

 Columns must contain data about attributes of the entity

 Cells of the table should hold a single value

 Each column should be given a unique name

 No two rows can be identical

 The values of an attribute should be from the same domain

Example:

Consider a set of Employees in a company. Each employee has 2 –levels of information

MC5403- ADBDM UNIT - I : Relational Model

27

 The various tables in the database have a set of tuples.

 The columns enumerate the various attributes of the entity (the employee's name,

address or phone number, for example), and a row is an actual instance of the entity

(a specific employee) that is represented by the relation.

 As a result, each tuple of the employee table represents various attributes of a single

employee.

Tuple and attribute.

 Attributes: column headers

 Tuple : Row

5.2 Components of Relational Model

The relational model consists of three major components:

1. The set of relations and set of domains that defines the way data can be represented (data

structure).

2. Integrity rules that define the procedure to protect the data (data integrity).

3. The operations that can be performed on data (data manipulation).

Relational Database

A rational model database is defined as a database that allows you to group its data items into

one or more independent tables that can be related to one another by using fields common to

each related table.

Characteristics of Relational Database

Relational database systems have the following characteristics:

http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

MC5403- ADBDM UNIT - I : Relational Model

28

a) The whole data is conceptually represented as an orderly arrangement of data into rows

and columns, called a relation or table.

b) .All values are scalar. That is, at any given row/column position in the relation there is

one and only one value.

c) . All operations are performed on an entire relation and result is an entire relation, a

concept known as closure.

 Dr. Codd, when formulating the relational model, chose the term "relation" because it

vas comparatively free of connotations, unlike, for example, the word "table".

 It is a common misconception that the relational model is so called because relationships

are established between tables.

 In fact, the name is derived from the relations on whom it is based.

 Notice that the model requires only that data be conceptually represented as a relation, it

does not specify how the data should be physically implemented.

 A relation is a relation provided that it is arranged in row and column format and its

values are scalar.

 Its existence is completely independent of any physical representation.

5.3 Basic Terminology used in Relational Model

The figure shows a relation with the. Formal names of the basic components marked the entire

structure is, as we have said, a relation.

MC5403- ADBDM UNIT - I : Relational Model

29

a) Tuples of a Relation

Each row of data is a tuple. Actually, each row is an n-tuple, but the "n-" is usually dropped.

b) Cardinality of a relation: The number of tuples in a relation determines its cardinality.

In this case, the relation has a cardinality of 4.

c) Degree of a relation: Each column in the tuple is called an attribute. The number of

attributes in a relation determines its degree. The relation in figure has a degree of 3.

d) Domains: A domain definition specifies the kind of data represented by the attribute.

 More- particularly, a domain is the set of all possible values that an attribute may

validly contain.

 Domains are often confused with data types, but this is inaccurate.

 Data type is a physical concept while domain is a logical one. "Number" is a data

type and "Age" is a domain.

 To give another example "StreetName" and "Surname" might both be represented

as text fields, but they are obviously different kinds of text fields; they belong to

different domains.

 Domain is also a broader concept than data type, in that a domain definition

includes a more specific description of the valid data.

For example, the domain Degree A warded, which represents the degrees awarded by a

university.

In the database schema, this attribute might be defined as Text [3], but it's not just any three-

character string, it's a member of the set {BA, BS, MA, MS, PhD, LLB, MD}.

Of course, not all domains can be defined by simply listing their values. Age, for example,

contains a hundred or so values if we are talking about people, but tens of thousands if we are

talking about museum exhibits.

In such instances it's useful to define the domain in terms of the rules, which can be used to

determine the membership of any specific value in the set of all valid values.

For example, Person Age could be defined as "an integer in the range 0 to 120" whereas Exhibit

Age (age of any object for exhibition) might simply by "an integer equal to or greater than 0."

Body of a Relation: The body of the relation consists of an unordered set of zero or more

tuples.

http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java

MC5403- ADBDM UNIT - I : Relational Model

30

There are some important concepts here.

a) First the relation is unordered. Record numbers do not apply to relations.

b) Second a relation with no tuples still qualifies as a relation.

c) Third, a relation is a set.

The items in a set are, by definition, uniquely identifiable.

Therefore, for a table to qualify as a relation each record must be uniquely identifiable and the

table must contain no duplicate records.

Keys of a Relation

It is a set of one or more columns whose combined values are unique among all occurrences in

a given table.

A key is the relational means of specifying uniqueness. Some different types of keys are:

a) Primary key is an attribute or a set of attributes of a relation which posses the properties

of uniqueness and irreducibility (No subset should be unique).

For example: Supplier number in S table is primary key, Part number in P table is

primary key and the combination of Supplier number and Part Number in SP table is a

primary key

b) Foreign key is the attributes of a table, which refers to the primary key of some another

table.

 Foreign key permit only those values, which appears in the primary key of the table to

which it refers or may be null (Unknown value).

 For example: SNO in SP table refers the SNO of S table, which is the primary key of S

table, so we can say that SNO in SP table is the foreign key.

 PNO in SP table refers the PNO of P table, which is the primary key of P table, so we

can say that PNO in SP table is the foreign key.

 The database of Customer-Loan, which we discussed earlier for hierarchical model and

network model, is now represented for Relational model as shown.

 In can easily understood that, this model is very simple and has no redundancy.

MC5403- ADBDM UNIT - I : Relational Model

31

 The total database is divided in to two tables. Customer table contains

the information about the customers with CNO as the primary key.

 The Cutomer_Loan table stores the information about CNO, LNO and AMOUNT.

 It has the primary key combination of CNO and LNO.

 Here, CNO also acts as the foreign key and refers to CNO of Customer table.

 It means, only those customer number are allowed in transaction table Cutomer_Loan

that have their entry in the master Customer table.

Relational View of Sample database

Let us take an example of a sample database consisting of supplier, parts and shipments tables.

The table structure and some sample records for supplier, parts and shipments tables are given

as Tables as shown below:

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

MC5403- ADBDM UNIT - I : Relational Model

32

 We assume that each row in Supplier table is identified bya unique SNo (Supplier

Number), which uniquely identifies the entire row of the table.Likewise each part has a

unique PNo (Part Number).

 Also, we assume that no more thanone shipment exists for a given supplier/part

combination_in the shipments table.

 Note that the relations Parts and Shipments have PNo (Part Number) in common

andSupplier and Shipments relations have SNo (Supplier Number) in common.

 The Supplier andParts relations have City in common.

 For example, the fact that supplier S3 and part P2 arelocated in the same city is

represented by the appearance of the same value, Amritsar, in thecity column of the two

tuples in relations.

MC5403- ADBDM UNIT - I : Relational Model

33

5.4 Operations in Relational Model

The four basic operations in Relational Models and they are as follows:

a) Insert

b) Update

c) Delete

d) Retrieve

The four operations are shown below on the sample database in relational model:

a) Insert Operation:

 Suppose we wish to insert the information of supplier who does not supply any part, can

be inserted in S table without any anomaly e.g. S4 can be inserted in Stable.

 Similarly, if we wish to insert information of a new part that is not supplied by any

supplier can be inserted into a P table.

 If a supplier starts supplying any new part, then this information can be stored in

shipment table SP with the supplier number, part number and supplied quantity.

 So, we can say that insert operations can be performed in all the cases without any

anomaly.

b) Update Operation:

 Suppose supplier S1 has moved from Qadian to Jalandhar.

 In that case we need to make changes in the record, so that the supplier table is up-to-

date.

 Since supplier number is the primary key in the S (supplier) table, so there is only a

single entry of S 1, which needs a single update and problem of data inconsistencies

would not arise.

 Similarly, part and shipment information can be updated by a single modification in the

tables P and SP respectively without the problem of inconsistency.

 Update operation in relational model is very simple and without any anomaly in case of

relational model.

MC5403- ADBDM UNIT - I : Relational Model

34

c) Delete Operation:

 Suppose if supplier S3 stops the supply of part P2, then we have to delete the shipment

connecting part P2 and supplier S3 from shipment table SP.

