
IT6701

INFORMATION MANAGEMENT

L T P C

3 0 0 3

OBJECTIVES:

(To expose students with the basics of managing the information

(To explore the various aspects of database design and modelling,

(To examine the basic issues in information governance and information integration

(To understand the overview of information architecture.

UNIT I DATABASE MODELLING, MANAGEMENT AND DEVELOPMENT
 9

Database design and modelling - Business Rules and Relationship; Java database Connectivity (JDBC), Database connection Manager, Stored Procedures. Trends in Big Data systems including NoSQL - Hadoop HDFS, MapReduce, Hive, and enhancements.
UNIT II DATA SECURITY AND PRIVACY

9 Program Security, Malicious code and controls against threats; OS level protection; Security – Firewalls, Network Security Intrusion detection systems. Data Privacy principles. Data Privacy Laws and compliance.
UNIT III INFORMATION GOVERNANCE

9 Master Data Management (MDM) – Overview, Need for MDM, Privacy, regulatory requirements and compliance. Data Governance – Synchronization and data quality management.
UNIT IV INFORMATION ARCHITECTURE

9 Principles of Information architecture and framework, Organizing information, Navigation systems and Labelling systems, Conceptual design, Granularity of Content.
UNIT V INFORMATION LIFECYCLE MANAGEMENT

9
Data retention policies; Confidential and Sensitive data handling, lifecycle management costs. Archive data using Hadoop; Testing and delivering big data applications for performance and functionality; Challenges with data administration;
TOTAL: 45 PERIODS
 OUTCOMES:
At the end of the course the students will be able to:
(Cover core relational database topics including logical and physical design and

 modeling
(Design and implement a complex information system that meets regulatory
requirements;
(define and manage an organization's key master data entities Design, Create and
maintain data warehouses.
(Learn recent advances in NOSQL , Big Data and related tools.
TEXT BOOKS:
 1. Alex Berson, Larry Dubov MASTER DATA MANAGEMENT AND DATA GOVERNANCE, 2/E, Tata McGraw Hill, 2011
 2. Security in Computing, 4/E, Charles P. Pfleeger, Shari Lawrence Pfleeger, Prentice Hall; 2006
 3. Information Architecture for the World Wide Web; Peter Morville, Louis Rosenfeld ; O'Reilly Media; 1998
 REFERENCES:
1. Jeffrey A. Hoffer, Heikki Topi, V Ramesh - MODERN DATABASE MANAGEMENT, 10 Edition, PEARSON, 2012
2. http://nosql-database.org/ Next Gen databases that are distributed, open source and scalable.
3. http://ibm.com/big-data - Four dimensions of big data and other ebooks on Big Data Analytics 4. Inside Cyber Warfare: Mapping the Cyber Underworld- Jeffrey Carr, O'Reilly Media; Second Edition 2011

UNIT I

DATABASE MODELLING, MANAGEMENT AND DEVELOPMENT
PART A-TWO MARK QUESTIONS
1.What are Business Rules?
Business rules, also referred to as informal predicates, are the total collection of restrictions on, and meaning of, the data in your database model. Specific business-related information that is associated with database objects. The information can be business restrictions (allowable values), facts, or calculation rules for given business situations, e.g VAT shall be added to all products. Business rules should be applied in the completed database, either as triggers/stored procedures, or (absolutely worst case) implemented in the application code.

2.Define Data Model.

A data model is a general model for how information should be organized. A data model is not the model (conceptual/logical/physical) of future or existing database: It is a generic model which you base your analysis and design upon. The relational model is one such data model

3.Give some examples of Business rules.

· All attributes of type "Transaction amount" must have a value larger than 0.01

· All employees must have an age between 18 and 60 years

· No employees may have illegal Social Security Numbers

· A transaction can not be posted on a non-existent account no<

· All credits above 1.000 USD must be approved by the manager of the employee wanting to grant credit to a customer

 4. What are the various levels of Business Rules?
Business rules are defined on four levels:

· Domain

· Attributes

· Entities

· Inter-entity
5. What is an Attribute?

An attribute is a part of the description of the entity. The entity itself is described by one or more attributes; together, they describe all things of importance about the entity. Example: Typhical attributes for a customer would be name, address, telephone, etc.
6. What is Data Definition Language (DDL)?

 The language used to define objects in a database: CREATE TABLE, CREATE INDEX, and so on. DDL provides the semantics for administering all the physical objects in your database. It is based on a given standard, but may deviate some from vendor to vendor. All of the objects created together, form the 'schema' of a given application.

7. What is Data Manipulation Language?
The language used to manipulate objects in a relational database: We only have four statements in DML: INSERT, SELECT, UPDATE and DELETE. DML provides the semantics for manipulating one or more occurrences (record) in a table in our database. It is based on a given standard, but may deviate some from vendor to vendor, especially through ‘extensions’ found valuable by the given vendor.

8. What are Candidate keys? (NOV/DEC 2016)
Each entity should have at least one candidate (that is: unique) key defined. This is in order to being able to identify each row in the table at hand

1. The candidate key must be unique within its domain (the entity it represents, and beyond, if you also intend to access external entities, with is clearly illustrated in this article).

2. The candidate key can not hold NULLs (NULL is not zero. Zero is a number. NULL is 'unknown value').

3. The candidate key should never change. It must hold the same value for a given occurrence of an entity for the lifetime of that entity.

8.Define Cardinality.
The cardinality of an entity indicates the number of instances (zero or many) of an entity. Cardinality can be defined through relationships ;ike One-to-one, One-to-many, Many-to-many. In addition, each end of a relationship may be optional or mandatory.

9.Explain Database model
A Database model is the logical conversion of an Entity Relationship model. While an ER model reflects the business case, the Database model visualizes the logical model, which in turn is the basis for the physical implementation in the form of database tables, indexes and other mechanisms in the database, necessary to construct the database in question.

10.Define Database Normalization

Database Normalization is the process of analyzing your database model to ensure that information is stored only in one place in the database, and that there are no derivates of the information within the database.

11.Define the term Domain.

A standardized definition which applies to many attributes/columns.

For example, the domain MONEY may be specified as NUMBER, 15 digits long, with 2 decimals, not allowed to have a value of 0.00, and so on. Applying domain definitions to every attribute/column, eases the implementation of changes, and assures that the same kind of information is treated equally throughout the system

12. What is Primary Key?
A column (or combination of columns) whose value(s) uniquely identify a row in a table. This has been a central concept in Relational Theory, and crucial to both identification and performance.Primaru key Column should not have null value or a redundant value.

13. What is Foreign Key?
Column or combination of columns in a table, whose values are related to a primary key in another table.

14.Exaplin the term Index.

An index is a physical mechanism applied to one (or a combination of) column(s). The purpose of the index is for the database system to use the index as a look-up mechanism instead of reading the whole row. Indexes are a prime resource for optimalization (and thereby increasing speed) of searches in the database.

15.What is Join Relationship?
A join relationship is a collection of information from two or more tables. The join is performed by relating columns which are foreign key columns in one table with equivalent columns which are primary key columns in the other table.

16.Define MetaData.
'Data about Data'. This is the documentation stored in the database repository, and which holds information about your database objects. In Oracle, for example, the table USER_TABLES holds vital information about your tables.

17.What are NULL values?
The concept of NULL, which means "unknown value", (not the digit zero) is not a part of the relational model, but has been introduced by the different vendors. It can create unexpected problems when accessing the database (read the linked article).

18.Define Occurrence.
Each row in a database table. If you have 100 customers in your CUSTOMERS table, the table has 100 occurrences.

19.What is Open DataBase Connectivity (ODBC)?
A general interface for communication with different vendor-specific Relational Database Systems.

20.What is RelationShip?
A relationship is an association between two entities. For example, the relationship between the ORDERS and CUSTOMERS tables will normally be that an order is placed by ONE AND ONLY ONE customer, while a given customer MAY HAVE placed ONE OR MORE orders. This will create a link between orders and customers, and thereby generating a business rule inside the database to enforce that relationship.

20.What are Stored Function?
A stored function is SQL (and procedural code, in most cases), placed in the database itself. It masks the business logic from the programmer. In addition, stored functions return only one value to the calling program, and can be used as part of DML statements and within calculations and conditional statements as a parameter.

21.What are Stored Procedure?
A stored procedure is SQL (and procedural code, in most cases), placed in the database itself. It masks the business logic from the programmer. In addition, stored procedures represent a powerful tool to let all programmers have a generic interface to different access mechanisms to each table in the database

22.Define trigger.

 A trigger is a stored procedure assigned to a given table. It ‘fires’ whenever you do an operation on that table (BEFORE/AFTER INSERT/UPDATE/DELETE etc.) Triggers are powerful, performance-enhancing mechanisms in the database.
23.What is View in Database?
An imaginary table: A view may be constructed to give the user/programmer access to a limited resultset from one or more tables. It is often used for security reasons; restricting access through views.
However; it may also be a signal of insufficient design: Making a view to solve a problem with a query which is difficult to do in a single SELECT.

24.Define the terms
1) physical schema 2) logical schema.
Physical schema: The physical schema describes the database design at the physical level, which is the lowest level of abstraction describing how the data are actually stored.

Logical schema: The logical schema describes the database design at the logical level, which describes what data are stored in the database and what relationship exists among the data.

25.
What is conceptual schema?
The schema at the view level are called subschema that describe different views of the database.

26.Define Big Data

Big data is an all-encompassing term for any collection of data sets so large and complex that it becomes difficult to process using on-hand data management tools or traditional data processing applications.

Big data is a popular term used to describe the exponential growth and availability of data, both structured and unstructured.

Big data usually includes data sets with sizes beyond the ability of commonly used software tools to capture, create, manage, and process the data within a tolerable elapsed time

Big data is high-volume, high-velocity and high-variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision-making.

27.What is Big Data?
Big (and small) Data analytics is the process of examining data—typically of a variety of sources, types, volumes and / or complexities—to uncover hidden patterns, unknown correlations, and other useful information. The intent is to find business insights that were not previously possible or were missed, so that better decisions can be made.
28.What is Unstructured Data?
Unstructured data (or unstructured information) refers to information that either does not have a pre-defined data model or is not organized in a pre-defined manner. Unstructured information is typically text-heavy, but may contain data such as dates, numbers, and facts as well.

29.What is NoSQL?
NoSQL database, also called Not Only SQL, is an approach to data management and database design that's useful for very large sets of distributed data. NoSQL is a whole new way of thinking about a database. NoSQL is not a relational database.

30.Define the process of Map Reduce.

It is a way to take a big task and divide it into discrete tasks that can be done in parallel. A common use case for Map/Reduce is in document database .

A MapReduce program is composed of a Map() procedure that performs filtering and sorting (such as sorting students by first name into queues, one queue for each name) and a Reduce() procedure that performs a summary operation (such as counting the number of students in each queue, yielding name frequencies).

31.Define HDFS.

The Hadoop Distributed File System (HDFS) will split large data files into chunks which are managed by different nodes in the cluster. In addition to this each chunk is replicated across several machines, so that a single machine failure does not result in any data being unavailable. An active monitoring system then re-replicates the data in response to system failures which can result in partial storage. Even though the file chunks are replicated and distributed across several machines, they form a single namespace, so their contents are universally accessible.

Part-B

1.Explain about different kinds of data models.

The data model is a collection of conceptual tools for describing data, data relationships, data semantics, and consistency constraints. A data model provides a way to describe the design of a data base at the physical, logical and view level.

The purpose of a data model is to represent data and to make the data understandable.

According to the types of concepts used to describe the database structure, there are three data models:

1. An external data model, to represent each user's view of the organization.

2. A conceptual data model, to represent the logical view that is DBMS independent.

3. An internal data model, to represent the conceptual schema in such a way that it can be understood by the DBMS.

Categories of data model:

i) Record-based data models

ii) Object-based data models

iii) Physical-data models.

The first two are used to describe data at the conceptual and external levels, the latter is used to describe data at the internal level.

i) Record - Based data models
In a record-based model, the database consists of a number of fixed format records possibly of differing types. Each record type defines a fixed number of fields, each typically of a fixed length.

There are three types of record-based logical data model.

• Hierarchical data model.

• Network data model

• Relational data model

Hierarchical data model
In the hierarchical model, data is represented as collections of records and relationships are represented by sets. The hierarchical model allows a node to have only one parent. Hierarchical model can be represented as a tree graph, with records appearing as nodes, also called segments, and sets as edges.

Network data model

In the network model, data is represented as collections of records and relationships are represented by sets. Each set is composed of at least two record types:

• An owner record that is equivalent to the hierarchical model's parent

• A member record that is equivalent to the hierarchical model's child

A set represents a 1: M relationship between the owner and the member.

Relational data model:
The relational data model is based on the concept of mathematical relations. Relational model stores data in the form of a table. Each table corresponds to an entity, and each row represents an instance of that entity. Tables, also called relations are related to each other through the sharing of a common entity characteristic.

Example

Relational DBMS, DB2, oracle, MS SQL-server.

ii) Object - Based Data Models
Object-based data models use concepts such as entities, attributes, and relationships.

An entity is a distinct object in the organization that is to be represents in the database. An attribute is a property that describes some aspect of the object, and a relationship is an association between entities. Common types of object-based data model are:

• Entity - Relationship model

• Object - oriented model

• Semantic model

Entity - Relationship Model:
The ER model is based on the following components:

• Entity: An entity was defined as anything about which data are to be collected and stored. Each row in the relational table is known as an entity instance or entity occurrence in the ER model. Each entity is described by a set of attributes that describes particular characteristics of the entity.

Object oriented model: In the object-oriented data model (OODM) both data and their relationships are contained in a single structure known as an object.

An object is described by its factual content. An object includes information about relationships between the facts within the object, as well as information about its relationships with other objects. Therefore, the facts within the object are given greater meaning. The OODM is said to be a semantic data model because semantic indicates meaning.