 This information can be deleted from SP table without affecting the details of supplier of

S3 in supplier table and part P2 information in part table.

 Similarly, we can delete the information of parts in P table and their shipments in SP

table and we can delete the information suppliers in S table and their shipments in SP

table.

d) Record Retrieval:

Record retrieval methods for relational model are simple and symmetric which can be

clarified with the following queries:

Query1: Find the supplier numbers for suppliers who supply part P2.

 Solution: In order to get this information we have to search the information of part P2 in the

SP table (shipment table). For this a loop is constructed to find the records of P2 and on getting

the records, corresponding supplier numbers are printed.

Algorithm

do until no more shipments;

get next shipment where PNO=P2;

print SNO;

end;

Query2: Find part numbers for parts supplied by supplier 52.

Solution: In order to get this information we have to search the information of supplier S2 in

the SP table (shipment table). For this a loop is constructed to find the records of S2 and on

getting the records corresponding part numbers are printed.

MC5403- ADBDM UNIT - I : Relational Model

35

Algorithm

do until no more parts;

get next shipment where SNO=S2;

print PNO;

end;

Since, both the queries involve the same logic and are very simple, so we can conclude that

retrieval operation of this model is simple and symmetric.

Advantages and Disadvantages of Relational Model

Advantages of using Relational model

a) Simplicity: A relational data model is simpler than the hierarchical and network model.

b) Structural Independence: The relational database is only concerned with data and not

with a structure. This can improve the performance of the model.

c) Easy to use: The relational model is easy as tables consisting of rows and columns is

quite natural and simple to understand

d) Query capability: It makes possible for a high-level query language like SQL to avoid

complex database navigation.

e) Data independence: The structure of a database can be changed without having to

change any application.

f) Scalable: Regarding a number of records, or rows, and the number of fields, a database

should be enlarged to enhance its usability.

Additional advantages of the relational model are:

a) Structural independence:

 In relational model, changes in the database structure do not affect the data access.

 When it is possible to make change to the database structure without affecting

the DBMS's capability to access data, we can say that structural independence has been

achieved. So, relational database model has structural independence.

b) Conceptual simplicity:

http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

MC5403- ADBDM UNIT - I : Relational Model

36

 We have seen that both the hierarchical and the network database model were

conceptually simple.

 But the relational database model is even simpler at the conceptual level.

 Since the relational data model frees the designer from the physical data storage details,

the designers can concentrate on the logical view of the database.

c) Design, implementation, maintenance and usage ease:

The relational database model\ achieves both data independence and structure independence

making the database design, maintenance, administration and usage much easier than the

other models.

d) Ad hoc query capability:

 The presence of very powerful, flexible and easy-to-use query capability is one of the

main reasons for the immense popularity of the relational database model.

 The query language of the relational database models structured query language or SQL

makes ad hoc queries a reality.

 SQL is a fourth generation language (4GL). A 4 GL allows the user to specify what must

be done without specifying how it must be done.

 So, sing SQL the users can specify what information they want and leave the details of

how to get the information to the database.

Disadvantages of Relational Model

 The relational model's disadvantages are very minor as compared to the advantages and

their capabilities far outweigh the shortcomings

 Also, the drawbacks of the relational database systems could be avoided if proper

corrective measures are taken.

 The drawbacks are not because of the shortcomings in the database model, but the way it

is being implemented.

 Some of the disadvantages are:

a) Hardware overheads:

 Relational database system hides the implementation complexities and the physical data

storage details from the users.

MC5403- ADBDM UNIT - I : Relational Model

37

 For doing this, i.e. for making things easier for the users, the relational database systems

need more powerful hardware computers and data storage devices.

 So, the RDBMS needs powerful machines to run smoothly.

 But, as the processing power of modem computers is increasing at an exponential rate

and in today's scenario, the need for more processing power is no longer a very big

issue.

b) Ease of design can lead to bad design:

 The relational database is an easy to design and use. The users need not know the

complex details of physical data storage.

 They need not know how the data is actually stored to access it.

 This ease of design and use can lead to the development and implementation of very

poorly designed database management systems.

 Since the database is efficient, these design inefficiencies will not come to light when

the database is designed and when there is only a small amount of data.

 As the database grows, the poorly designed databases will slow the system down and

will result in performance degradation and data corruption.

c) 'Information island' phenomenon:

 As we have said before, the relational database systems are easy to implement and use.

This will create a situation where too many people or departments will create their own

databases and applications.

 These information islands will prevent the information integration that is essential for

the smooth and efficient functioning of the organization.

 These individual databases will also create problems like data inconsistency, data

duplication, data redundancy and so on.

 But as we have said all these issues are minor when compared to the advantages and all

these issues could be avoided if the organization has a properly designed database and

has enforced good database standards.

Other Disadvantages of using Relational model

a) Few relational databases have limits on field lengths which can't be exceeded.

b) Relational databases can sometimes become complex as the amount of data grows, and

the relations between pieces of data become more complicated.

http://ecomputernotes.com/fundamental/input-output-and-memory/explain-secondary-storage-devices

MC5403- ADBDM UNIT - I : Relational Model

38

c) Complex relational database systems may lead to isolated databases where the

information cannot be shared from one system to another.

6. MAPPING FROM ER MODEL TO RELATIONAL MODEL

6.1 Introduction

• The ER Model can be represented using ER Diagrams which is a great way of designing

and representing the database design in more of a flow chart form.

• It is very convenient to design the database

– using the ER Model by creating an ER diagram and

– later on converting it into relational model to design your tables.

• Not all the ER Model constraints and components can be directly transformed into

relational model, but an approximate schema can be derived.

• The basic idea on Real world scenario into ER Model and to Relational Model is

depicted as follows:

6.2 Basic rules of Conversion of ER diagrams into relational model schema

1) Entity becomes Table

 Entity in ER Model is changed into tables, or we can say for every Entity in ER

model, a table is created in Relational Model.

2) The attributes of the Entity should be converted to columns of the table.

MC5403- ADBDM UNIT - I : Relational Model

39

3) The primary key specified for the entity in the ER model, will become the primary key

for the table in relational model.

Steps to Create an ERD

Following are the steps to create an ERD:

Step 1) Entity Identification

Step 2) Relationship Identification

Step 3) Cardinality Identification

Step 4) Identify Attributes

Step 5) Create the ERD

The following diagram depicts those 5 sequential steps pictorially:

Example:

A real time scenario : UNIVERSITY ENVIRONMENT

In a university, a Student enrolls in Courses. A student must be assigned to at least one or more

Courses. Each course is taught by a single Professor. To maintain instruction quality, a

Professor can deliver only one course

Example

For example, in a University database, we might have entities for Students, Courses, and

Lecturers. Students entity can have attributes like Rollno, Name, and DeptID. They might have

relationships with Courses and Lecturers.

MC5403- ADBDM UNIT - I : Relational Model

40

Step 1) Entity Identification

We have three entities

 Student

 Course

 Professor

Step 2) Relationship Identification

We have the following two relationships

 The student is assigned a course

 Professor delivers a course

MC5403- ADBDM UNIT - I : Relational Model

41

Step 3) Cardinality Identification

For them problem statement we know that,

 A student can be assigned multiple courses

 A Professor can deliver only one course

Step 4) Identify Attributes

 First study the files, forms, reports, data currently maintained by the organization to

identify attributes.

 Conduct interviews with various stakeholders to identify entities. Initially, it's important

to identify the attributes without mapping them to a particular entity.

 Once, you have a list of Attributes, you need to map them to the identified entities.

Ensure an attribute is to be paired with exactly one entity. If you think an attribute

should belong to more than one entity, use a modifier to make it unique.

 Once the mapping is done, identify the primary Keys. If a unique key is not readily

available, create one.