The OO data model is based on the following components:

An object is an abstraction of a real-world entity.

Attributes describe the properties of an object.

2. Briefly explain about Entity-Relationship model. (NOV/DEC 2017)
The entity-relationship (ER) data model was developed to facilitate database design by allowing specification of an enterprise schema that represents the overall logical structure of a database. The E-R data model is one of several semantic data models.

The semantic aspect of the model lies in its representation of the meaning of the data. The E-R model is very useful in mapping the meanings and interactions of real-world enterprises onto a conceptual schema.

The ERDs represent three main components entities, attributes and relationships.

Entity sets:
An entity is a thing or object in the real world that is distinguishable from all other objects. Example: Each person in an enterprise is entity.

An entity has a set of properties, and the values for some set of properties may uniquely identify an entity. Example:

A person may have a person-id would uniquely identify one particular property whose value uniquely identifies that person.

An entity may be concrete, such as a person or a book, or it may be abstract, such as a loan, a holiday, or a concept.

An entity set is a set of entities of the same type that share the same properties, or attributes. Example:

Relationship sets:
A relationship is an association among several entities. Example:

A relationship that associates customer smith with loan L-16, specifies that Smith is a customer with loan number L-16.

A relationship set is a set of relationships of the same type.

The number of entity sets that participate in a relationship set is also the degree of the relationship set.

A unary relationship exists when an association is maintained within a single entity.

Attributes:
For each attribute, there is a set of permitted values, called the domain, or value set, of that attribute. Example:

The domain of attribute customer name might be the set of all text strings of a certain length.

An attribute of an entity set is a function that maps from the entity set into a domain.

An attribute can be characterized by the following attribute types:

• Simple and composite attributes.

• Single valued and multi valued attributes.

• Derived attribute.

Simple attribute (atomic attributes)
An attribute composed of a single component with an independent existence is called simple attribute. Simple attributes cannot be further subdivided into smaller components.

An attribute composed of multiple components, each with an independent existence is called composite attribute. Example:

The address attribute of the branch entity can be subdivided into street, city, and postcode attributes.

Single-valued Attributes:
An attribute that holds a single value for each occurrence of an entity type is called single valued attribute. Example:

Each occurrence of the Branch entity type has a single value for the branch number (branch No) attribute (for example B003).

Multi-valued Attribute
An attribute that holds multiple values for each occurrence of an entity type is called multi-valued attribute. Example:

Each occurrence of the Branch entity type can have multiple values for the telNo attribute (for example, branch number B003 has telephone numbers 0141-339-2178 and 0141-339-4439).

Derived attributes
An attribute that represents a value that is derivable from the value of a related attribute or set of attributes, not necessarily in the same entity type is called derived attributes.
3. Discuss in detail about the concepts of Database Design.

Introduction
Relational database was proposed by Edgar Codd (of IBM Research) around 1969. It has since become the dominant database model for commercial applications (in comparison with other database models such as hierarchical, network and object models). Today, there are many commercialRelational Database Management System (RDBMS), such as Oracle, IBM DB2 and Microsoft SQL Server. There are also many free and open-source RDBMS, such as MySQL, mSQL (mini-SQL) and the embedded JavaDB (Apache Derby).

A relational database organizes data in tables (or relations). A table is made up of rows and columns. A row is also called a record (or tuple). A column is also called a field (or attribute). A database table is similar to a spreadsheet. However, the relationships that can be created among the tables enable a relational database to efficiently store huge amount of data, and effectively retrieve selected data.

A language called SQL (Structured Query Language) was developed to work with relational databases.

Database Design Objective

A well-designed database shall:

· Eliminate Data Redundancy: the same piece of data shall not be stored in more than one place. This is because duplicate data not only waste storage spaces but also easily lead to inconsistencies.

· Ensure Data Integrity and Accuracy:

· [TODO] more

Relational Database Design Process

Database design is more art than science, as you have to make many decisions. Databases are usually customized to suit a particular application. No two customized applications are alike, and hence, no two database are alike. Guidelines (usually in terms of what not to do instead of what to do) are provided in making these design decision, but the choices ultimately rest on the you - the designer.

Step 1: Define the Purpose of the Database (Requirement Analysis)

Gather the requirements and define the objective of your database, e.g. ...

Drafting out the sample input forms, queries and reports, often helps.

Step 2: Gather Data, Organize in tables and Specify the Primary Keys

Once you have decided on the purpose of the database, gather the data that are needed to be stored in the database. Divide the data into subject-based tables.

Choose one column (or a few columns) as the so-called primary key, which uniquely identify the each of the rows.

Primary Key

In the relational model, a table cannot contain duplicate rows, because that would create ambiguities in retrieval. To ensure uniqueness, each table should have a column (or a set of columns), called primary key, that uniquely identifies every records of the table. For example, an unique numbercustomerID can be used as the primary key for the Customers table; productCode for Products table; isbn for Books table. A primary key is called asimple key if it is a single column; it is called a composite key if it is made up of several columns.

Most RDBMSs build an index on the primary key to facilitate fast search and retrieval.

The primary key is also used to reference other tables (to be elaborated later).

You have to decide which column(s) is to be used for primary key. The decision may not be straight forward but the primary key shall have these properties:

· The values of primary key shall be unique (i.e., no duplicate value). For example, customer Name may not be appropriate to be used as the primary key for the Customers table, as there could be two customers with the same name.

· The primary key shall always have a value. In other words, it shall not contain NULL.

Consider the followings in choose the primary key:

· The primary key shall be simple and familiar, e.g., employeeID for employees table and isbn for books table.

· The value of the primary key should not change. Primary key is used to reference other tables. If you change its value, you have to change all its references; otherwise, the references will be lost. For example, phoneNumber may not be appropriate to be used as primary key for tableCustomers, because it might change.

· Primary key often uses integer (or number) type. But it could also be other types, such as texts. However, it is best to use numeric column as primary key for efficiency.

· Primary key could take an arbitrary number. Most RDBMSs support so-called auto-increment (or AutoNumber type) for integer primary key, where (current maximum value + 1) is assigned to the new record. This arbitrary number is fact-less, as it contains no factual information. Unlike factual information such as phone number, fact-less number is ideal for primary key, as it does not change.

· Primary key is usually a single column (e.g., customerID or productCode). But it could also make up of several columns. You should use as few columns as possible.

Let's illustrate with an example: a table customers contains columns lastName, firstName, phoneNumber, address, city, state, zipCode. The candidates for primary key are name=(lastName, firstName), phoneNumber, Address1=(address, city, state), Address1=(address, zipCode). Name may not be unique. Phone number and address may change. Hence, it is better to create a fact-less auto-increment number, saycustomerID, as the primary key.

Step 3: Create Relationships among Tables

A database consisting of independent and unrelated tables serves little purpose (you may consider to use a spreadsheet instead). The power of relational database lies in the relationship that can be defined between tables. The most crucial aspect in designing a relational database is to identify the relationships among tables. The types of relationship include:

1. one-to-many

2. many-to-many

3. one-to-one

One-to-Many

In a "class roster" database, a teacher may teach zero or more classes, while a class is taught by one (and only one) teacher. In a "company" database, a manager manages zero or more employees, while an employee is managed by one (and only one) manager. In a "product sales" database, a customer may place many orders; while an order is placed by one particular customer. This kind of relationship is known as one-to-many.

One-to-many relationship cannot be represented in a single table. For example, in a "class roster" database, we may begin with a table calledTeachers, which stores information about teachers (such as name, office, phone and email). To store the classes taught by each teacher, we could create columns class1, class2, class3, but faces a problem immediately on how many columns to create. On the other hand, if we begin with a table called Classes, which stores information about a class (courseCode, dayOfWeek, timeStart and timeEnd); we could create additional columns to store information about the (one) teacher (such as name, office, phone and email). However, since a teacher may teach many classes, its data would be duplicated in many rows in table Classes.

To support a one-to-many relationship, we need to design two tables: a table Classes to store information about the classes with classID as the primary key; and a table Teachers to store information about teachers with teacherID as the primary key. We can then create the one-to-many relationship by storing the primary key of the table Teacher (i.e., teacherID) (the "one"-end or the parent table) in the table classes (the "many"-end or the child table), as illustrated below.

[image: image1.png]Teachers . Classes
teacherID H classID
name courseCode
office dayofueek
phone timestart
email ‘timeEnd

teacherID

The column teacherID in the child table Classes is known as the foreign key. A foreign key of a child table is a primary key of a parent table, used to reference the parent table.

Take note that for every value in the parent table, there could be zero, one, or more rows in the child table. For every value in the child table, there is one and only one row in the parent table.

Many-to-Many

In a "product sales" database, a customer's order may contain one or more products; and a product can appear in many orders. In a "bookstore" database, a book is written by one or more authors; while an author may write zero or more books. This kind of relationship is known as many-to-many.

To support many-to-many relationship, we need to create a third table (known as a junction table), say OrderDetails (or OrderLines), where each row represents an item of a particular order. For the OrderDetails table, the primary key consists of two columns: orderID and productID, that uniquely identify each row. The columns orderID and productID in OrderDetails table are used to reference Orders and Products tables, hence, they are also the foreign keys in the OrderDetails table.

[image: image2.png]orders

orderID
customerID
dateordered
dateRequired
status

Products

productID
name
description
quantity
unitprice

OrderDetails

orderID
productID
quantity
lineNumber

The many-to-many relationship is, in fact, implemented as two one-to-many relationships, with the introduction of the junction table.

1. An order has many items in OrderDetails. An OrderDetails item belongs to one particular order.

2. A product may appears in many OrderDetails. Each OrderDetails item specified one product.

One-to-One

In a "product sales" database, a product may have optional supplementary information such as image, more Description and comment. Keeping them inside the Products table results in many empty spaces (in those records without these optional data). Furthermore, these large data may degrade the performance of the database.

Instead, we can create another table (say ProductDetails, ProductLines or ProductExtras) to store the optional data. A record will only be created for those products with optional data. The two tables, Products and ProductDetails, exhibit a one-to-one relationship. That is, for every row in the parent table, there is at most one row (possibly zero) in the child table. The same column productID should be used as the primary key for both tables.

Some databases limit the number of columns that can be created inside a table. You could use a one-to-one relationship to split the data into two tables. One-to-one relationship is also useful for storing certain sensitive data in a secure table, while the non-sensitive ones in the main table.

[image: image3.png]Products ProductDetails

1 0.1

productID tH———-o} productip

name moreDescription
description image

quantity | |.....
unitprice

Column Data Types

You need to choose an appropriate data type for each column. Commonly data types include: integers, floating-point numbers, string (or text), date/time, binary, collection (such as enumeration and set).

Step 4: Refine & Normalize the Design

For example,

· adding more columns,

· create a new table for optional data using one-to-one relationship,

· split a large table into two smaller tables,

· others.

Normalization

Apply the so-called normalization rules to check whether your database is structurally correct and optimal.

First Normal Form (1NF): A table is 1NF if every cell contains a single value, not a list of values. This properties is known as atomic. 1NF also prohibits repeating group of columns such as item1, item2,.., itemN. Instead, you should create another table using one-to-many relationship.

Second Normal Form (2NF): A table is 2NF, if it is 1NF and every non-key column is fully dependent on the primary key. Furthermore, if the primary key is made up of several columns, every non-key column shall depend on the entire set and not part of it.

For example, the primary key of the OrderDetails table comprising orderID and productID. If unitPrice is dependent only on productID, it shall not be kept in the OrderDetails table (but in the Products table). On the other hand, if the unitPrice is dependent on the product as well as the particular order, then it shall be kept in the OrderDetails table.

Third Normal Form (3NF): A table is 3NF, if it is 2NF and the non-key columns are independent of each others. In other words, the non-key columns are dependent on primary key, only on the primary key and nothing else. For example, suppose that we have a Products table with columnsproductID (primary key), name and unitPrice. The column discountRate shall not belong to Products table if it is also dependent on theunitPrice, which is not part of the primary key.

Higher Normal Form: 3NF has its inadequacies, which leads to higher Normal form, such as Boyce/Codd Normal form, Fourth Normal Form (4NF) and Fifth Normal Form (5NF), which is beyond the scope of this tutorial.

At times, you may decide to break some of the normalization rules, for performance reason (e.g., create a column called totalPrice in Orders table which can be derived from the orderDetails records); or because the end-user requested for it. Make sure that you fully aware of it, develop programming logic to handle it, and properly document the decision.

Integrity Rules

You should also apply the integrity rules to check the integrity of your design:

Entity Integrity Rule: The primary key cannot contain NULL. Otherwise, it cannot uniquely identify the row. For composite key made up of several columns, none of the column can contain NULL. Most of the RDBMS check and enforce this rule.

Referential Integrity Rule: Each foreign key value must be matched to a primary key value in the table referenced (or parent table).

· You can insert a row with a foreign key in the child table only if the value exists in the parent table.

· If the value of the key changes in the parent table (e.g., the row updated or deleted), all rows with this foreign key in the child table(s) must be handled accordingly. You could either (a) disallow the changes; (b) cascade the change (or delete the records) in the child tables accordingly; (c) set the key value in the child tables to NULL.

Most RDBMS can be setup to perform the check and ensure the referential integrity, in the specified manner.

Business logic Integrity: Beside the above two general integrity rules, there could be integrity (validation) pertaining to the business logic, e.g., zip code shall be 5-digit within a certain ranges, delivery date and time shall fall in the business hours; quantity ordered shall be equal or less than quantity in stock, etc. These could be carried out in validation rule (for the specific column) or programming logic.

Column Indexing

You could create index on selected column(s) to facilitate data searching and retrieval. An index is a structured file that speeds up data access forSELECT, but may slow down INSERT, UPDATE, and DELETE. Without an index structure, to process a SELECT query with a matching criterion (e.g.,SELECT * FROM Customers WHERE name='Tan Ah Teck'), the database engine needs to compare every records in the table. A specialized index (e.g., in BTREE structure) could reach the record without comparing every records. However, the index needs to be rebuilt whenever a record is changed, which results in overhead associated with using indexes.

Index can be defined on a single column, a set of columns (called concatenated index), or part of a column (e.g., first 10 characters of a VARCHAR(100)) (called partial index) . You could built more than one index in a table. For example, if you often search for a customer using either customerName orphoneNumber, you could speed up the search by building an index on column customerName, as well as phoneNumber. Most RDBMS builds index on the primary key automatically.
4. Explain in detail about database design phases.

Main Phases of Database Design

The requirements and the collection analysis phase produce both data requirements and functional requirements. The data requirements are used as a source of database design. The data requirements should be specified in as detailed and complete form as possible.

In parallel with specifying the data requirements, it is useful to specify the known functional requirements of the application. These consist of user-defined operations that will be applied to the database (retrievals and updates). The functional requirements are used as a source of application software design. Of course some functions may produce also needs for database design.

.
[image: image4.png]Application
area

Data
requirements

Functional
requirements

Conceptual (Schema

High-level (High-level |data modsl)

DEMS operation
independent specification

DEMS

specific Logical fscherna

(data | model of
specific |[DBMS)

v

Application programs Internal schame;

Conceptual Design

Once all the requirements have been collected and analyzed, the next step is to create a conceptual schema for the database, using a high level conceptual data model. This phase is called conceptual design.

The result of this phase is an Entity-Relationship (ER) diagram or UML class diagram. It is a high-level data model of the specific application area. It describes how different entities (objects, items) are related to each other. It also describes what attributes (features) each entity has. It includes the definitions of all the concepts (entities, attributes) of the application area.

During or after the conceptual schema design, the basic data model operations can be used to specify the high-level user operations identified during the functional analysis. This also serves to confirm that the conceptual schema meets all the identified functional requirements.

There are several notations to draw the ER diagram.
Logical Design

The result of the logical design phase (or data model mapping phase) is a set of relation schemas. The ER diagram or class diagram is the basis for these relation schemas.

To create the relation schemas is quite a mechanical operation. There are rules how the ER model or class diagram is transferred to relation schemas.

The relation schemas are the basis for table definitions. In this phase (if not done in previous phase) the primary keys and foreign keys are defined.
Normalization

Normalization is the last part of the logical design. The goal of normalization is to eliminate redundancy and potential update anomalies.

Redundancy means that the same data is saved more than once in a database. Update anomaly is a consequence of redundancy. If a piece of data is saved in more than one place, the same data must be updated in more than one place.

Normalization is a technique by which one can modify the relation schema to reduce the redundancy. Each normalization phase adds more relations (tables) into the database.
Physical Design

The goal of the last phase of database design, physical design, is to implement the database. At this phase one must know which database management system (DBMS) is used. For example, different DBMS's have different names for data types and have different data types.

The SQL clauses to create the database are written. The indexes, the integrity constraints (rules) and the users' access rights are defined.

Finally the data to test the database is added in.

In parallel with these activities, application programs are designed. The implementation of the programs can start when the database is created and data has been added in.
5. Explain the importance of Business Rules.

Business rules describe the business policies that apply to the data stored on a company's databases. In other words, business rules reflect how a business perceives its use of data. Some business rules are especially important to the database designer because they can be incorporated into the logical schema of the database.
 There are certain constraints that designers apply to ensure that a database honors a company’s business rules. These constraints help preserve data integrity.

Logical schema: The overall logical plan of a database; typically a completed ER diagram.

Constraints: Rules a database designer imposes upon certain elements in a database to preserve data integrity.

Data integrity: A term used to describe the quality (in terms of accuracy, consistency, and validity) of data in a database, in the sense that values required to enforce data relationships actually exist. Problems with data integrity occur when a value in one table that’s supposed to relate to a value in another can’t, because the second value either has been deleted or was never entered.

Business-rules constraints fall into two categories:

· Field constraints within tables, and

· Relationship constraints between tables.

Field constraints

There are various field constraints that can be imposed on a database to honor business rules. Consider the example below:

Business rule: We ship our fertilizer to just four states: Texas, New Mexico, Oklahoma, and Louisiana.

Field constraint: These states are represented in a Customers table in a field called State as: TX, NM, OK, and LA. A constraint is placed on the State field so that only those four state abbreviations are accepted into the database for that specific table.

Constraints are especially common on date fields, where dates would become meaningless in a database if a product’s ship date, for example, was earlier than the customer-order date for that product, or if an employee’s termination date was prior to his or her hire date

Relationship Constraints:

There are also various constraints that can be placed on the relationships (links) between tables. Consider the example below:

1. Business rule: Every vendor must supply at least one product.

2. Relationship constraint: The relationship between the Vendors table and Products table must be governed by a participation constraint wherein a single record in the Vendors table must be related to at least one record in the Products table.

The following tables illustrate the relationship.

[image: image5.png]Vvendors

VendiD ~ VendName

63839 | Olson Industries

63830 | Matrix Company

63891 | Channel Supplies

Products
ProdiD VendiD ProdName

o7 63889 | Widget A
018 63890 | Widget B
019 63891 | Widget C

Each vendor record must match at

Teast one product record.

Relationship constraints (discussed later in this course) dictate that certain entities in a relationship have mandatory status, while others have optional status. Documentation continues for the designer, who should be creating a list of business rules for the organization as reflected in any constraints (if applicable) placed on the existing database(s). Developing an eye for constraints is mostly a matter of experience.

6. How will you define and establish Field specific Business rules.

Business Rules can be established by following steps.

1. Select a table.

2. Review each field and determine whether it requires any constraints.

3. Define the necessary business rules for the field.

4. Establish the rules by modifying the appropriate field specification elements.

5. Determine what actions test the rule.

6. Record the rule on a Business Rule Specifications sheet.

Step 1: Select a Table

It doesn't matter which table you start with because you'll eventually apply this procedure to every table within the database. If you choose a table with a familiar structure, however, you can focus a little more on learning the steps within the procedure. This extra effort will pay dividends when you begin to work with tables containing fields that bear closer attention and examination.

Think about the subject the table represents and then pose these questions:

How does the organization use information based on or related to this subject?

What relationships does this table have to itself or to other tables in the database?

When necessary, consult the final table list and read the description for this table, and refer to any relationship diagrams that incorporate this table. The answers to these questions will be useful to you while you're defining rules for this table, and focusing on the table in this manner prepares you for the next step.

Step 2: Review Each Field and Determine Whether It Requires Any Constraints

Examine the Field Specifications sheet for each field and determine whether you should apply a constraint to any of its elements. Keep the questions from Step 1 in mind as you review a given specification sheet, and then pose this question:

Based on how the table is used within the database, is a constraint necessary for any element within this specification?

If the answer is no, move on to the next field; otherwise, go on to the next step. For example, assume you're working with the CUSTCOUNTY field in a CUSTOMERS table and you have just posed the question about the need for a constraint. (Figure 11.6 shows the current Logical Elements category for this field.)

Figure. Current settings for the Logical Elements category of the CUSTCOUNTY field.

[image: image6.png]Logical Elements

Key Typ: ® hon O primary EdtRule:
O Foeign 0 remate 01 Enter Now, Edits Aloved
Key Stucture: 0 simple O compaste [Enter Now, Eits Not Aloved
Uniqueness:) Nonunique) Unique D0 Enter Lte, it Alowed
Noll Support:) Nuls Alowed) No Wolls) Enter Lter, it Not Allowed
Values Entered y: () User O system 1 ot Detemined A This Time
Required Value: (X o O s
Detault Val Hone
Range of Values: _King Kisap
Comparisors Allows
O Same feld Om O- O> O O+ O< O
O oter islss Oom O= 0> O O+ O< O
X Vwebgeson O A K- 0> 0O O+ O< O
Operaions Allowed:
0 same feld Om O+ O- Ox O+ O Cocatenation
) Othr Fisits OmM O+ O- Ox O+ & Cocateration
00 Vawebgresson O Al O+ O- Ox O+ K Concatension

Step 3: Define the Necessary Business Rules for the Field

You define the appropriate business rules for the CUSTCOUNTY field by identifying the constraints implied by the response in Step 2. Then you transform each constraint into a rule.

The response in Step 2 suggests two possible constraints that you should impose upon the CUSTCOUNTY field: A county name is required for each customer, and the range of values for this field is limited to four specific counties (the two currently on the field specification and the two new counties indicated in the response). Here are two statements you might use to begin transforming these constraints into business rules:

A county must be associated with each customer.

The only counties that can be entered into this field are King, Kitsap, Pierce, and Snohomish.

Once you've defined the appropriate business rules, you can move on to Step 4.

Step 4: Establish the Rules by Modifying the Appropriate Field Specification Elements

Establish each business rule you defined in Step 3 by modifying the appropriate elements on the Field Specifications sheet. (Remember that some rules may affect more than one element.) First, however, you must identify which elements of the field specifications the rule affects. For example, consider the first business rule you defined for the CUSTCOUNTY field in Step 3:

A county must be associated with each customer.

Figure. Revised settings for the Logical Elements category of the CUSTCOUNTY field.

[image: image7.png]Logical Elements

Key Typ: X on O primary EdtRule:
O Foeign 0 remate X1 Enter Now, Edts Alowed
Key Stucture: 0 simple O compaste [Enter Now, Eits Not Aloved
Uniqueness:) Nonunique) Unique 0 Enter Lte, it Alowed
Noll Support: O Nuls Alowed) NoNolls) Enter Lter, it Not Allowed
Values Entered y: () User O system 1 ot Detemined A This Time
Reuired Valoe: () o X ves
Detault Val Hone

Range of Values: __King Kisap,Pere, Sohomish

Comparisors Allows

O Same feld Om O- O> O O+ O< O
O oter islss Oom O= 0> O O+ O< O
X Vwebgeson O A K- 0> 0O O+ O< O
Operaions Allowed:
0 same feld Om O+ O- Ox O+ O Cocatenation
) Othr Fisits OmM O+ O- Ox O+ & Cocateration
00 Vawebgresson O Al O+ O- Ox O+ K Concatension

Step 5: Determine What Actions Test the Rule

The constraint the business rule imposes is tested when you attempt to perform one of three actions: inserting a record into the table or an entry into a field, deleting a record from the table or a value within a field, or updating a field's value. Now that you've established a business rule and understand the constraint it will impose, determine what actions test the rule by identifying when a violation of the rule is most likely to occur. You can make this a relatively easy task by asking yourself the following questions:

Will this rule be violated if I enter a new record into this table?

Will this rule be violated if I do not enter a new record into this table?

Will this rule be violated if I delete a record from this table?

Will this rule be violated if I enter a value into this field?

Will this rule be violated if I do not enter a value into this field?

Will this rule be violated if I update the value of this field?

Will this rule be violated if I delete the value of this field?

Once you've determined which actions will trigger a violation of the rule, make note of them; you'll use them in the next step. This information will also help you to establish this rule in the most effective manner possible when you implement the database in your RDBMS.

In this case, the business rule for the CUSTCOUNTY field will be tested when you try to insert a value into the field because the value must be within a specific range of values. The rule will also be tested when you try to delete a value in the field because the value cannot be null.

Step 6: Record the Rule on a Business Rule Specifications Sheet

You can document a given business rule for future reference by filling out a Business Rule Specifications sheet. This is something you should do for every rule, regardless of its type or category. The Business Rule Specifications sheet provides three advantages:

1. It allows you to document every database oriented business rule. This helps you ensure that you have appropriately defined and properly established each rule.

2. It allows you to document every application oriented business rule. Although you cannot establish this type of rule within the logical design of the database, you can at least indicate its basic elements. The information you document for this type of business rule will prove invaluable to you when you implement the database within your RDBMS or when you create the application program that people will use to work with the database.

3. It provides a standard method for recording all business rules. Business rules are easier to track and maintain if you record them in a consistent manner. Using a uniform format also makes it easier for you to troubleshoot business rules; every aspect of the rule appears on the specification sheet.

The Business Rule Specifications sheet contains the following items:

· Statement. This is the text of the business rule itself. It should be clear and succinct and should convey the required constraints without any confusion or ambiguity. Here's an example of a well-framed statement:

A booking agent cannot be assigned to more than 25 entertainers.

· Constraint. This is a brief explanation of how the constraint applies to the tables and fields. For instance, you can use the following explanation for the constraint imposed by the business rule in the preceding example:

A single record in the AGENTS table can be associated with no more than 25 records in the ENTERTAINERS table.

· Type. Here is where you indicate whether the rule is database oriented or application oriented.

· Category. This is where you indicate whether the rule is field specific or relationship specific.

· Test on. Here is where you indicate which actions (insert, delete, update) will test the constraint the business rule imposes.

· Structures Affected. Depending on the type of business rule, the constraint will affect either a field or a relationship. This is where you designate the name of the field(s) the rule will affect or the name of the table(s) involved in the relationship that the rule affects.

· Field Elements Affected. A business rule that pertains to a field can affect one or more elements of that field's specifications. This is where you indicate the elements the rule affects.

· Relationship Characteristics Affected. A business rule that pertains to a relationship will affect one or more of the relationship's characteristics. Here is where you indicate the characteristics that the rule affects.

· Action Taken. Here you indicate the modifications you've made to the elements of a field specification or to a relationship diagram. It is very important that the statement you enter here be as clear and unambiguous as possible. Should a problem occur as a result of enforcing this business rule, this statement serves as accurate documentation of the steps you have taken to establish the rule. You can use this statement to make certain that these steps were actually carried out and that the rule has been properly established.

Figure An example of a Business Rule Specifications sheet.