Entity Primary Key Attribute

Student Student_ID StudentName

Professor Employee_ID ProfessorName

Course Course_ID CourseName

MC5403- ADBDM UNIT - I : Relational Model

42

For Course Entity, attributes could be Duration, Credits, Assignments, etc. For the sake of ease

we have considered just one attribute.

Step 5) Create the ERD

A more modern representation of ERD Diagram

Mapping Process Guidelines

i. Create tables for all higher-level entities.

ii. Create tables for lower-level entities.

iii. Add primary keys of higher-level entities in the table of lower-level entities.

iv. In lower-level tables, add all other attributes of lower-level entities.

v. Declare primary key of higher-level table and the primary key for lower-level table.

vi. Declare foreign key constraints.

6.3 Examples of ER diagrams and convert it into relational model schema

Step 1: Each entity becomes table

MC5403- ADBDM UNIT - I : Relational Model

43

Example - 1:

For example, for the below ER Diagram in ER Model,

A table with name Student will be created in relational model, which will have 4

columns, id, name, age, address and id will be the primary key for this table.

Student Table

Id Name Address age

Note:

Once the student table is ready, then as many required students’ records will be added with no-

time.

Example – 2:

An entity is a real-world object with some attributes.

Step 2:Relationship becomes a Relationship Table

 In ER diagram, we use diamond/rhombus to represent a relationship between two

entities.

o In Relational model we create a relationship table for ER Model relationships too.

Apply Mapping Process (Algorithm)

i. Create table for each entity.

ii. Entity's attributes should become fields of tables with their respective data types.

MC5403- ADBDM UNIT - I : Relational Model

44

iii. Declare primary key.

Example 3:

In the ER diagram below, we have two entities Teacher and Student with a relationship

between them.

From the above extended scenario, there are two tables identified i) Student ii) Teacher from

the depicted E-R diagram of two entities such as Teacher and student.

Student Table

Id Name Address Age

Teacher Table

t_Id T_Name t_Address Id

 When mapping starts the entity gets mapped to table,

o Hence we will create table for Teacher and a table for Student with all the

attributes converted into columns.

 Now, an additional table will be created for the relationship, for

example StudentTeacher or give it any name you like.

 This table will hold the primary key for both Student and Teacher, in a tuple to describe

the relationship, which teacher teaches which student.

 If there are additional attributes related to this relationship, then they become the

columns for this table, like subject name.

Example -2: Mapping Relationship

 A relationship is an association among entities.

MC5403- ADBDM UNIT - I : Relational Model

45



Step 3: proper foriegn key constraints must be set for all the tables.

A common attribute that links the values / tuples of both Teacher and Student should be

identified and it acts as foreign key.

TeacherStudent Table

Id t_Id Class_Id Course

Here, Id + t_Id becomes the primary key for TeacherStudent Table .

The duplicated Id field in the Teacher table becomes foreign key.

Mapping Process for newly created table(s) from relationship mapping process

i. Create table for a relationship.

ii. Add the primary keys of all participating Entities as fields of table with their respective

data types.

iii. If relationship has any attribute, add each attribute as field of table.

iv. Declare a primary key composing all the primary keys of participating entities.

v. Declare all foreign key constraints.

Note:

 Similarly we can generate relational database schema using the ER diagram.

 We cannot import all the ER constraints into relational model, but an approximate

schema can be generated.

 There are several processes and algorithms available to convert ER Diagrams into

Relational Schema.

MC5403- ADBDM UNIT - I : Relational Model

46

 Some of them are automated and some of them are manual.

A special scenario

Mapping Process for entity with Weak entities

 Create table for weak entity set.

 Add all its attributes to table as field.

 Add the primary key of identifying entity set.

 Declare all foreign key constraints.

Mapping Hierarchical Entities

ER specialization or generalization comes in the form of hierarchical entity sets.

6.4 Points to Remember

Following are some key points to keep in mind while doing so:

a) Entity gets converted into Table, with all the attributes becoming fields(columns) in the

table.

b) Relationship between entities is also converted into table with primary keys of the

related entities also stored in it as foreign keys.

c) Primary Keys should be properly set.

d) For any relationship of Weak Entity, if primary key of any other entity is included in a

table, foriegn key constraint must be defined.

MC5403- ADBDM UNIT - I : Relational Model

47

How to convert ER diagram to Relational Model for different scenarios?

Case 1: Binary Relationship with 1:1 cardinality with total participation of an entity

A person has 0 or 1 passport number and Passport is always owned by 1 person. So it is 1:1

cardinality with full participation constraint from Passport.

 First Convert each entity and relationship to tables.

 Person table corresponds to Person Entity with key as Per-Id.

 Similarly Passport table corresponds to Passport Entity with key as Pass-No.

 Has Table represents relationship between Person and Passport (Which person has

which passport).

o So it will take attribute Per-Id from Person and Pass-No from Passport.

Person Has Passport

Per-Id Other

Person

Attribute Per-Id Pass-No Pass-No

Other

PassportAttribute

PR1 – PR1 PS1 PS1 –

PR2 – PR2 PS2 PS2 –

PR3 –

 Table 1

 As we can see from Table 1, each Per-Id and Pass-No has only one entry in Has table.

 So we can merge all three tables into 1 with attributes shown in Table 2.

 Each Per-Id will be unique and not null. So it will be the key.

 Pass-No can’t be key because for some person, it can be NULL.

Per-Id Other Person Pass-No Other PassportAttribute

MC5403- ADBDM UNIT - I : Relational Model

48

Attribute

Table 2

Case 2: Binary Relationship with 1:1 cardinality and partial participation of both entities

 A male marries 0 or 1 female and vice versa as well. So it is 1:1 cardinality with partial

participation constraint from both.

 First Convert each entity and relationship to tables. Male table corresponds to Male

Entity with key as M-Id.

 Similarly Female table corresponds to Female Entity with key as F-Id. Marry Table

represents relationship between Male and Female (Which Male marries which female).

So it will take attribute M-Id from Male and F-Id from Female.

Male Marry Female

M-Id

Other Male

Attribute M-Id F-Id F-Id

Other

FemaleAttribute

M1 – M1 F2 F1 –

M2 – M2 F1 F2 –

M3 – F3 –

Table 3

 As we can see from Table 3, some males and some females do not marry. If we merge 3

tables into 1, for some M-Id, F-Id will be NULL.

 So there is no attribute which is always not NULL. So we can’t merge all three tables

into 1. We can convert into 2 tables.

 In table 4, M-Id who are married will have F-Id associated. For others, it will be NULL.

Table 5 will have information of all females.

 Primary Keys have been underlined.



MC5403- ADBDM UNIT - I : Relational Model

49

M-Id Other Male Attribute F-Id

 Table 4

F-Id Other FemaleAttribute

 Table 5

Note:

a) Binary relationship with 1:1 cardinality will have 2 table if partial participation of both

entities in the relationship.

b) If atleast 1 entity has total participation, number of tables required will be 1.

Case 3: Binary Relationship with n: 1 cardinality

 In this scenario, every student can enroll only in one elective course but for an elective

course there can be more than one student.

 First Convert each entity and relationship to tables. Student table corresponds to Student

Entity with key as S-Id.

 Similarly Elective_Course table corresponds to Elective_Course Entity with key as E-Id.

Enrolls Table represents relationship between Student and Elective_Course (Which

student enrolls in which course).

 So it will take attribute S-Id from and Student E-Id from Elective_Course.

Student Enrolls Elective_Course

S-Id

Other

Student

Attribute S-Id E-Id E-Id

Other Elective

CourseAttribute

S1 – S1 E1 E1 –

S2 – S2 E2 E2 –

MC5403- ADBDM UNIT - I : Relational Model

50

S3 – S3 E1 E3 –

S4 – S4 E1

Table 6

 As we can see from Table 6, S-Id is not repeating in Enrolls Table. So it can be

considered as a key of Enrolls table.

 Both Student and Enrolls Table’s key is same; we can merge it as a single table.

 The resultant tables are shown in Table 7 and Table 8.

 Primary Keys have been underlined.