[image: image8.png]BusiNEss RULE SPECIFICATIONS

" Auemtormaton |

[Satemt A couty st e ot i ech o

ottty st e e 1 e CulCourty . st o ol

T e R [o0 e e
) sppicaton e Rt specte ® v

" Stucures Atocted |

Fedbames: Gt Coorr

Tl e

O ompe 0 decina s O sk
O uwon 0 craciesiport O DitayFormat
Logiea Elements
O eyt 00 vaes ety O ConptonsMowd
O Keysincunn B Rt vae O Opatons sowes
0 s O detvae 0 e
0 i uppot O Rarge st
Reatonship haracteristics Atectd
0 osetonuse 0 Tpeof arcpaten 0 Dogos ot Parcipton

Action Taken

LR e T T— T —
e Nov. o o

7. How will you define and establish Relationship Specific Business Rules.
After defining and establishing field specific business rules, the next order of business is to tackle relationship specific business rules.

The procedure for performing this task involves the following steps:

1. Select a relationship.

2. Review the relationship and determine whether it requires any constraints.

3. Define the necessary business rules for the relationship.

4. Establish the rule by modifying the appropriate relationship characteristics.

5. Determine what actions will test the rule.

6. Record the rule on a Business Rule Specifications sheet.

You can apply this entire procedure to both self-referencing and dual-table relationships.

Step 1: Select a Relationship

Which relationship you choose is a relatively trivial matter because you'll eventually apply this procedure to every relationship anyway. Once you select a specific relationship, review its relationship diagram. Then think about what the tables represent and why they are related and pose the following questions:

What kind of information do these tables provide?

Why is the relationship between these two tables important?

The answer to these questions will be help you define any necessary business rules for the relationship, and keeping them in mind will prepare you for the next step.

Step 2: Review the Relationship and Determine Whether It Requires Any Constraints

Briefly review each relationship characteristic and keep its current setting in mind. Then examine the relationship as a whole and determine whether it requires some form of constraint. As you review the relationship, remember the answers to the questions you posed in Step 1. You now pose a question such as this to help you determine whether a constraint is necessary:

Is there a need to impose some type of limitation on this relationship based on the way the organization functions or conducts its business?

If the answer is yes, then go to the next step; otherwise, review the next relationship and perform this step once again. For example, assume you're designing a database for a small dance studio, and you're working with the relationship between the INSTRUCTORS and INSTRUCTOR CLASSES tables in Figure

Figure. A relationship diagram for tables from a dance studio database.

[image: image9.png]Instructors

Instuctor D PK
InstFiest Name

InstLast ame
InstStreet Address
InstCiy

nstState

InsiZipcode

InstHome Phone
InstEmall Adress

Date Hired

.1
®)

Instructor Classes

Instructor 1D CPRK
Class 1D, Pk

1)

®)

N

Classes

Class D 3
Class Name:

Class Descripion
Category

Now, pose a question to help you determine whether the relationship requires a constraint.

Is there a need to impose some type of limitation on this relationship based on the way the dance studio functions or conducts its business?

Move to the next step if you receive an answer such as this:

Yes, there is. We require all instructors to teach at least one class. We limit them, however, to teaching no more than eight classes.

You'll use this response as the basis of a business rule in the next step.

Step 3: Define the Necessary Business Rules for the Relationship

Next, define an appropriate business rule based on the response you received in Step 2. Identify the constraint the response implies and then transform it into a business rule. For example, you can infer two constraints from the response: The minimum number of classes an instructor can teach is one, and the maximum number is eight. Transform these constraints into a business rule by composing a statement such as this one:

An instructor must teach one class, but no more than eight classes.

After you've defined the rule, continue with the next step.

Step 4: Establish the Rule by Modifying the Appropriate Relationship Characteristics

Establish the business rule you just defined by modifying the appropriate characteristics in the relationship diagram. Before you make any modifications, consider the business rule statement once again and identify which relationship characteristics the rule affects.

An instructor must teach one class, but no more than eight classes.

The constraint affects the number of classes an instructor can teach, so you modify the degree of participation characteristic of the INSTRUCTOR CLASSES table by setting it to "(1,8)." This rule also affects the type of participation characteristic of the INSTRUCTOR CLASSES table. You must set the table's type of participation to "Mandatory" because a single record in the INSTRUCTORS table must be associated with at least one record in the INSTRUCTOR CLASSES table. Figure shows the revised relationship diagram with your modifications.

Figure The revised relationship diagram that establishes the new business rule.

[image: image10.png]Modification made to the

Degree o Paricigation o tre
INSTRUCTOR GLASSES e
Instructors Classes
o 0 [18}]
oD K Class 0 o
InstFirst Name ® (R) | Class Name
InstLas Name Class Descrpton
InstStet Adrss
sy Instructor Classes Cetegory
nsstte ()] [
napende st ld GPAK| | gy
InstHome Phone: Class 1D CPRIFK
InsEmal Address
DaeHied
Hodticaton made o e
e of ariciaton o e

INSTRUCTOR CLASSES table

Step 5: Determine What Actions Will Test the Rule

As you know, the constraint the business rule imposes is tested when you attempt to insert, delete, or update a table record or field value. Now that you've established the business rule and understand how it affects the relationship, determine what actions test the rule by identifying when a violation of the rule is most likely to occur. Use the following questions to help you make your decision:

Are there circumstances under which this rule will be violated if I enter a new record into this table?

Will this rule be violated if I do not enter a new record into this table?

Will this rule be violated if I delete a record from this table?

Once you've determined which actions will trigger a violation of the rule, make note of them; you'll use them in the next step. This information will also help you to establish this rule in the most effective manner possible when you implement the database in your RDBMS.

Here's an important point to note: When you determine that a rule will be violated when you attempt to delete a record, then you must alter the current deletion rule for the relationship accordingly or add a new deletion rule to the relationship.

The new business rule for the dance studio database will be tested when you attempt to insert a record into the INSTRUCTOR CLASSES table; you can associate a maximum of only eight records with a particular instructor. The rule will also be tested when you attempt to delete a record from the INSTRUCTOR CLASSES table; each instructor must be associated with at least one class. As a result, you must establish a Restrict deletion rule for this table. Figure shows the modifications you've made to this relationship's diagram.

Figure. Establishing a Restrict deletion rule for the INSTRUCTOR CLASSES table to support the new business rule.

[image: image11.png]Instructors. Classes
) PP -
oo P G0 o
nsist e ® ® | casstane
InstLast Name Class Description
Ittt Adsess
sty Instructor Classes Category
nsstte
s st 0K [
nstHome Pone GassD o
InstEnai Adaress
ot ired
Hew Resrit eton i e o

‘the INSTRUCTOR CLASSES table

Step 6: Record the Rule on a Business Rule Specifications Sheet

Finally, fill out a Business Rule Specifications sheet for the business rule you established in Step 4. Figure shows the completed Business Rule Specifications sheet for your new rule.

Figure. The completed Business Rule Specifications sheet for the new business rule.

[image: image12.png]Business RULE SPECIFICATIONS.

" ruemomaton |

[Sitemet A tctor st s or s, v o5 0 csr.

ot Th pricipion of NSTRUGTORS et reaors & Wandsto A, 3 s crd
NSTROCTORS b ooy i) s INSTRUCTOR CLASSES.

e 00 Dssbus e ooy i St 0 e e
0 sopicaton e R Rt spectc ® v
Structures Aftected.

Fid s

Tl Names: WSTRUGTORS, WSTALGIOR CLASSES

Field Elements Aftoctod

Physcal lmonts
O ompe 0O decina s O sk
O uwon 0 cracinsiport O DitayFomat
Logiea Elements
O eyt 0 vaes vty O ConptonsMowd
O ey Sincnn O Rt vae 3 Opraons owes
0 s 0 oastvabe O e
O st O Rarge st
Reatonship Carscerisics ftcted
5 Oseton e X Tpeof Parcpaten 5 Dogron ot Pt

C hctonmaken |

o e of st for s INSTRUCTOR CLASGES e ws g fo My,
Th e o prbpatona e ISTRUCTORS CLASSS i v charsd 118
A et et e vas e 1 e e for e NSTRUCTOR CLAGSES e

8. How are validation tables support Business rules.

A validation table (also known as a lookup table) stores data that you specifically use to implement data integrity. You won't often insert, update, or delete any records within the table once you populate the table with the data you require. Validation tables usually (but not always) comprise two fields: The first acts as the primary key and is what you'll use to help you enforce data integrity, and the second is simply a non-key field that stores a set of values required by some other field in the database. The following Figure shows two examples of validation tables.

. Examples of validation tables.

[image: image13.png]Non-Key Field

Categories / States \1

Category 1D Gategory State | State Name
60001 Architects AL | Alabama
60002 General Contractors AK | Arizona
60003 Attorneys AR | Arkansas
60004 ‘Computer Gonsultants GA | calfornia

o

Primary Key Field

Using Validation Tables to Support Business Rules

When a business rule limits a field's range of values, you can enforce the constraint by using a validation table; the field will then draw its values from an appropriate field in the validation table. Establishing this type of rule involves two steps: defining a relationship between the parent table of the field affected by the rule and the validation table and making a modification to the Range of Values element of the field specifications for the affected field in the parent table.

For example, assume you're working with the SUPPSTATE field of a SUPPLIERS table, and you've defined the following business rule:

Any supplier we use must be based in one of the 11 contiguous Western states, Alaska, or Hawaii.

You can see that this rule imposes a constraint on the SUPPSTATE field's range of values, limiting them to AK, AZ, CA, CO, HI, ID, MT, NM, NV, OR, UT, WA, and WY. (According to the rule, you can't use a supplier based in some other state.) The easiest and most efficient way to establish this rule is to store these values in a validation table called STATES and then use the validation table as the source of the SUPPSTATE field's range of values.

Consider the tables in Figure. (Note the new symbol that is used to represent a validation table.) The SUPPLIERS table stores all the requisite data on the SUPPLIERS engaged by the organization, and the STATES table is a new validation table that will store the names and abbreviations of the specified STATES.

Figure. The SUPPLIERS table and the STATES validation table.

[image: image14.png]Suppliers

Suppler 1D
Supphiama

Supp Address
SuppCity

SuppState
SuppZipoode
SuppPhone Number
SuppFax Number

States

state
State Name

K

Your first order of business (no pun intended) is to establish a relationship between these tables. As you can see, there is a one-to-many relationship between the single record in STATES can be associated with one or more records in SUPPLIERS, but a single record in SUPPLIERS will be associated with only one record in STATES. You already know that you establish a one-to-many relationship by taking a copy of the parent table's primary key and incorporating it within the structure of the child table where it becomes a foreign key. Although the SUPPLIERS table already has a field named SUPPSTATE, you'll replace it with the STATE field from the STATES validation table. (This is a reasonable modification because it is in accordance with the Elements of the Ideal Field and is consistent with the manner in which you establish one-to-many relationships.) Figure shows the new relationship diagram for these two tables.

Figure. A relationship diagram for the SUPPLIERS and STATES tables.

[image: image15.png]Suppliers

Supplier 1D
Supphame

Supp Address
SuppCity

state

SuppZipcode
SuppPhone Number
SuppFax Number

PK

*

N

18]

(R)

State

States

State Name

Now that the STATE field is a foreign key in the SUPPLIERS table, make certain that it conforms to the Elements of a Foreign Key (as outlined in Chapter 10) and set its field specification in the appropriate manner. Then set the relationship's characteristics in this manner:

· Deletion Rule. Define a Restrict deletion rule for this relationship. You do not want to delete a state in the STATES table that is being referenced by records in the SUPPLIERS table.

· Type of Participation. Designate an Optional type of participation for the SUPPLIERS table and a Mandatory type of participation for the STATES table. Although it's unnecessary for the SUPPLIERS table to contain any records before you can enter a new record in the STATES table, there must be at least one record in the STATES table before you can enter records into the SUPPLIERS table.

· Degree of Participation. Assign a (1,1) degree of participation for the STATES table; as you already know, there must be at least one record in the STATES table before you can enter records into the SUPPLIERS table. Assign a (0,N) degree of participation for the SUPPLIERS table; any number of records in this table can be associated with a particular record in the STATES table.

Next, modify the Range of Values element of the field specification for the STATE field in the SUPPLIERS table using a setting such as this:

Any value within the STATE field of the STATES table.

Figure shows the settings you've made within the Logical Elements category of the Field Specifications sheet for this field.

Figure. Setting the Logical Elements category for the STATE foreign key field in the SUPPLIERS table.

[image: image16.png]Logical Elements

Koy Type: O hon O primary

R Foreign 0 remate
Key Stucture: O simple O compaste
Uniqueness:) Nonunique) Unique
Noll Support: O Nuls Alowed) No Nulls
Valves Entered By: [x) User O system
Reuired Valoe: () o 50 ves
Detault Val Hone

EdtRule:
X1 Enter Now, Edts Alowed
[Enter Now, Eits Not Aloved
0 Enter Lte, it Alowed
) Enter Lter, it Not Allowed
) Not Determined At This Time.

Range of Values: vy value withinthe Stat i ofthe STATES tale

Comparisors Allows

Same Fild Om ®- 0> O O« O
O Oter Fiiss Oom O= 0> O O< O
X Vwebgeson O A K- 0> 0O + O< O
Operaions Allowed:
0 same feld Om O+ O- Ox O+ O Cocatenation
0 othr Fisiss OmM O+ O- Ox O+ O Conatenation
O Vawgession O Al O+ O- Ox O+ O Concatensiion

Now you must decide which actions test the rule. When you use a validation table to enforce a business rule, you typically want to test the rule when a user attempts to insert a new value into the field or update an existing value within the field. In either case, a violation will occur when the user attempts to enter a value that does not exist in the validation table.

Finally, fill out a Business Rule Specifications sheet for the business rule you've just established. Be sure to indicate the modifications you've made to both the field and the new relationship. Figure shows the completed Business Rule Specifications sheet for your new rule.

Figure. A completed Business Rule Specifications sheet for the new business rule.