S-Id Other Student Attribute E-Id

Table 7

E-Id Other Elective CourseAttribute

Table 8

Case 4: Binary Relationship with m: n

cardinality

 In this scenario, every student can enroll in more than 1 compulsory course and for a

compulsory course there can be more than 1 student.

 First Convert each entity and relationship to tables.

 Student table corresponds to Student Entity with key as S-Id. Similarly

Compulsory_Courses table corresponds to Compulsory Courses Entity with key as C-Id.

Enrolls Table represents relationship between Student and Compulsory_Courses (Which

student enrolls in which course).

 So it will take attribute S-Id from Person and C-Id from Compulsory_Courses.

Student Enrolls Compulsory_Courses

S-Id
Other

Student
S-Id C-Id C-Id

Other

Compulsory

MC5403- ADBDM UNIT - I : Relational Model

51

Attribute CourseAttribute

S1 – S1 C1 C1 –

S2 – S1 C2 C2 –

S3 – S3 C1 C3 –

S4 – S4 C3 C4 –

 S4 C2

 S3 C3

 Table 9

 As we can see from Table 9, S-Id and C-Id both are repeating in Enrolls Table.

 But its combination is unique; so it can be considered as a key of Enrolls table.

 All tables’ keys are different, these can’t be merged.

 Primary Keys of all tables have been underlined.

Case 5: Binary Relationship with weak

entity

 In this scenario, an employee can have many dependants and one dependant can depend

on one employee.

 A dependant does not have any existence without an employee (e.g; you as a child can

be dependant of your father in his company).

 So it will be a weak entity and its participation will always be total. Weak Entity does

not have key of its own.

 So its key will be combination of key of its identifying entity (E-Id of Employee in this

case) and its partial key (D-Name).

 First Convert each entity and relationship to tables.

 Employee table corresponds to Employee Entity with key as E-Id.

MC5403- ADBDM UNIT - I : Relational Model

52

 Similarly Dependants table corresponds to Dependant Entity with key as D-Name and

E-Id.

 Has Table represents relationship between Employee and Dependants (Which employee

has which dependants). So it will take attribute E-Id from Employee and D-Name from

Dependants.

Employee Has Dependents

E-Id

Other

Employee

Attribute E-Id D-Name E-Id

Other

DependentAttribute

E1 – E1 RAM E1 –

E2 – E1 SRINI E1 –

E3 – E2 RAM E2 –

E-Id – E3 ASHISH E3 –

 Table 10

 As we can see from Table 10, E-Id, D-Name is key for Has as well as Dependants Table.

 So we can merge these two into 1. So the resultant tables are shown in Tables 11 and 12.

 Primary Keys of all tables have been underlined.

E-Id Other Employee Attribute

Table 11

D-Name E-Id Other DependantsAttribute

Table 12

Thus mapping from ER Diagram into Relational is achieved through formal step-by-step

processes.

6.5 PRACTICAL EXCERCISES

MC5403- ADBDM UNIT - I : Relational Model

53

Exercise – 1:

A Hospital real world scenario is depicted in the following ER model:

a) Convert the ER Model into its equivalent Relation model.

(Hint. Give the Table with its structure for the Entities and it’s relationships depicted in the

above diagram)

b) Give the answers for the Query given below with sample possible data of your own with

relevance to the tables of the relational model.

i) Display the PATIENT_NO, ITEM_CODE, and CHARGE and from the BILLED table

for a specific PATIENT_NO.

ii) Display the distinct bill charges from Billed.

Answer:

a)

PATIENT

PATIENT_NO NUMBER(4) - PRI KEY

MC5403- ADBDM UNIT - I : Relational Model

54

DATE_LAST_TREATED DATE

PAT_NAME VARCHAR2(50)

ROOM_LOCATION CHAR(4)

ITEM

ITEM_CODE NUMBER(4) - PRI KEY

DESCRIPTION VARCHAR2(50)

NORMAL_CHARGE NUMBER(7,2)

PHYSICIANS

PHY_ID NUMBER(4) - PRI KEY

PHY_PHONE CHAR(8)

PHY_NAME VARCHAR2(50)

ROOM

ROOM_LOCATION CHAR(4) - PRI KEY

ROOM_ACCOMODATION CHAR(2)

ROOM_EXTENSION NUMBER(4)

PROCEDURES

PROCEDURE_NO NUMBER(4) - PRI KEY

PROC_DESCRIPTION VARCHAR2(50)

BILLED

BILL_NO NUMBER(5) - PRI KEY

PATIENT_NO NUMBER(9)

ITEM_CODE NUMBER(5)

CHARGE NUMBER(7,2)

TREATS

PHY_ID NUMBER(4) - PRI KEY

PATIENT_NO NUMBER(4) - PRI KEY

PROCEDURE_NO NUMBER(4) - PRI KEY

DATE_TREATED DATE - PRI KEY

TREAT_RESULT VARCHAR2(50)

b)

MC5403- ADBDM UNIT - I : Relational Model

55

Query 1:

Display the PATIENT_NO, ITEM_CODE, and CHARGE and from the BILLED table for a

specific PATIENT_NO.

Answer :

SELECT patient_no, item_code, charge

FROM billed

WHERE patient_no = 1117;

Output:

PATIENT_NO ITEM_CODE CHARGE

---------- ---------- ----------

 1117 2222 7.54

 1117 2255 25

Query 2:

Display the distinct bill charges from Billed.

Answer:

SELECT DISTINCT charge

FROM billed;

Output:

CHARGE

 2.21

 4.56

 6.68

 7.54

 7.75

 25

Exercise – 2:

MC5403- ADBDM UNIT - I : Relational Model

56

A real world scenario related a company has been described as follows:

Scenario

 A small company named “ABC Company” which has nominal number of CUSTOMER with

selected PRDUCT to sell to its customers in the form receiving ORDER.

As soon as the order is confirmed through the LINE_ITEM generation and then the INVOICE are

generated. Then the SHIPMENT process is to be initiated and complete the shipping the products and

generate bill of the same.

The minimal information that are included for the ABC SALES PROCESS are as follows:

i) CUSTOMER entity hold the attributes of Customer ID, Name and Address.

ii) PRODUT entity holds Prodcut_ID and its’ Description.

iii) ORDER entity holds Order_Number and Order_Date.

iv) INLINE_ITEM entity holds the Ordered Item’s Quantity.

v) INVOICE entity holds invoide_Number.

vi) SHIPMENT entity holds Ship_Quantity.

The process of sales for ABS Company is best described as follows:

a) A customer is allowed the place any number of Orders.

b) Once the Order is initiated the identified Products are to be considers as Line Items.

c) As soon as Order confirms an Invoice is to be generated.

d) Then the shipment process starts and includes the possible date of Shipment.

Your are required the draw the E-R diagram based on the information given in the above

scenario for the SALES process of ABC Company.

Then convert the ERD into its’ equivalent Relational Model by applying the basic mapping

rules for ERD TO RELATIONAL model.

(Hint. Carefully read and comprehend the information flow between different entities with

the context of Sales business process.)

a) Draw a ER diagram for the given scenario.

b) Convert the given ERD into the relations.

Answer:

MC5403- ADBDM UNIT - I : Relational Model

57

The ABC Company Sales process scenario uses the following set of entities with necessary attributes

and it’s relationship among the entities are as follows:

List of entities:

i) CUSTOMER

ii) PRODUCT

iii) ORDER

iv) LINE_ITEM

v) INVOICE

vi) SHIPMENT

The Strong entities are: CUSTOMER, PRDOCUT, INVOICE

The weak entities are:

The relationships are : ORDER_DATE , BILLS ,

Answer:

MC5403- ADBDM UNIT - I : Relational Model

58

Step 1: Identify the Number of Relations and its’ structure.

Step 2: Design the Tables with its’ constraints.