[image: image17.png]Business RULE SPECIFICATIONS

" pueitormaton |

[Satemt oy sppor v s st 5 e e el (1) oo ol s, A o

iy
Cantit e for St o SUPPLIRS 3 s i g e of St 0.
e STATS .
w00 Dssbus O ey St TS0 e 0 e
0 sppicaton e Rt specte [SE

Structures Attected

s

Tol Names: SUPPLERS, STATES

Field Elements Aftoctod

Physcal Elmonts
O owpe 0O decna s O sk
O won 0 cracinsiport O DitayFomat
Logiea Elements
O eyt 0 Vo ety O Conptons Nowd
O ey sincnn O Rt vae 3 Opraons iowes
0 Unqwrss O oeatvae O s
0 o suspot B Rarge ot
Reatonship haractaistcs Aftectd
5 Oseton e X Tpeof Parcpaten 5 Dogon ot Puciton

Action Taken

o arg of Vit v s 0 Ay vl i e St i o SATES e
Th o paricotonfo et s charged:STATES s Moty SUPPLIES i gt
o et pricoatn o e s chnged:SUPPLIERS i O STATE s (11,

A Resit adon i s df o o lorspstwsn SPLERS rd STATES.

9. Explain in detail about JDBC Connectivity and Connection Manager.
Java Database Connectivity (JDBC) API provides industry-standard and database-independent connectivity between the java applications and database servers. Just like java programs that we can “write once and run everywhere”, JDBC provides framework to connect to relational databases from java programs.

JDBC API is used to achieve following tasks:

· Establishing a connection to relational Database servers like Oracle, MySQL etc. JDBC API doesn’t provide framework to connect to NoSQL databases like MongoDB.

· Send SQL queries to the Connection to be executed at database server.

· Process the results returned by the execution of the query.

JDBC Drivers

JDBC API consists of two parts – first part is the JDBC API to be used by the application programmers and second part is the low-level API to connect to database. First part of JDBC API is part of standard java packages in java.sql package. For second part there are four different types of JDBC drivers:

1. JDBC-ODBC Bridge plus ODBC Driver (Type 1): This driver uses ODBC driver to connect to database servers. We should have ODBC drivers installed in the machines from where we want to connect to database, that’s why this driver is almost obsolete and should be used only when other options are not available.

2. Native API partly Java technology-enabled driver (Type 2): This type of driver converts JDBC class to the client API for the RDBMS servers. We should have database client API installed at the machine from which we want to make database connection. Because of extra dependency on database client API drivers, this is also not preferred driver.

3. Pure Java Driver for Database Middleware (Type 3): This type of driver sends the JDBC calls to a middleware server that can connect to different type of databases. We should have a middleware server installed to work with this kind of driver. This adds to extra network calls and slow performance. Hence this is also not widely used JDBC driver.

4. Direct-to-Database Pure Java Driver (Type 4): This is the preferred driver because it converts the JDBC calls to the network protocol understood by the database server. This solution doesn’t require any extra APIs at the client side and suitable for database connectivity over the network. However for this solution, we should use database specific drivers, for example OJDBC jars provided by Oracle for Oracle DB and MySQL Connector/J for MySQL databases.

Let’s create a simple JDBC Example Project and see how JDBC API helps us in writing loosely-coupled code for database connectivity.

Assume that the database servers are installed.

SQL scripts to create the table and insert some dummy values in the table.

	--mysql create table
create table Users(
 id int(3) primary key,
 name varchar(20),
 email varchar(20),
 country varchar(20),
 password varchar(20)
);

--oracle create table
create table Users(
 id number(3) primary key,
 name varchar2(20),
 email varchar2(20),
 country varchar2(20),
 password varchar2(20)
);

--insert rows
INSERT INTO Users (id, name, email, country, password)
VALUES (1, 'Pankaj', 'pankaj@apple.com', 'India', 'pankaj123');
INSERT INTO Users (id, name, email, country, password)
VALUES (4, 'David', 'david@gmail.com', 'USA', 'david123');
INSERT INTO Users (id, name, email, country, password)
VALUES (5, 'Raman', 'raman@google.com', 'UK', 'raman123');
commit;

The datatypes in Oracle and MySQL databases are different, two different SQL DDL queries to create Users table are provided. However both the databases confirms to SQL language, so insert queries are same for both the database tables.c
Database Configurations

	#mysql DB properties
#DB_DRIVER_CLASS=com.mysql.jdbc.Driver
#DB_URL=jdbc:mysql://localhost:3306/UserDB
#DB_USERNAME=pankaj
#DB_PASSWORD=pankaj123
 #Oracle DB Properties
DB_DRIVER_CLASS=oracle.jdbc.driver.OracleDriver
DB_URL=jdbc:oracle:thin:@localhost:1571:MyDBSID
DB_USERNAME=scott
DB_PASSWORD=tiger

Database configurations are the most important details when using JDBC API. The first thing is the Driver class to use. For Oracle database, driver class is oracle.jdbc.driver.OracleDriver and for MySQL database, driver class is com.mysql.jdbc.Driver. You will find these driver classes in their respective driver jar files and both of these implement java.sql.Driver interface.

The second important part is the database connection URL string. Every database driver has it’s own way to configure the database URL but all of them have host, port and Schema details in the connection URL. For MySQL connection String format isjdbc:mysql://<HOST>:<PORT>/<SCHEMA> and for Oracle database connection string format is jdbc:oracle:thin:@<HOST>:<PORT>:<SID>.

The other important details are database username and password details to be used for connecting to the database.

JDBC Connection Program

	DBConnection.java

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

	package com.journaldev.jdbc;

 import java.io.FileInputStream;

import java.io.IOException;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.util.Properties;

public class DBConnection {

 public static Connection getConnection() {

 Properties props = new Properties();

 FileInputStream fis = null;

 Connection con = null;

 try {

 fis = new FileInputStream("db.properties");

 props.load(fis);

 // load the Driver Class

 Class.forName(props.getProperty("DB_DRIVER_CLASS"));

 // create the connection now

 con = DriverManager.getConnection(props.getProperty("DB_URL"),

 props.getProperty("DB_USERNAME"),

 props.getProperty("DB_PASSWORD"));

 } catch (IOException | ClassNotFoundException | SQLException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return con;

 }

}

The program is really simple, first we are reading database configuration details from the property file and then loading the JDBC driver and using Driver Manager to create the connection. Notice that this code use only Java JDBC API classes and there is no way to know that it’s connecting to which type of database. This is also a great example ofwriting code for interfaces methodology.

The important thing to notice is the Class.forName() method call, this is the Java Reflection method to create the instance of the given class.

The first reason is that using reflection to create instance helps us in writing loosely-coupled code that we can’t achieve if we are using new operator. In that case, we could not switch to different database without making corresponding code changes.

The reason for not using the object is because we are not interested in creating the object. The main motive is to load the class into memory, so that the driver class can register itself to the DriverManager. If you will look into the Driver classes implementation, you will find that they have static block where they are registering themselves to DriverManager.

	oracle.jdbc.driver.OracleDriver.java

	
	static
 {
 try
 {
 if (defaultDriver == null)
 {
 defaultDriver = new oracle.jdbc.OracleDriver();
 DriverManager.registerDriver(defaultDriver);
 }
 //some code omitted for clarity
 }
}

	com.mysql.jdbc.Driver.java

	
	static
 {
 try
 {
 DriverManager.registerDriver(new Driver());
 } catch (SQLException E) {
 throw new RuntimeException("Can't register driver!");
 }
 }

	
	Driver driver = new OracleDriver();
DriverManager.registerDriver(driver);

DriverManager.getConnection() method uses the registered JDBC drivers to create the database connection and it throws java.sql.SQLException if there is any problem in getting the database connection.

A simple test program to use the database connection and run simple query.

JDBC Statement and ResultSet

Here is a simple program where we are using the JDBC Connection to execute SQL query against the database and then processing the result set.

	DBConnectionTest.java

	
	package com.journaldev.jdbc;
 import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class DBConnectionTest

{private static final String QUERY = "select id,name,email,country,password from Users";
 public static void main(String[] args) {

//using try-with-resources to avoid closing resources (boiler plate code)
 try(Connection con = DBConnection.getConnection();
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(QUERY)) {
 while(rs.next()){
 int id = rs.getInt("id");
 String name = rs.getString("name");
 String email = rs.getString("email");
 String country = rs.getString("country");
 String password = rs.getString("password");
 System.out.println(id + "," +name+ "," +email+ "," +country+ "," +password);
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }}}

Connection.createStatement () is used to create the Statement object and then executeQuery() method is used to run the query and get the result set object.

First call to ResultSet next() method call moves the cursor to the first row and subsequent calls moves the cursor to next rows in the result set. If there are no more rows then it returns false and come out of the while loop. We are using result set getXXX()method to get the columns value and then writing them to the console.

When we run above test program, we get following output.

	1

2

3
	1,Pankaj,pankaj@apple.com,India,pankaj123
4,David,david@gmail.com,USA,david123
5,Raman,raman@google.com,UK,raman123

Just uncomment the MySQL database configuration properties from db.properties file and comment the Oracle database configuration details to switch to MySQL database. Since the data is same in both Oracle and MySQL database Users table, you will get the same output.

10. Explain in detail about JDBC stored Procedure.

Stored Procedures are group of statements that we compile in the database for some task. Stored procedures are beneficial when we are dealing with multiple tables with complex scenario and rather than sending multiple queries to the database, we can send required data to the stored procedure and have the logic executed in the database server itself.

JDBC API provides support to execute Stored Procedures through CallableStatementinterface.
	create_employee.sql

	1

2

3

4

5

6

7

8

9

10
	-- For Oracle DB

CREATE TABLE EMPLOYEE

 (

 "EMPID" NUMBER NOT NULL ENABLE,

 "NAME" VARCHAR2(10 BYTE) DEFAULT NULL,

 "ROLE" VARCHAR2(10 BYTE) DEFAULT NULL,

 "CITY" VARCHAR2(10 BYTE) DEFAULT NULL,

 "COUNTRY" VARCHAR2(10 BYTE) DEFAULT NULL,

 PRIMARY KEY ("EMPID")

);

	DBConnection.java

	
	package com.journaldev.jdbc.storedproc;
 import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

public class DBConnection {

 private static final String DB_DRIVER_CLASS = "oracle.jdbc.driver.OracleDriver";
 private static final String DB_URL = "jdbc:oracle:thin:@localhost:1521:orcl";
 private static final String DB_USERNAME = "HR";
 private static final String DB_PASSWORD = "oracle";

 public static Connection getConnection() {
 Connection con = null;
 try {
 // load the Driver Class
 Class.forName(DB_DRIVER_CLASS);

 // create the connection now
 con = DriverManager.getConnection(DB_URL,DB_USERNAME,DB_PASSWORD);
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 return con;
 }
}

CallableStatement with Stored Procedure IN Parameters

Let’s write a simple stored procedure to insert data into Employee table.

	insertEmployee.sql

	
	CREATE OR REPLACE PROCEDURE insertEmployee
(in_id IN EMPLOYEE.EMPID%TYPE,
 in_name IN EMPLOYEE.NAME%TYPE,
 in_role IN EMPLOYEE.ROLE%TYPE,
 in_city IN EMPLOYEE.CITY%TYPE,
 in_country IN EMPLOYEE.COUNTRY%TYPE,
 out_result OUT VARCHAR2)
AS
BEGIN
 INSERT INTO EMPLOYEE (EMPID, NAME, ROLE, CITY, COUNTRY)
 values (in_id,in_name,in_role,in_city,in_country);
 commit;
 out_result := 'TRUE';
 EXCEPTION
 WHEN OTHERS THEN
 out_result := 'FALSE';
 ROLLBACK;
END;

Let’s see how we can use CallableStatement to execute insertEmployee stored procedure to insert employee data.

	JDBCStoredProcedureWrite.java

	
	package com.journaldev.jdbc.storedproc;

 import java.sql.CallableStatement;

import java.sql.Connection;

import java.sql.SQLException;

import java.util.Scanner;

public class JDBCStoredProcedureWrite {

 public static void main(String[] args) {

 Connection con = null;

 CallableStatement stmt = null;

 //Read User Inputs

 Scanner input = new Scanner(System.in);

 System.out.println("Enter Employee ID (int):");

 int id = Integer.parseInt(input.nextLine());

 System.out.println("Enter Employee Name:");

 String name = input.nextLine();

 System.out.println("Enter Employee Role:");

 String role = input.nextLine();

 System.out.println("Enter Employee City:");

 String city = input.nextLine();

 System.out.println("Enter Employee Country:");

 String country = input.nextLine();

 try{

 con = DBConnection.getConnection();

 stmt = con.prepareCall("{call insertEmployee(?,?,?,?,?,?)}");

 stmt.setInt(1, id);

 stmt.setString(2, name);

 stmt.setString(3, role);

 stmt.setString(4, city);

 stmt.setString(5, country);

 //register the OUT parameter before calling the stored procedure

 stmt.registerOutParameter(6, java.sql.Types.VARCHAR);

 stmt.executeUpdate();

 //read the OUT parameter now

 String result = stmt.getString(6);

 System.out.println("Employee Record Save Success::"+result);

 }catch(Exception e){

 e.printStackTrace();

 }finally{

 try {

 stmt.close();

 con.close();

 input.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 }

}

 OUTPUT:

Enter Employee ID (int):

1

Enter Employee Name:

Pankaj

Enter Employee Role:

Developer

Enter Employee City:

Bangalore

Enter Employee Country:

India

Employee Record Save Success::TRUE

Enter Employee ID (int):

2

Enter Employee Name:

Pankaj Kumar

Enter Employee Role:

CEO

Enter Employee City:

San Jose

Enter Employee Country:

USA

Employee Record Save Success::FALSE

11. Explain in detail about the Characteristics of BigData.

[image: image20.png]Variety

Source: http://blog.salauthority.com

Figure 1: Characteristics of Big Data

Volume
 The exponential growth in the data storage as the data is now more than text data.

 The data can be found in the format of videos, music’s and large images on our social
media channels.

 It is very common to have Terabytes and Petabytes of the storage system for
enterprises.

 As the database grows the applications and architecture built to support the data needs
to be reevaluated quite often.

 Sometimes the same data is re-evaluated with multiple angles and even though the
original data is the same the new found intelligence creates explosion of the data.

 The big volume indeed represents Big Data.
Velocity
 The data growth and social media explosion have changed how we look at the data.

  There was a time when we used to believe that data of yesterday is recent.

  The matter of the fact newspapers is still following that logic.

 However, news channels and radios have changed how fast we receive the news.

 Today, people reply on social media to update them with the latest happening. On
social media sometimes a few seconds old messages (a tweet, status updates etc.) is not something interests users.
 They often discard old messages and pay attention to recent updates. The data movement is now almost real time and the update window has reduced to fractions of the seconds.
 This high velocity data represent Big Data.
Variety
  Data can be stored in multiple format. For example database, excel, csv, access or for
the matter of the fact, it can be stored in a simple text file.

  Sometimes the data is not even in the traditional format as we assume, it may be in the
form of video, SMS, pdf or something we might have not thought about it. It is the need of the organization to arrange it and make it meaningful.
 It will be easy to do so if we have data in the same format, however it is not the case most of the time. The real world have data in many different formats and that is the challenge we need to overcome with the Big Data. This variety of the data represent Big Data.
12. List out the difference between the characteristics of Data in the warehouse and data in Hadoop

	S.NO
	Data in the warehouse
	Data in Hadoop

	1
	mostly ideal for analyzing structured data from various systems and producing insights with known and relatively stable measurements
	Hadoop-based platform is well suited to deal with semi-structured and unstructured data, as well as when a data discovery process is needed

	2
	data goes through a lot of rigor to make it into the warehouse

	data isn’t likely to be distributed like data warehouse data

	3
	Data in warehouses must shine with respect to quality; subsequently, it’s cleaned up via cleansing, enrichment, matching, glossary, metadata, master data management, modeling, and other services before it’s ready for analysis.

	With all the volume and velocity of today’s data, there’s just no way that you can afford to spend the time and resources required to cleanse and document every piece of data properly, because it’s just not going to be economical.

	4
	an expensive process
	Hadoop use cases cost prohibitive

	5
	Data is going to go places and will be used in
reports and dashboards where the accuracy ofthat data is key
	Data in Hadoop might seem of low value todayor its value non-quantified, but it can in fact bethe key to questions yet unasked

	6
	data warehouse data is trusted enough to be “public,”

	Hadoop data isn’t as trusted

	7
	cost per compute in a traditional data warehouse is relatively high

	the cost of Hadoop is low

	8
	For your interactive navigational needs, you’llcontinue to pick and choose sources and cleanse that data and keep it in warehouses.

	Let to store all of the data in its native business object format and get value out of it through massive parallelism on readily available components

	9
	Data in warehouse can be placed in reports and dashboards.
	data might sit in Hadoop for a while, and when you discover its value, it might migrate its way into the warehouse

	10
	Data in warehouse are already analyzed and useful data
	can get more value out of analyzing more data that may even initially seem unrelated

13. Discuss in detail about the core components of Hadoop. (NOV/DEC 2017)
1. Apache Hadoop is an open-source, free and Java based software framework offers a powerful distributed platform to store and manage Big Data.
2. It is licensed under an Apache V2 license. 3. It runs applications on large clusters of commodity hardware and it processes thousands of
terabytes of data on thousands of the nodes. Hadoop is inspired from Google’s MapReduce and Google File System (GFS) papers.
4. The major advantage of Hadoop framework is that it provides reliability and high availability.
Core components of Hadoop
There are two major components of the Hadoop framework and both of them does two of the important task for it.
1. Hadoop MapReduce is the method to split a larger data problem into smaller chunk and distribute it to many different commodity servers. Each server have their own set of resources and they have processed them locally. Once the commodity server has processed the data they send it back collectively to main server. This is effectively a process where we process large data effectively and efficiently
2.Hadoop Distributed File System (HDFS) is a virtual file system. There is a big difference between any other file system and Hadoop. When we move a file on HDFS, it is automatically split into many small pieces. These small chunks of the file are replicated and stored on other servers (usually 3) for the fault tolerance or high availability.
3.Namenode: Namenode is the heart of the hadoop system. The namenode manages the file system namespace. It stores the metadata information of the data blocks. This metadata is stored permanently on to local disk in the form of namespace image and edit log file. The namenode also knows the location of the data blocks on the data node. However the namenode does not store this information persistently. The namenode creates the block to datanodemapping when it is restarted. If the NameNode crashes, then the entire Hadoop system goes down.
4. Secondary Namenode: The responsibility of secondary name node is to periodically copy and merge the namespace image and edit log. If the name node crashes, then the namespace image stored in secondary NameNode can be used to restart the NameNode.
5. DataNode: It stores the blocks of data and retrieves them. The DataNodes also reports the blocks information to the NameNode periodically.

6. Job Tracker: Job Tracker responsibility is to schedule the client’s jobs. Job tracker creates map and reduce tasks and schedules them to run on the DataNodes (task trackers). Job Tracker also checks for any failed tasks and reschedules the failed tasks on another DataNode. Job tracker can be run on the NameNode or a separate node.
7. Task Tracker: Task tracker runs on the DataNodes. Task trackers responsibility is to run the map or reduce tasks assigned by the NameNode and to report the status of the tasks to the NameNode.
Besides above two core components Hadoop project also contains following modules as well.

 1. Hadoop

2. Common: Common utilities for the other Hadoop modules

3. Hadoop Yarn: A framework for job scheduling and cluster resource management
14.How MapReduce Works? / Explain the anatomy of classic map reduce job run/How Hadoop runs map reduce Job?

You can run a MapReduce job with a single line of code: JobClient.runJob(conf). It is very short, but it conceals a great deal of processing behind the scenes. The whole process is illustrated in following figure.

[image: image21.png]|zgetnenjon0

M bt Sl
dient VM i G retrieve
ot
dient node ot D s, ‘node
oy L —
oot {eomstas]

et & :
eSpen <. TasTacker
(eguhFS) s e

Sunch

tasktracker node

How Hadoop runs a MapReduce job

As shown in Figure 1, there are four independent entities in the framework:
- Client, which submits the MapReduce Job
- JobTracker, which coordinates and controls the job run. It is a Java class called JobTracker.
- TaskerTrackers, which run the task that is split job, control the specific map or reduce task, and make reports to JobTracker. They are Java class as well.
- HDFS, which provides distributed data storage and is used to share job files between other entities.

As the Figure 1 show, a MapReduce processing including 10 steps, and in short, that is:
- The clients submit MapReduce jobs to the JobTracker.
- The JobTracker assigns Map and Reduce tasks to other nodes in the cluser
- These nodes each run a software daemon TaskTracker on separate JVM.
- Each TaskTracker actually initiates the Map or Reduce tasks and reports progress back to the JobTracker

There are six detailed levels in workflows. They are:

1. Job Submission

2. Job Initialization

3. Task Assignment

4. Task Execution

5. Task Progress and status updates

6. Task Completion

Job Submission

When the client call submit() on job object. An internal JobSubmmitter Java Object is initiated and submitJobInternal() is called. If the clients calls the waiForCompletion(), the job progresss will begin and it will response to the client with process results to clients until the job completion.
JobSubmmiter do the following work:
- Ask the JobTracker for a new job ID.
- Checks the output specification of the job.
- Computes the input splits for the job.
- Copy the resources needed to run the job. Resources include the job jar file, the configuration file and the computed input splits. These resources will be copied to HDFS in a directory named after the job id. The job jar will be copied more than 3 times across the cluster so that TaskTrackers can access it quickly.
- Tell the JobTracker that the job is ready for execution by calling submitJob() on JobTracker.

Job Initialization

When the JobTracker receives the call submitJob(), it will put the call into an internal queue from where the job scheduler will pick it up and initialize it. The initialization is done as follow:
- An job object is created to represent the job being run. It encapsulates its tasks and bookkeeping information so as to keep track the task progress and status.
- Retrieves the input splits from HDFS and create the list of tasks, each of which has task ID. JobTracker creates one map task for each split, and the number of reduce tasks according to configuration.
- JobTracker will create the setup task and cleanup task. Setup task is to create the final output directory for the job and the temporary working space for the task output. Cleanup task is to delete the temporary working space for the task ouput.
- JobTracker will assign tasks to free TaskTrackers

Task Assignment

TaskTrackers send heartbeat periodically to JobTracker Node to tell it if it is alive or ready to get a new task. The JobTracker will allocate a new task to the ready TaskTracker. Task assignment is as follows:
- The JobTracker will choose a job to select the task from according to scheduling algorithm, a simple way is chosen on a priority list of job. After chose the job, the JobTracker will choose a task from the job.
- TaskTrackers has a fixed number of slots for map tasks and for reduces tasks which are set independently, the scheduler will fits the empty map task slots before reduce task slots.
- To choose a reduce task, the JobTracker simply takes next in its list of yet-to-be-run reduce task, because there is no data locality consideration. But map task chosen depends on the data locality and TaskTracker’s network location.

Task Execution

When the TaskTracker has been assigned a task. The task execution will be run as follows:
- Copy jar file from HDFS, copy needed files from the distributed cache on the local disk.
- Creates a local working directory for the task and ‘un-jars’ the jar file contents to the direcoty
- Creates a TaskRunner to run the task. The TaskRunner will lauch a new JVM to run each task.. TaskRunner fails by bugs will not affect TaskTracker. And multiple tasks on the node can reuse the JVM created by TaskRunner.
- Each task on the same JVM created by TaskRunner will run setup task and cleanup task.
- The child process created by TaskRunner will informs the parent process of the task’s progress every few seconds until the task is complete.

Progress and Status Updates

[image: image22.png]

After clients submit a job. The MapReduce job is a long time batching job. Hence the job progress report is important. What consists of the Hadoop task progress is as follows:
- Reading an input record in a mapper or reducer
- Writing an output record in a mapper or a reducer
- Setting the status description on a reporter, using the Reporter’s setStatus() method
- Incrementing a counter
- Calling Reporter’s progress()

As shown in Figure , when a task is running, the TaskTracker will notify the JobTracker its task progress by heartbeat every 5 seconds.
And mapper and reducer on the child JVM will report to TaskTracker with it’s progress status every few seconds. The mapper or reducers will set a flag to indicate the status change that should be sent to the TaskTracker. The flag is checked in a separated thread every 3 seconds. If the flag sets, it will notify the TaskTracker of current task status.
The JobTracker combines all of the updates to produce a global view, and the Client can use getStatus() to get the job progress status.

Job Completion

When the JobTracker receives a report that the last task for a job is complete, it will change its status to successful. Then the JobTracker will send a HTTP notification to the client which calls the waitForCompletion(). The job statistics and the counter information will be printed to the client console. Finally the JobTracker and the TaskTracker will do clean up action for the job.

MRUnit test

MRUnit is based on JUnit and allows for the unit testing of mappers, reducers and some limited integration testing of the mapper – reducer interaction along with combiners, custom counters and partitioners.

To write your test you would:

· Testing Mappers

1. Instantiate an instance of the MapDriver class parameterized exactly as the mapper under test.

2. Add an instance of the Mapper you are testing in the withMapper call.

3. In the withInput call pass in your key and input value

4. Specify the expected output in the withOutput call

5. The last call runTest feeds the specified input values into the mapper and compares the actual output against the expected output set in the ‘withOutput’ method.

· Testing Reducers

1. The test starts by creating a list of objects (pairList) to be used as the input to the reducer.

2. A ReducerDriver is instantiated

3. Next we pass in an instance of the reducer we want to test in the withReducer call.

4. In the withInput call we pass in the key (of “190101”) and the pairList object created at the start of the test.

5. Next we specify the output that we expect our reducer to emit

6. Finally runTest is called, which feeds our reducer the inputs specified and compares the output from the reducer against the expect output.
7. MRUnit testing framework is based on JUnit and it can test Map Reduce programs written on several versions of Hadoop.

Following is an example to use MRUnit to unit test a Map Reduce program that does SMS Call Deatails Record (call details record) analysis.

The records look likeCDRID; CDRType; Phone1; Phone2; SMS Status Code
655209; 1; 796764372490213; 804422938115889; 6
353415; 0; 356857119806206; 287572231184798; 4
835699; 1; 252280313968413; 889717902341635; 0

The MapReduce program analyzes these records, finds all records with CDRType as 1, and note its corresponding SMS Status Code. For example, the Mapper outputs are

6, 1
0, 1

The Reducer takes these as inputs and output number of times a particular status code has been obtained in the CDR records.