CUSTOMER

Customer_ID Name Address City_State_ZIP Discount

PRODUCT

Product_ID Description

ORDER

Order_Number Customer_ID Order_Date

LINE_ITEM

Order_Number Product_ID Order_Quantity

INVOICE

Invoice_Number Order_Number

SHIPMENT

Invoice_Number Product_ID Ship_Quantity

MC5403- ADBDM UNIT - I : Relational Model

59

Note:

Mapping an ER Model into Relational Mode is easy and the vice-versa requires a stuff and care during

all phases of it.

Thus a simple rule for converting the ER Model into its’s equivalent RELATIONAL model is to strict

to the rules of mapping one to another.

7. SQL (Structured Query Language)

7.1 Introduction

 SQL is a programming language for Relational Databases.

 It is designed over relational algebra and tuple relational calculus.

 SQL comes as a package with all major distributions of RDBMS.

 SQL comprises both data definition and data manipulation languages.

 Using the data definition properties of SQL, one can design and modify database

schema, whereas data manipulation properties allows SQL to store and retrieve data

from database.

 Two classes of languages

o Procedural – user specifies what data is required and how to get those data

o Nonprocedural – user specifies what data is required without specifying how

to get those data.

 SQL is the most widely used query language.

7.1.1 SQL- What is SQL?

• SQL is a standard language for storing, manipulating and retrieving data in databases.

• SQL, Structured Query Language, is a programming language designed to manage data

stored in relational databases.

• SQL operates through simple, declarative statements.

MC5403- ADBDM UNIT - I : Relational Model

60

7.1.2. Capabilities of SQL

• SQL can

– execute queries against a database

– retrieve data from a database

– insert records in a database

– update records in a database

– delete records from a database

– create new databases

– create new tables in a database

– create stored procedures in a database

– create views in a database

– set permissions on tables, procedures, and views

7.1.3. SQL at a Glance

• SQL: widely used non-procedural language

– E.g. find the name of the customer with customer-id 192-83-7465

select customer.customer-name

from customer

where customer.customer-id = ‘192-83-7465’

– E.g. find the balances of all accounts held by the customer with customer-id 192-

83-7465

select account.balance

from depositor, account

where depositor.customer-id = ‘192-83-7465’ and

depositor.account-number = account.account-number

• Application programs generally access databases through one of

– Language extensions to allow embedded SQL

– Application program interface (e.g. ODBC/JDBC) which allow SQL queries to be

sent to a database

MC5403- ADBDM UNIT - I : Relational Model

61

• This keeps data accurate and secure, and it helps maintain the integrity of databases,

regardless of size.

• SQL became a standard of the American National Standards Institute (ANSI) in

1986, and of the International Organization for Standardization (ISO) in 1987.

• SQL used in DBMS are:

• MySQL, SQL Server, MS Access, Oracle, Sybase, Informix, Postgres, and other

database systems.

7.1.4 SQL Types

• There are 4 types of SQL statements :

1) DDL (Data Definition Language)

2) DML (Data Manipulation Language)

3) TCL (Transaction Control Language)

4) DCL (Data Control Language)

1) Data Definition Language (DDL)

• Data Definition Language (DDL) statements are used to define the database structure

or schema.

• DDL compiler generates a set of tables stored in a data dictionary

• Data dictionary contains metadata (i.e., data about data)

– database schema

– Data storage and definition language

• language in which the storage structure and access methods used by the

database system are specified

• Usually an extension of the data definition language

List of DDL commands:

1) CREATE - to create objects (Database/Table/View …) in the database.

2) ALTER - alters the structure of the database (Database/Table/View …).

3) TRUNCATE - remove all records from a table, including all spaces allocated for

the records are removed.

• deletes all the records in the table not the structure.

4) DROP - delete objects from the database(Database/Table/View …) .

http://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms

MC5403- ADBDM UNIT - I : Relational Model

62

5) COMMENT - add comments to the data dictionary.

• A Non-executable statement for giving comments

6) RENAME - rename an object.

• Allows to change the name of table /View.

1) CREATE TABLE

• CREATE TABLE creates a new table in the database.

• It allows you to specify the name of the table and the name of each column in the table.

• Specification notation for defining the database schema

• Also databases, and views from RDBMS.

Syntax :

• CREATE TABLE table_name (column_1 datatype, column_2 datatype, column_3

datatype);

Example 1:

Create database tutorials;

Create table article;

Create view for_students;

Example 2:

Create database bank;

create table account (

account-number char(10),

balance integer)

2) ALTER TABLE

• ALTER TABLE table_name ADD column_name datatype;

• ALTER TABLE table_name

ADD column_name datatypeor

MC5403- ADBDM UNIT - I : Relational Model

63

• ALTER TABLE table_name

DROP COLUMN column_name

3) TRUNCATE TABLE

• TRUNCATE command will delete all the records of a selected table and the structure

will be remain.

• TRUNCATE TABLE table_name;

4) DROP TABLE

• DROP command will delete the structure and all the records of a selected table.

• Drops commands, views, tables, and databases from RDBMS.

Syntax :

• DROP TABLE table_name

• Drop object_type object_name;

Example:

Drop database tutorials;

Drop table article;

Drop view for_students;

5) COMMENT

Nal info and meaning to the statements..

Syntax :

COMMENT text;

Example:

COMMENT ‘ EB SYSTEM’;

MC5403- ADBDM UNIT - I : Relational Model

64

6) RENAME

To rename or change the name of the given object.

Syntax:

RENAME old_object_name TO new_object_name;

Example:

RENAME emp TO employee;

This statement change the table from emp into employee.

2) Data Manipulation Language

 SQL is equipped with data manipulation language (DML). DML modifies the

database instance by inserting, updating and deleting its data.

 DML is responsible for all forms data modification in a database.

Language for accessing and manipulating the data organized by the appropriate data model

– DML also known as query language

• Data Manipulation Language (DML) statements are used for managing data within

schema objects.

TYPES:

1) SELECT - retrieve data from the a database

2) INSERT - insert data into a tabl

MC5403- ADBDM UNIT - I : Relational Model

65

3) UPDATE - updates existing data within a table,

4) DELETE - deletes all records from a table, the space for the records remain

SQL contains the following set of commands in its DML section −

a) SELECT/FROM/WHERE

b) INSERT INTO/VALUES

c) UPDATE/SET/WHERE

d) DELETE FROM/WHERE

These basic constructs allow database programmers and users to enter data and information

into the database and retrieve efficiently using a number of filter options.

a) SELECT/FROM/WHERE

The SQL SELECT Statement

• The SELECT statement is used to select data from a database.

• The data returned is stored in a result table, called the result-set.

SELECT Syntax

– SELECT column1, column2, ...

FROM table_name

 WHERE condition

ORDER BY column1, column2, ... ASC|DESC

 GROUP BY column_name

 HAVING condition;

– Here, column1, column2, ... are the field names of the table you want to select

data from. If you want to select all the fields available in the table,

Use the following syntax for simple query:

– SELECT * FROM table_name;

Different Clauses of SELECT Command

MC5403- ADBDM UNIT - I : Relational Model

66

a) SELECT clause − This is one of the fundamental query command of SQL. It is

similar to the projection operation of relational algebra. It selects the attributes based

on the condition described by WHERE clause.

b) FROM from clause − This clause takes a relation name as an argument from which

attributes are to be selected/projected. In case more than one relation names are

given, this clause corresponds to Cartesian product.

c) WHERE clause − This clause defines predicate or conditions, which must match in

order to qualify the attributes to be projected.

Example:

Select author_name

From book_author

Where age > 50;

This command will yield the names of authors from the relation book_author whose age is

greater than 50.

b) INSERT INTO/VALUES

This command is used for inserting values into the rows of a table (relation).

• The INSERT INTO statement is used to insert new records in a table.

INSERT INTO Syntax

• It is possible to write the INSERT INTO statement in two ways.

• The first way specifies both the column names and the values to be inserted:

– INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

• If you are adding values for all the columns of the table, you do not need

to specify the column names in the SQL query.

– INSERT INTO table_name

VALUES (value1, value2, value3, ...);

Example:

INSERT INTO tutorials (Author, Subject) VALUES ("anonymous", "computers");

MC5403- ADBDM UNIT - I : Relational Model

67

c) UPDATE/SET/WHERE

This command is used for updating or modifying the values of columns in a table (relation).

• The UPDATE statement is used to modify the existing records in a table.

UPDATE Syntax

• UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

• Note:

– Be careful when updating records in a table! Notice the WHERE clause in the

UPDATE statement.

– The WHERE clause specifies which record(s) that should be updated. If you omit

the WHERE clause, all records in the table will be updated!

Example:

UPDATE tutorials SET Author="webmaster" WHERE Author="anonymous";

d) DELETE/FROM/WHERE

This command is used for removing one or more rows from a table (relation).

The DELETE statement is used to delete existing records in a table.

DELETE Syntax

• DELETE FROM table_name [WHERE condition];

• Note:

– Be careful when deleting records in a table! Notice the WHERE clause in the

DELETE statement.

– The WHERE clause specifies which record(s) should be deleted. If you omit the

WHERE clause, all records in the table will be deleted!

Example:

DELETE FROM tutorials

 WHERE Author="unknown";

MC5403- ADBDM UNIT - I : Relational Model

68

3) TCL (Transaction Control Language) Commands

• Transaction Control (TCL) statements are used to manage the changes made by DML

statements.

• It allows statements to be grouped together into logical transactions.

• A transaction is a sequence of SQL statements that Oracle treats as a single unit.

• Results of Data Manipulation Language (DML) are not permanently updated to table

until explicit or implicit COMMIT occurs

• Transaction control statements can:

• Commit data through COMMIT command

• Undo data changes through ROLLBACK command

a) COMMIT - save work done

b) SAVEPOINT - identify a point in a transaction to which you can later roll back

c) ROLLBACK - restore database to original since the last COMMIT

d) SET TRANSACTION - Change transaction options like isolation level and what

rollback segment to use

a) COMMIT

• Explicit COMMIT occurs by executing COMMIT;

• Implicit COMMIT occurs when DDL command is executed or user properly exits

system.

• Permanently updates table(s) and allows other users to view changes.

• This statement also erases all savepoints in the transaction and releases the transaction's

locks.

Syntax

• COMMIT [WORK]

• Where WORK is supported for compliance with standard SQL.

• The statements COMMIT and COMMIT WORK are equivalent.

b) ROLLBACK

• Used to “undo” changes that have not been committed

MC5403- ADBDM UNIT - I : Relational Model

69

• Occurs when:

– ROLLBACK; is executed

– System restarts after crash

Syntax

• ROLLBACK [WORK | TO savepoint]

• Where WORK is optional.

• If savepoint name is given, rolls back the current transaction to the specified savepoint.

If you omit this clause, the ROLLBACK statement rolls back the entire transaction.

Note:

Using ROLLBACK without the TO SAVEPOINT clause performs the following

operations:

a) Ends the transaction.

b) Undoes all changes in the current transaction

c) Erases all savepoints in the transaction

d) Releases the transaction's locks

Using ROLLBACK with the TO SAVEPOINT clause performs the following operations:

a) Rolls back just the portion of the transaction after the savepoint.

b) Erases all savepoints created after that savepoint. The named savepoint is retained, so

you can roll back to the same savepoint multiple times. Prior savepoints are also

retained.

c) Releases all table and row locks acquired since the savepoint. Other transactions that

have requested access to rows locked after the savepoint must continue to wait until the

transaction is committed or rolled back. Other transactions that have not already

requested the rows can request and access the rows immediately.

Examples

Create table temp_table (t1 number(4));

Rollback;

Describe temp_table

Insert into temp_table (t1)

MC5403- ADBDM UNIT - I : Relational Model

70

 Values(10);

 Select * from temp_table;

Commit;

• A normal exit from most Oracle utilities and tools causes the current transaction to be

committed. (by giving Quit SQL * PLUS command).

• If the transaction do not explicitly committed and the program terminates abnormally,

the last uncommitted transaction is automatically rolled back.

c) SAVEPOINT

• Identifies a point in a transaction to which you can later roll back.

Syntax

• SAVEPOINT save_point;

• Where save_point is the name of the savepoint to be created.

Example:

• To update BLAKE's and CLARK's salary, check that the total company salary does not

exceed 2,7,00, then reenter CLARK's salary,

 enter:

UPDATE emp SET sal = 2000 WHERE ename = 'BLAKE';

SAVEPOINT blake_sal;

UPDATE emp SET sal = 1500 WHERE ename = 'CLARK';

SAVEPOINT clark_sal;

SELECT SUM(sal) FROM emp;

ROLLBACK TO SAVEPOINT blake_sal;

UPDATE emp SET sal = 1200 WHERE ename = 'CLARK'; COMMIT;

4) Data Control Language (DCL)

• Data Control Language (DCL) statements gives permission(s) and if not necessary

revokes or collect back those granted permission(s)..

MC5403- ADBDM UNIT - I : Relational Model

71

TYPES:-

a) GRANT - gives user's access privileges to database

b) REVOKE - withdraw access privileges given with the GRANT command

a) GRANT statement

This command is related to access right and /or revoking to / from various objects of

DBMS.

Syntax:

GRANT privilege_name TO user;

This command gives access right called only CREATE privilege to the user scott.

 Example:

GRANT CREATE TO scott;

b) REVOVE statement

This command is related to revoking privilege(s) from various objects of DBMS.

Syntax:

REVOKE privilege_name FROM usert;

MC5403- ADBDM UNIT - I : Relational Model

72

This command gives access right called only CREATE privilege to the user scott.

 Example:

REVOKE CREATE FROM scott;

Thus the 4 types of SQL statements are used by any DBMS can able to complete its

major tasks.

8. NORMALIZATION

8.1 Introduction

What is Normalization?

Normalization is a systematic approach of decomposing tables to eliminate data redundancy

(repetition) and undesirable characteristics like Insertion, Update and Deletion Anamolies. It is

a multi-step process that puts data into tabular form, removing duplicated data from the relation

tables.

 Database Normalization is a technique of organizing the data in the database.

Normalization is a systematic approach of decomposing tables to eliminate data

redundancy(repetition) and undesirable characteristics like Insertion, Update and

Deletion Anamolies.

 It is a multi-step process that puts data into tabular form, removing duplicated data from

the relation tables.is a technique of organizing the data in the database.

 Normalization is a systematic approach of decomposing tables to eliminate data

redundancy(repetition) and undesirable characteristics like Insertion, Update and

Deletion Anamolies.

 It is a multi-step process that puts data into tabular form, removing duplicated data from

the relation tables.

What do you mean by normalization?

MC5403- ADBDM UNIT - I : Relational Model

73

 In relational database design, the process of organizing data to minimize redundancy is called

Normolization..

Normalization usually involves dividing a database into two or more tables and defining

relationships between the tables.

Normalization is the process of reducing the duplication of the data."NF" refers to "normal

form" .

Normalization is a process of organizing the data in database to avoid data redundancy,

insertion anomaly, update anomaly & deletion anomaly.

The three main types of normalization are 1NF,2NF,3NF.

Normalization is also known as data normalization.

Normalization is a data compression idea. Basically you do not want store duplicated

information in a database.

Purpose:

Normalization is used for mainly two purposes,

 Eliminating reduntant(useless) data.

 Ensuring data dependencies make sense i.e data is logically stored.

8.2 Types of Normalization

 Normalization usually involves dividing a database into two or more tables and defining

relationships between the tables.

 The objective is to isolate data so that additions, deletions, and modifications of a field

can be made in just one table and then propagated through the rest of the database via

the defined relationships.

https://www.webopedia.com/TERM/D/database.html
https://www.webopedia.com/TERM/T/table.html
https://www.webopedia.com/TERM/F/field.html

MC5403- ADBDM UNIT - I : Relational Model

74

There are three main normal forms, each with increasing levels of normalization:

a) First Normal Form (1NF):

Each field in a table contains different information. For example, in an employee list,

each table would contain only one birthdate field.