The corresponding Mapper and Reducer are

	public class SMSCDRMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

 private Text status = new Text();

 private final static IntWritable addOne = new IntWritable(1);

 /** * Returns the SMS status code and its count */

 protected void map(LongWritable key, Text value, Context context)

 throws java.io.IOException, InterruptedException {

 //655209;1;796764372490213;804422938115889;6 is the Sample record format

 String[] line = value.toString().split(";");

 // If record is of SMS CDR

 if (Integer.parseInt(line[1]) == 1) {

 status.set(line[4]);

 context.write(status, addOne);}}} } }}

The corresponding Reducer code is

	public class SMSCDRReducer extends

 Reducer<Text, IntWritable, Text, IntWritable> {

 protected void reduce(Text key, Iterable<IntWritable> values, Context context)

 throws java.io.IOException, InterruptedException

{

 int sum = 0;

 for (IntWritable value : values) {

 sum += value.get();

 }

 context.write(key, new IntWritable(sum));

 }

}

The MRUnit test class for the Mapper is

public class SMSCDRMapperReducerTest

{

 MapDriver<LongWritable, Text, Text, IntWritable> mapDriver;

 ReduceDriver<Text, IntWritable, Text, IntWritable> reduceDriver;

 MapReduceDriver<LongWritable, Text, Text, IntWritable, Text, IntWritable>

 mapReduceDriver;

 public void setUp()

 {

 SMSCDRMapper mapper = new SMSCDRMapper();

 SMSCDRReducer reducer = new SMSCDRReducer();

 mapDriver = MapDriver.newMapDriver(mapper);;

 reduceDriver = ReduceDriver.newReduceDriver(reducer);

 mapReduceDriver = MapReduceDriver.newMapReduceDriver(mapper, reducer);

 }

 @Test

 public void testMapper()

 {

 mapDriver.withInput(new LongWritable(), new Text("655209;1;796764372490213;8044229

 38115889;6"));

 mapDriver.withOutput(new Text("6"), new IntWritable(1));

 mapDriver.runTest();

 }

 @Test

 public void testReducer()

 {

 List<IntWritable> values = new ArrayList<IntWritable>();

 values.add(new IntWritable(1));

 values.add(new IntWritable(1));

 reduceDriver.withInput(new Text("6"), values);

 reduceDriver.withOutput(new Text("6"), new IntWritable(2));

 reduceDriver.runTest();

 }

}

15.Explain in detail about the MAPREDUCE EXECUTION PIPELINE.
Any data stored in Hadoop (including HDFS and HBase) or even outside of Hadoop (for example, in a database) can be used as an input to the MapReduce job. Similarly, output of the job can be stored either in Hadoop (HDFS or HBase) or outside of it.

The framework takes care of scheduling tasks, monitoring them, and re-executing failed tasks. Figure shows a high-level view of the MapReduce processing architecture.

 Following are the main components of the MapReduce execution pipeline:

➤ Driver — This is the main program that initializes a MapReduce job. It defines job-specific configuration, and specifies all of its components (including input and output formats, mapper and reducer, use of a combiner, use of a custom partitioner, and so on). The driver can also get back the status of the job execution.

[image: image23.emf]
➤ Context — The driver, mappers, and reducers are executed in different processes, typically on multiple machines. A context object (not shown in Figure 3-2) is available at any point of MapReduce execution. It provides a convenient mechanism for exchanging required system and job-wide information. Keep in mind that context coordination happens only when an appropriate phase (driver, map, reduce) of a MapReduce job starts. This means that, for example, values set by one mapper are not available in another mapper (even if another mapper starts after the first one completes), but is available in any reducer.

 ➤ Input data — This is where the data for a MapReduce task is initially stored. This data can reside in HDFS, HBase, or other storage. Typically, the input data is very large — tens of gigabytes or more.

➤ InputFormat — This defines how input data is read and split. InputFormat is a class that defines the InputSplits that break input data into tasks, and provides a factory for RecordReader objects that read the file. Several InputFormats are provided by Hadoop. InputFormat is invoked directly by a job’s driver to decide (based on the InputSplits) the number and location of the map task execution.

➤ InputSplit — An InputSplit defines a unit of work for a single map task in a MapReduce program. A MapReduce program applied to a data set is made up of several (possibly several hundred) map tasks. The InputFormat (invoked directly by a job driver) defines the number of map tasks that make up the mapping phase. Each map task is given a single InputSplit to work on. After the InputSplits are calculated, the MapReduce framework starts the required number of mapper jobs in the desired locations.

➤ RecordReader — Although the InputSplit defines a data subset for a map task, it does not describe how to access the data. The RecordReader class actually reads the data from its source (inside a mapper task), converts it into key/value pairs suitable for processing by the mapper, and delivers them to the map method. The RecordReader class is defined by the InputFormat. Chapter 4 shows examples of how to implement a custom RecordReader

. ➤ Mapper — The mapper performs the user-defined work of the first phase of the MapReduce program. From the implementation point of view, a mapper implementation takes input data in the form of a series of key/value pairs (k1, v1), which are used for individual map execution. The map typically transforms the input pair into an output pair (k2, v2), which is used as an input for shuffle and sort. A new instance of a mapper is instantiated in a separate JVM instance for each map task that makes up part of the total job input. The individual mappers are intentionally not provided with a mechanism to communicate with one another in any way. This allows the reliability of each map task to be governed solely by the reliability of the local machine.

➤ Partition — A subset of the intermediate key space (k2, v2) produced by each individual mapper is assigned to each reducer. These subsets (or partitions) are the inputs to the reduce tasks. Each map task may emit key/value pairs to any partition. All values for the same key are always reduced together, regardless of which mapper they originated from. As a result, all of the map nodes must agree on which reducer will process the different pieces of the intermediate data. The Partitioner class determines which reducer a given key/value pair will go to. The default Partitioner computes a hash value for the key, and assigns the partition based on this result. g
➤ Shuffle — Each node in a Hadoop cluster might execute several map tasks for a given job. Once at least one map function for a given node is completed, and the keys’ space is partitioned, the run time begins moving the intermediate outputs from the map tasks to where they are required by the reducers. This process of moving map outputs to the reducers is known as shuffling.

➤ Sort — Each reduce task is responsible for processing the values associated with several intermediate keys. The set of intermediate key/value pairs for a given reducer is automatically sorted by Hadoop to form keys/values (k2, {v2, v2,…}) before they are presented to the reducer.

➤ Reducer — A reducer is responsible for an execution of user-provided code for the second phase of job-specific work. For each key assigned to a given reducer, the reducer’s reduce() method is called once. This method receives a key, along with an iterator over all the values associated with the key. The values associated with a key are returned by the iterator in an undefined order. The reducer typically transforms the input key/value pairs into output pairs (k3, v3).

➤ OutputFormat — The way that job output (job output can be produced by reducer or mapper, if a reducer is not present) is written is governed by the OutputFormat. The responsibility of the OutputFormat is to define a location of the output data and RecordWriter used for storing the resulting data. Examples in Chapter 4 show how to implement a custom OutputFormat.

➤ RecordWriter — A RecordWriter defines how individual output records are written. The following are two optional components of MapReduce execution

➤ Combiner — This is an optional processing step that can be used for optimizing MapReduce job execution. If present, a combiner runs after the mapper and before the reducer. An instance of the Combiner class runs in every map task and some reduce tasks. The Combiner receives all data emitted by mapper instances as input, and tries to combine values with the same key, thus reducing the keys’ space, and decreasing the number of keys (not necessarily data) that must be sorted. The output from the Combiner is then sorted and sent to the reducers. Chapter 4 provides additional information about combiners.

➤ Distributed cache — An additional facility often used in MapReduce jobs is a distributed cache. This is a facility that enables the sharing of data globally by all nodes on the cluster. The distributed cache can be a shared library to be accessed by each task, a global lookup file holding key/value pairs, jar files (or archives) containing executable code, and so on. The cache copies over the file(s) to the machines where the actual execution occurs, and makes them available for the local usage.

One of the most important MapReduce features is the fact that it completely hides the complexity of managing a large distributed cluster of machines, and coordination of job execution between these nodes. A developer’s programming model is very simple — he or she is responsible only for implementation of mapper and reducer functionality, as well as a driver, bringing them together as a single job and configuring required parameters. All users’ code is then packaged into a single jar file (in reality, the MapReduce framework can operate on multiple jar files), that can be submitted for execution on the MapReduce cluster.
16.Why Are NoSQL Databases Interesting? / Why we should use Nosql? / when to use Nosql?

There are several reasons why people consider using a NoSQL database.

Application development productivity. A lot of application development effort is spent on mapping data between in-memory data structures and a relational database. A NoSQL database may provide a data model that better fits the application’s needs, thus simplifying that interaction and resulting in less code to write, debug, and evolve.

Large data. Organizations are finding it valuable to capture more data and process it more quickly. They are finding it expensive, if even possible, to do so with relational databases. The primary reason is that a relational database is designed to run on a single machine, but it is usually more economic to run large data and computing loads on clusters of many smaller and cheaper machines. Many NoSQL databases are designed explicitly to run on clusters, so they make a better fit for big data scenarios.

Analytics. One reason to consider adding a NoSQL database to your corporate infrastructure is that many NoSQL databases are well suited to performing analytical queries.

Scalability. NoSQL databases are designed to scale; it’s one of the primary reasons that people choose a NoSQL database. Typically, with a relational database like SQL Server or Oracle, you scale by purchasing larger and faster servers and storage or by employing specialists to provide additional tuning. Unlike relational databases, NoSQL databases are designed to easily scale out as they grow. Data is partitioned and balanced across multiple nodes in a cluster, and aggregate queries are distributed by default.

Massive write performance. This is probably the canonical usage based on Google's influence. High volume. Facebook needs to store 135 billion messages a month. Twitter, for example, has the problem of storing 7 TB/data per day with the prospect of this requirement doubling multiple times per year. This is the data is too big to fit on one node problem. At 80 MB/s it takes a day to store 7TB so writes need to be distributed over a cluster, which implies key-value access, MapReduce, replication, fault tolerance, consistency issues, and all the rest. For faster writes in-memory systems can be used.

Fast key-value access. This is probably the second most cited virtue of NoSQL in the general mind set. When latency is important it's hard to beat hashing on a key and reading the value directly from memory or in as little as one disk seek. Not every NoSQL product is about fast access, some are more about reliability, for example. but what people have wanted for a long time was a better memcached and many NoSQL systems offer that.

Flexible data model and flexible datatypes. NoSQL products support a whole range of new data types, and this is a major area of innovation in NoSQL. We have: column-oriented, graph, advanced data structures, document-oriented, and key-value. Complex objects can be easily stored without a lot of mapping. Developers love avoiding complex schemas and ORM frameworks. Lack of structure allows for much more flexibility. We also have program and programmer friendly compatible datatypes likes JSON.

Schema migration. Schemalessness makes it easier to deal with schema migrations without so much worrying. Schemas are in a sense dynamic, because they are imposed by the application at run-time, so different parts of an application can have a different view of the schema.

Write availability. Do your writes need to succeed no mater what? Then we can get into partitioning, CAP, eventual consistency and all that jazz.

Easier maintainability, administration and operations. This is very product specific, but many NoSQL vendors are trying to gain adoption by making it easy for developers to adopt them. They are spending a lot of effort on ease of use, minimal administration, and automated operations. This can lead to lower operations costs as special code doesn't have to be written to scale a system that was never intended to be used that way.

No single point of failure. Not every product is delivering on this, but we are seeing a definite convergence on relatively easy to configure and manage high availability with automatic load balancing and cluster sizing. A perfect cloud partner.

Generally available parallel computing. We are seeing MapReduce baked into products, which makes parallel computing something that will be a normal part of development in the future.

Programmer ease of use. Accessing your data should be easy. While the relational model is intuitive for end users, like accountants, it's not very intuitive for developers. Programmers grok keys, values, JSON, Javascript stored procedures, HTTP, and so on. NoSQL is for programmers. This is a developer led coup. The response to a database problem can't always be to hire a really knowledgeable DBA, get your schema right, denormalize a little, etc., programmers would prefer a system that they can make work for themselves. It shouldn't be so hard to make a product perform. Money is part of the issue. If it costs a lot to scale a product then won't you go with the cheaper product, that you control, that's easier to use, and that's easier to scale?

Use the right data model for the right problem. Different data models are used to solve different problems. Much effort has been put into, for example, wedging graph operations into a relational model, but it doesn't work. Isn't it better to solve a graph problem in a graph database? We are now seeing a general strategy of trying find the best fit between a problem and solution.

Distributed systems and cloud computing support. Not everyone is worried about scale or performance over and above that which can be achieved by non-NoSQL systems. What they need is a distributed system that can span datacenters while handling failure scenarios without a hiccup. NoSQL systems, because they have focussed on scale, tend to exploit partitions, tend not use heavy strict consistency protocols, and so are well positioned to operate in distributed scenarios.

17.List out the differences between SQL and NoSQL.

Difference between Sql and Nosql

· SQL databases are primarily called as Relational Databases (RDBMS); whereas NoSQL database are primarily called as non-relational or distributed database.

· SQL databases are table based databases whereas NoSQL databases are document based, key-value pairs, graph databases or wide-column stores. This means that SQL databases represent data in form of tables which consists of n number of rows of data whereas NoSQL databases are the collection of key-value pair, documents, graph databases or wide-column stores which do not have standard schema definitions which it needs to adhered to.

· SQL databases have predefined schema whereas NoSQL databases have dynamic schema for unstructured data.

· SQL databases are vertically scalable whereas the NoSQL databases are horizontally scalable. SQL databases are scaled by increasing the horse-power of the hardware. NoSQL databases are scaled by increasing the databases servers in the pool of resources to reduce the load.

· SQL databases uses SQL (structured query language) for defining and manipulating the data, which is very powerful. In NoSQL database, queries are focused on collection of documents. Sometimes it is also called as UnQL (Unstructured Query Language). The syntax of using UnQL varies from database to database.

· SQL database examples: MySql, Oracle, Sqlite, Postgres and MS-SQL. NoSQL database examples: MongoDB, BigTable, Redis, RavenDb, Cassandra, Hbase, Neo4j and CouchDb

· For complex queries: SQL databases are good fit for the complex query intensive environment whereas NoSQL databases are not good fit for complex queries. On a high-level, NoSQL don’t have standard interfaces to perform complex queries, and the queries themselves in NoSQL are not as powerful as SQL query language.

· For the type of data to be stored: SQL databases are not best fit for hierarchical data storage. But, NoSQL database fits better for the hierarchical data storage as it follows the key-value pair way of storing data similar to JSON data. NoSQL database are highly preferred for large data set (i.e for big data). Hbase is an example for this purpose.

· For scalability: In most typical situations, SQL databases are vertically scalable. You can manage increasing load by increasing the CPU, RAM, SSD, etc, on a single server. On the other hand, NoSQL databases are horizontally scalable. You can just add few more servers easily in your NoSQL database infrastructure to handle the large traffic.

· For high transactional based application: SQL databases are best fit for heavy duty transactional type applications, as it is more stable and promises the atomicity as well as integrity of the data. While you can use NoSQL for transactions purpose, it is still not comparable and sable enough in high load and for complex transactional applications.