What is 1NF in DBMS?

First Normal Form (1NF)

Rule : A table is said to be in First Normal Form (1NF) if and only if each attribute of the

relation is atomic.

That is, Each row in a table should be identified by primary key (a unique column value or

group of unique column values) No rows of data should have repeating group of column

values.

An attribute (column) of a table cannot hold multiple values. It should hold only atomic values.

For a table to be in the First Normal Form, it should follow the following 4 rules:

1. It should only have single(atomic) valued attributes/columns.

2. Values stored in a column should be of the same domain

3. All the columns in a table should have unique names.

4. And the order in which data is stored, does not matter.

Example: Suppose a company wants to store the names and contact details of its employees. It

creates a table that looks like this:

MC5403- ADBDM UNIT - I : Relational Model

75

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur 8812121212

9900012222
103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

8123450987

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in

the same field as you can see in the table above.

This table is not in 1NF as the rule says “each attribute of a table must have atomic (single)

values”, the emp_mobile values for employees Jon & Lester violates that rule.

To make the table complies with 1NF we should have the data like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur 8812121212

102 Jon Kanpur 9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

104 Lester Bangalore 8123450987

Example: Suppose a company wants to store the names and contact details of its employees. It

creates a table that looks like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur
8812121212

9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

MC5403- ADBDM UNIT - I : Relational Model

76

8123450987

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in

the same field as you can see in the table above.

This table is not in 1NF as the rule says “each attribute of a table must have atomic (single)

values”, the emp_mobile values for employees Jon & Lester violates that rule.

To make the table complies with 1NF we should have the data like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur 8812121212

102 Jon Kanpur 9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

104 Lester Bangalore 8123450987

b) Second Normal Form (2NF):

Each field in a table that is not a determiner of the contents of another field must itself be a

function of the other fields in the table.

For a table to be in the Second Normal Form,

1) It should be in the First Normal form.

2) And, it should not have Partial Dependency.

In other words,

 Table is in 1NF (First normal form)

 No non-prime attribute is dependent on the proper subset of any candidate key of table.

 For a table to be in the Second Normal form, it should be in the First Normal form and it

should not have Partial Dependency.

MC5403- ADBDM UNIT - I : Relational Model

77

 Partial Dependency exists, when for a composite primary key, any attribute in the table

depends only on a part of the primary key and not on the complete primary key.

 To remove Partial dependency, we can divide the table, remove the attribute which is

causing partial dependency, and move it to some other table where it fits in well.

Example:

Suppose a school wants to store the data of teachers and the subjects they teach.

They create a table that looks like this: Since a teacher can teach more than one subjects, the

table can have multiple rows for a same teacher.

teacher_id subject teacher_age

111 Maths 38

111 Physics 38

222 Biology 38

333 Physics 40

333 Chemistry 40

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

 The table is in 1 NF because each attribute has atomic values.

 However, it is not in 2NF because non prime attribute teacher_age is dependent on

teacher_id alone which is a proper subset of candidate key.

 This violates the rule for 2NF as the rule says “no non-prime attribute is dependent on

the proper subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

teacher_id teacher_age

111 38

222 38

MC5403- ADBDM UNIT - I : Relational Model

78

333 40

teacher_subject table:

teacher_id subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

Example: Suppose a school wants to store the data of teachers and the subjects they teach.

They create a table that looks like this: Since a teacher can teach more than one subjects, the

table can have multiple rows for a same teacher.

teacher_id Subject teacher_age

111 Maths 38

111 Physics 38

222 Biology 38

333 Physics 40

333 Chemistry 40

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

MC5403- ADBDM UNIT - I : Relational Model

79

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF

because non prime attribute teacher_age is dependent on teacher_id alone which is a proper

subset of candidate key. This violates the rule for 2NF as the rule says “no non-prime attribute

is dependent on the proper subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

teacher_id teacher_age

111 38

222 38

333 40

teacher_subject table:

teacher_id Subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

c) Third Normal Form (3NF):

No duplicate information is permitted.

A table design is said to be in 3NF if both the following conditions hold:

 Table must be in 2NF

 Transitive functional dependency of non-prime attribute on any super key should be

removed.

https://beginnersbook.com/2015/04/transitive-dependency-in-dbms/

MC5403- ADBDM UNIT - I : Relational Model

80

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each

functional dependency X-> Y at least one of the following conditions hold:

 X is a super key of table

 Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example: Suppose a company wants to store the complete address of each employee, they

create a table named employee_details that looks like this:

emp_id emp_name emp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any

candidate keys.

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is dependent

on emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) transitively

dependent on super key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to remove the

transitive dependency:

employee table:

emp_id emp_name emp_zip

1001 John 282005

1002 Ajeet 222008

https://beginnersbook.com/2015/04/candidate-key-in-dbms/
https://beginnersbook.com/2015/04/super-key-in-dbms/

MC5403- ADBDM UNIT - I : Relational Model

81

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table:

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

Example: Suppose a company wants to store the complete address of each employee, they

create a table named employee_details that looks like this:

emp_id emp_name emp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any

candidate keys.

MC5403- ADBDM UNIT - I : Relational Model

82

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is dependent

on emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) transitively

dependent on super key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to remove the

transitive dependency:

employee table:

emp_id emp_name emp_zip

1001 John 282005

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table:

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

c) Boyce Codd normal form (BCNF)

It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter than

3NF. A table complies with BCNF if it is in 3NF and for every functional dependency X->Y, X

should be the super key of the table.

Example: Suppose there is a company wherein employees work in more than one

https://beginnersbook.com/2015/04/functional-dependency-in-dbms/

MC5403- ADBDM UNIT - I : Relational Model

83

department.

They store the data like this:

emp_id emp_nationality emp_dept dept_type dept_no_of_emp

1001 Austrian Production and planning D001 200

1001 Austrian stores D001 250

1002 American design and technical support D134 100

1002 American Purchasing department D134 600

Functional dependencies in the table above:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table:

emp_id emp_nationality

1001 Austrian

1002 American

emp_dept table:

emp_dept dept_type dept_no_of_emp

Production and planning D001 200

Stores D001 250

design and technical support D134 100

Purchasing department D134 600

MC5403- ADBDM UNIT - I : Relational Model

84

emp_dept_mapping table:

emp_id emp_dept

1001 Production and planning

1001 stores

1002 design and technical support

1002 Purchasing department

Functional dependencies:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys:

For first table: emp_id

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key.

While normalization makes databases more efficient to maintain, they can also make them

more complex because data is separated into so many different tables.

8. TRANSACTION MANAGEMENT

8.1 Transaction Concepts

• A transaction is a unit of program execution that accesses and possibly updates various

data items.

A transaction is a collection of operations that performs a single logical function in a database

application

• A transaction must see a consistent database.

MC5403- ADBDM UNIT - I : Relational Model

85

• During transaction execution the database may be inconsistent.

• When the transaction is committed, the database must be consistent.

• If the transaction aborted, the DB must be restored to its prior state. Means such

transaction must be undone or rolled back

• Two main issues to deal with:

– Failures of various kinds, such as hardware failures and system crashes

– Concurrent execution of multiple transactions

8.1.1 Transaction Management

• A transaction is the DBMS’s abstract view of a user program: a series of reads/writes of

database objects

• Users submit transactions, and can think of each transaction as executing by itself

– The concurrency is achieved by the DBMS, which interleaves actions of the

various transactions.

• Issues:

– Interleaving transactions, and

– Crashes!

•Transaction-management component ensures that

– the database remains in a consistent (correct) state despite system failures (e.g.,

power failures and operating system crashes) and

– transaction failures.

• Concurrency-control manager controls

– the interaction among the concurrent transactions,

• to ensure the consistency of the database.

8.2 Transaction Management Goal: The ACID properties

• Atomicity: Either all actions are carried out, or none are

• Consistency: If each transaction is consistent, and the database is initially consistent,

then it is left consistent

MC5403- ADBDM UNIT - I : Relational Model

86

• Isolation: Transactions are isolated, or protected, from the effects of other scheduled

transactions

• Durability: If a transactions completes successfully, then its effects persist

Atomicity

• A transaction can

– Commit after completing its actions, or

– Abort because of

• Internal DBMS decision: restart

• System crash: power, disk failure, …

• Unexpected situation: unable to access disk, data value, …

• A transaction interrupted in the middle could leave the database inconsistent

• DBMS needs to remove the effects of partial transactions to ensure atomicity: either all

a transaction’s actions are performed or none

• A DBMS ensures atomicity by undoing the actions of partial transactions

• To enable this, the DBMS maintains a record, called a log, of all writes to the database

• The component of a DBMS responsible for this is called the recovery manager

Consistency

• Users are responsible for ensuring transaction consistency

– when run to completion against a consistent database instance, the transaction

leaves the database consistent

• For example, consistency criterion that my inter-account-transfer transaction does not

change the total amount of money in the accounts!

• Database consistency is the property that every transaction sees a consistent database

instance.

– It follows from transaction atomicity, isolation and transaction consistency

Isolation

• Guarantee that even though transactions may be interleaved, the net effect is identical to

executing the transactions serially

• For example, if transactions T1 and T2 are executed concurrently, the net effect is

equivalent to executing

– T1 followed by T2, or

MC5403- ADBDM UNIT - I : Relational Model

87

– T2 followed by T1

• NOTE: The DBMS provides no guarantee of effective order of execution

Durability

• DBMS uses the log to ensure durability

• If the system crashed before the changes made by a completed transaction are written to

disk, the log is used to remember and restore these changes when the system is restarted

• Again, this is handled by the recovery manager

8.3 Transaction Management with SQL

• COMMIT statement – ends the SQL trans.; effects permanently recorded within DB

• ROLLBACK statement – DB is rolled back to its previous consistent state and all the

changes are aborted

• Reach end of the program successfully – similar to COMMIT

• Program abnormally terminated – similar to ROLLBACK

DBMS Transaction Subsystem

• Trans. Mgr. coordinates transactions on

MC5403- ADBDM UNIT - I : Relational Model

88

 behalf of application program. It communicates with scheduler.

• Scheduler implements a strategy for concurrency control.

• If any failure occurs, recovery manager handles it.

• Buffer manager in charge of transferring data between disk storage and main memory.

• File manager manipulates the underlying storage files and manages the allocation of

storage space on disk.

• File manager does not directly manage the physical input and output of data, rather it

passes the requests on to the access manager.

• Appropriate access method is used to either read or write data into the system manager.

Transactions and schedules

• A transaction is seen by the DBMS as a series, or list, of actions

– Includes read and write of objects

– We’ll write this as R(o) and W(o) (sometimes RT(o) and WT(o))

• For example

T1: [R(a), W(a), R(c), W(c)]

T2: [R(b), W(b)]

• In addition, a transaction should specify as its final action either commit, or abort

Schedules

• A schedule is a list of actions from a set of transactions

– A well-formed schedule is one where the actions of a particular transaction T are

in the same order as they appear in T

• For example

– [RT1(a), WT1(a), RT2(b), WT2(b), RT1(c), WT1(c)] is a well-formed schedule

– [RT1(c), WT1(c), RT2(b), WT2(b), RT1(a), WT1(a)] is not a well-formed schedule

• A complete schedule is one that contains an abort or commit action for every

transaction that occurs in the schedule

• A serial schedule is one where the actions of different transactions are not interleaved

Serialisability

MC5403- ADBDM UNIT - I : Relational Model

89

• A serialisable schedule is a schedule whose effect on any consistent database instance

is identical to that of some complete serial schedule

• NOTE:

– All different results assumed to be acceptable

– It’s more complicated when we have transactions that abort

– We’ll assume that all ‘side-effects’ of a transaction are written to the database

Anomalies with interleaved execution

• Two actions on the same data object conflict if at least one of them is a write

• Consider three ways in which a schedule involving two consistency-preserving

transactions can leave a consistent database inconsistent.

Transaction Log

• Keep track of all transactions that update the DB

• If failure occurs, information that was stored here will be used for recovery

• It is triggered by ROLL BACK statement, program abnormal termination, or system

failure

• It stotes before-and-after data of the DB and the tables, rows and attribute values that

participated in the transaction

• The transaction log is subject to dangers such as disk full conditions and disk crashes

• It has to be managed like other DBs

• Transaction log will increase the processing overhead – but it is worthwhile

Example of Fund Transfer

• Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

MC5403- ADBDM UNIT - I : Relational Model

90

6. write(B)

• Consistency requirement – the sum of A and B is unchanged by the execution of the

transaction.

• Atomicity requirement — if the transaction fails after step 3 and before step 6, the

system should ensure that its updates are not reflected in the database, else an

inconsistency will result.

• Durability requirement — once the user has been notified that the transaction has

completed (i.e., the transfer of the $50 has taken place),

– the updates to the database by the transaction must persist despite failures.

• Isolation requirement — if between steps 3 and 6, another transaction is allowed to

access the partially updated database, it will see an inconsistent database

(the sum A + B will be less than it should be).

Can be ensured trivially by running transactions serially, that is one after the other.

– However, executing multiple transactions concurrently has significant

benefits (this is not covered in WXES2103)

A transaction’s action(Mgnt.)

• In General,

– A transaction includes:

• One or more Read (R) operation(s)

• One or more Write (W) operation(s)

• A combination of R & W operations

• During a multiple action in an transaction, a major issues / conflict is that :

– RW (Read , Write) conflicts

– WR (Write, Read) conflicts

– WW (Write, Write) conflicts

WR conflicts

MC5403- ADBDM UNIT - I : Relational Model

91

RW conflicts

WW conflicts

MC5403- ADBDM UNIT - I : Relational Model

92

Serialisability and aborts

Solution 1: Strict two-phase locking

• DBMS enforces the following locking protocol:

– Each transaction must obtain an S (shared) lock before reading, and an X

(exclusive) lock before writing

– All locks held by a transaction are released when the transaction completes

– If a transaction holds an X lock on an object, no other transaction can get a lock

(S or X) on that object

• Strict n2PL allows only serialisable schedules

MC5403- ADBDM UNIT - I : Relational Model

93

Solution 2: More refined locks

• Some updates that seem at first sight to require a write (X) lock, can be given something

weaker

– Example: Consider a seat count object in a flights database

– There are two transactions that wish to book a flight – get X lock on seat count

– Does it matter in what order they decrement the count?

• They are commutative actions!

• Do they need a write lock?

User’s / System’s : Aborting action

• If a transaction Ti is aborted, then all actions must be undone

– Also, if Tj reads object last written by Ti, then Tj must be aborted!

• Most systems avoid cascading aborts by releasing locks only at commit time (strict

protocols)

– If Ti writes an object, then Tj can only read this after Ti finishes

• In order to undo changes, the DBMS maintains a log which records every write

Recommended Solution:

The log

• The following facts are recorded in the log

– “Ti writes an object”: store new and old values

– “Ti commits/aborts”: store just a record

• Log records are chained together by transaction id, so it’s easy to undo a specific

transaction

• Log is often duplexed and archived on stable storage (it’s important!)

Recommended Solution:

Connection to Normalization

• The more redundancy in a database, the more locking is required for (update)

transactions.

– Extreme case: so much redundancy that all update transactions are forced to

execute serially.

MC5403- ADBDM UNIT - I : Relational Model

94

• In general, less redundancy allows for greater concurrency and greater transaction

throughput.

The Fundamental Tradeoff of Database Performance Tuning

• De-normalized data can often result in faster query response

• Normalized data leads to better transaction throughput

Thus a transaction Management is used to handle transactions effectively.