· For support: Excellent support are available for all SQL database from their vendors. There are also lot of independent consultations who can help you with SQL database for a very large scale deployments. For some NoSQL database you still have to rely on community support, and only limited outside experts are available for you to setup and deploy your large scale NoSQL deployments.

· For properties: SQL databases emphasizes on ACID properties (Atomicity, Consistency, Isolation and Durability) whereas the NoSQL database follows the Brewers CAP theorem (Consistency, Availability and Partition tolerance)

For DB types: On a high-level, we can classify SQL databases as either open-source or close-sourced from commercial vendors. NoSQL databases can be classified on the basis of way of storing data as graph databases, key-value store databases, document store databases, column store database and XML databases

18.Discuss in detail about the types of NoSQL Databases.
Types of Nosql Databases: There are four general types of NoSQL databases, each with their own specific attributes:
Key-Value storage
This is the first category of NoSQL database. Key-value stores have a simple data model, which allow clients to put a map/dictionary and request value par key. In the key-value storage, each key has to be unique to provide non-ambiguous identification of values. For example.

[image: image24.jpg]“Type: student ; age: 20;
likes: play cricket;
Mob: 987"

"Type : student ; age: 25;
likes: play cricket,play cards”

1. Document databases

In the document database NoSQL store document in JSON format. JSON-based document are store in completely different sets of attributes can be stored together, which stores highly unstructured data as named value pairs and applications that look at user behavior, actions, and logs in real time.

[image: image25.jpg]{ {
name: "Arvind”, name: "Ni "
age: 20, age: 25,
like:"play cricket”, like:"play cricket,playcards™

mob:987 3
¥

Document

2. Columns storage

Columnar databases are almost like tabular databases. Thus keys in wide column store scan have many dimensions, resulting in a structure similar to a multi-dimensional, associative array. Shown in below example storing data in a wide column system using a two-dimensional key.

[image: image26.jpg]Store data with two
dimensional key column

like:play cricket,play cards”

3. Graph storage

Graph databases are best suited for representing data with a high, yet flexible number of interconnections, especially when information about those interconnections is at least as important as there presented data. In NoSQL database, data is stored in a graph like structures in graph databases, so that the data can be made easily accessible. Graph databases are commonly used on social networking sites. As show in below figure.

[image: image27.jpg]Graph Storage

type: student
name: Arvind
age: 20

type: thing
name: playcricket

Example databases

[image: image28.png]Data Model

‘Example Databases

Key-Value

BerkeleyDB
LevelDB
Memeached
Project Voldemort
Redis

Riak

Document

CouchDB,
MongoDB
OrientDB.
RavenDB

Terrastore

Column-Family

Amazon SimpleDB
Cassandra

HBase

Hypertable

Graph

FlockDB
HyperGraphDB
Infinite Graph
Neot]
OnenB

19.Explain in detail about the data model of NoSQL.

Nosql data model

Relational and NoSQL data models are very different. The relational model takes data and separates it into many interrelated tables that contain rows and columns. Tables reference each other through foreign keys that are stored in columns as well. When looking up data, the desired information needs to be collected from many tables (often hundreds in today’s enterprise applications) and combined before it can be provided to the application. Similarly, when writing data, the write needs to be coordinated and performed on many tables.

NoSQL databases have a very different model. For example, a document-oriented NoSQL database takes the data you want to store and aggregates it into documents using the JSON format. Each JSON document can be thought of as an object to be used by your application. A JSON document might, for example, take all the data stored in a row that spans 20 tables of a relational database and aggregate it into a single document/object. Aggregating this information may lead to duplication of information, but since storage is no longer cost prohibitive, the resulting data model flexibility, ease of efficiently distributing the resulting documents and read and write performance improvements make it an easy trade-off for web-based applications.

[image: image29.png]UserInfo

pra,

“21p": “04040,
QT v,
“STATE": “CA”
)

sson

Address Info
= & B =
D

= |-pEEE + DRnE

Another major difference is that relational technologies have rigid schemas while NoSQL models are schemaless. Relational technology requires strict definition of a schema prior to storing any data into a database. Changing the schema once data is inserted is a big deal, extremely disruptive and frequently avoided – the exact opposite of the behavior desired in the Big Data era, where application developers need to constantly – and rapidly – incorporate new types of data to enrich their apps.

Aggregates data model in nosql

Data Model: A data model is the model through which we perceive and manipulate our data. For people using a database, the data model describes how we interact with the data in the database.

Relational Data Model: The relational model takes the information that we want to store and divides it into tuples.

Tuple being a limited Data Structure it captures a set of values and can’t be nested. This gives Relational Model a space of development.

Aggregate Model: Aggregate is a term that comes from Domain-Driven Design, an aggregate is a collection of related objects that we wish to treat as a unit, it is a unit for data manipulation and management of consistency.

· Atomic property holds within an aggregate

· Communication with data storage happens in unit of aggregate

· Dealing with aggregate is much more efficient in clusters

· It is often easier for application programmers to work with aggregates

Example of Relations and Aggregates

Let’s assume we have to build an e-commerce website; we are going to be selling items directly to customers over the web, and we will have to store information about users, our product catalog, orders, shipping addresses, billing addresses, and payment data. We can use this scenario to model the data using a relation data store as well as NoSQL data stores and talk about their pros and cons. For arelational database, we might start with a data model shown in the following figure.

[image: image30.png]Customer . - 1
o Order
'
* *
; , [order Payment Order Item
cardNumber pice
sid —_—
e
1 1
Address Product
steet e)
city
stato 1
post oode Shioping Address

Data model oriented around a relational database

The following figure presents some sample data for this model.

[image: image31.png]Custoner Orders
B are 1| Cstemertd Shippinguddressia
' vartan B E 7
Prodsct Billingaddress |
e = 1| comtonerta [nressia
B) P -
Orderiten preeey
1| orserta | prowetts | price P ™
00 B 2 32.45 ” Chicago
Orderpayvent
3| oterts | coober [sttightirets| tots |
S w | weww | s [|

Typical data using RDBMS data model

In relational, everything is properly normalized, so that no data is repeated in multiple tables. We also have referential integrity. A realistic order system would naturally be more involved than this. Now let’s see how this model might look when we think in more aggregate oriented terms

[image: image32.png]Customer | ¢ o o
name.
—
biling Address [+
Address * * | orter payment
Streat 1 Order ftem Payment
sy
L snpping Adaress [cinio
post code e el (10
— —_—
1| biing Adaress
1
Product

An aggregate data model

Again, we have some sample data, which we’ll show in JSON format as that’s a common representation for data in NoSQL.

// in customers

{ "

id":1,

"name":"Martin",

"billingAddress":[{"city":"Chicago"}]

}

// in orders

{ "

id":99,

"customerId":1,

"orderItems":[

{

"productId":27,

"price": 32.45,

"productName": "NoSQL Distilled"

}

],

"shippingAddress":[{"city":"Chicago"}]

"orderPayment":[

{

"ccinfo":"1000-1000-1000-1000",

"txnId":"abelif879rft",

"billingAddress": {"city": "Chicago"}

}

],

}

In this model, we have two main aggregates: customer and order. We’ve used the black-diamond composition marker in UML to show how data fits into the aggregation structure. The customer contains a list of billing addresses; the order contains a list of order items, a shipping address, and payments. The payment itself contains a billing address for that payment.

A single logical address record appears three times in the example data, but instead of using IDs it’s treated as a value and copied each time. This fits the domain where we would not want the shipping address, nor the payment’s billing address, to change. In a relational database, we would ensure that the address rows aren’t updated for this case, making a new row instead. With aggregates, we can copy the whole address structure into the aggregate as we need to.

Aggregate-Oriented Databases: Aggregate-oriented databases work best when most data interaction is done with the same aggregate; aggregate-ignorant databases are better when interactions use data organized in many different formations.

· Key-value databases

· •Stores data that is opaque to the database

· •The database does cannot see the structure of records

· •Application needs to deal with this

· •Allows flexibility regarding what is stored (i.e. text or binary data)

· Document databases

· •Stores data whose structure is visible to the database

· •Imposes limitations on what can be stored

· •Allows more flexible access to data (i.e. partial records) via querying

Both key-value and document databases consist of aggregate records accessed by ID values

· Column-family databases

· •Two levels of access to aggregates (and hence, two pars to the “key” to access an aggregate’s data)

· •ID is used to look up aggregate record

· •Column name – either a label for a value (name) or a key to a list entry (order id)

· •Columns are grouped into column families

20.Discuss in detail about the architecture of HDFS. (NOV/DEC 2017)
HDFS follows the master-slave architecture and it has the following elements.

 Namenode The namenode is the commodity hardware that contains the GNU/Linux operating system and the namenode software. It is software that can be run on commodity hardware. The system having the namenode acts as the master server and it does the following tasks:
 Manages the file system namespace.

  Regulates client’s access to files.

 It also executes file system operations such as renaming, closing, and opening files and
directories.

[image: image33.png]HDFS Architecture

Mota data (Name, roplicas,..):
Ihomelfooldata, 3, ..

Replication

=]
Blocks
\ Data Nodes) | _DataNodes |

Y T
Rack 1 Rack 2

SECONDARY NAMENODE

 As mentioned, the implementation of HDFS is based on master/slave architecture. On the one hand, this approach greatly simplifies the overall HDFS architecture. But on the other hand, it also creates a single point of failure — losing the NameNode effectively means losing HDFS. To somewhat alleviate this problem, Hadoop implements a Secondary NameNode. The Secondary NameNode is not a “backup NameNode.” It cannot take over the primary NameNode’s function. It serves as a checkpointing mechanism for the primary NameNode. In addition to storing the state of the HDFS NameNode, it maintains two on-disk data structures that persist the current filesystem state: an image file and an edit log. The image file represents an HDFS metadata state at a point in time, and the edit log is a transactional log (compare to a log in a database architecture) of every filesystem metadata change since the image file was created. During the NameNode (re)starts, the current state is reconstructed by reading the image file and then replaying the edit log. Obviously, the larger the edit log is, the longer it takes to replay it and consequently start a NameNode. To improve NameNode startup performance, an edit log is periodically rolled, and a new image file is created by applying an edit log to the existing image. This operation can be fairly resource-intensive. To minimize the impact of checkpoint creation and the NameNode functioning, checkpointing is performed by the Secondary NameNode daemon, often on a separate machine. As a result of checkpointing, the Secondary NameNode holds a copy (out-of-date) of the primary’s persistent state in the form of last image file. In the cases when an edit file is kept relatively small, a secondary node can be used to recover the filesystem’s state. In this case, you must be aware of a certain amount of metadata (and corresponding data) loss, because the latest changes stored in the edit log are not available.

Datanode

The datanode is a commodity hardware having the GNU/Linux operating system and datanode software. For every node (Commodity hardware/System) in a cluster, there will be a datanode.
 These nodes manage the data storage of their system.

 Datanodes perform read-write operations on the file systems, as per client request.

 They also perform operations such as block creation, deletion, and replication according
to the instructions of the namenode.

Block

 Generally the user data is stored in the files of HDFS. The file in a file system will be divided into one or more segments and/or stored in individual data nodes. These file segments are called as blocks.
 In other words, the minimum amount of data that HDFS can read or write is called a Block.
 The default block size is 64MB, but it can be increased as per the need to change in HDFS configuration.
HDFS CONCEPTS
Blocks

not occupy a full block’s worth of underlying storage. (For example, a 1 MB file stored with a block size of 128 MB uses 1 MB of disk space, not 128 MB.) Having a block abstraction for a distributed file system brings several benefits.
 First, a file can be larger than any single disk in the network. There’s nothing that requires the blocks from a file to be stored on the same disk, so they can take advantage of any of the disks in the cluster. In fact, it would be possible, if unusual, to store a single file on an HDFS cluster whose blocks filled all the disks in the cluster.
 A disk has a block size, which is the minimum amount of data that it can read or write.
 File systems for a single disk build on this by dealing with data in blocks, which are an integral multiple of the disk block size.
 File system blocks are typically a few kilobytes in size, whereas disk blocks are normally 512 bytes.
 This is generally transparent to the file system user who is simply reading or writing a file of whatever length.
 However, there are tools to perform file system maintenance, such as df and fsck, that operate on the file system block level.
 HDFS, too, has the concept of a block, but it is a much larger unit—128 MB by default. Like in a file system for a single disk, files in HDFS are broken into block-sized chunks, which are stored as independent units.
 Unlike a file system for a single disk, a file in HDFS that is smaller than a single block does not occupy a full block’s worth of underlying storage. (For example, a 1 MB file stored with a block size of 128 MB uses 1 MB of disk space, not 128 MB.)
Having a block abstraction for a distributed file system brings several benefits.
 First, a file can be larger than any single disk in the network. There’s nothing that requires the blocks from a file to be stored on the same disk, so they can take advantage of any of the disks in the cluster. In fact, it would be possible, if unusual, to store a single file on an HDFS cluster whose blocks filled all the disks in the cluster.
 Secondly, making the unit of abstraction a block rather than a file simplifies the storage subsystem. Simplicity is something to strive for in all systems, but it is especially important for a distributed system in which the failure modes are so varied. The storage subsystem deals with blocks, simplifying storage management (because blocks are a fixed size, it is easy to calculate how many can be stored on a given disk) and eliminating metadata concerns
 Furthermore, blocks fit well with replication for providing fault tolerance and availability. To insure against corrupted blocks and disk and machine failure, each block is replicated to a small number of physically separate machines (typically three). If a block becomes unavailable, a copy can be read from another location in a way that is transparent to the client. A block that is no longer available due to corruption or machine failure can be replicated from its alternative locations to other live machines to bring the replication factor back to the normal level. Similarly, some applications may choose to set a high replication factor for the blocks in a popular file to spread the read load on the cluster.
Like its disk file system cousin, HDFS’s fsck command understands blocks. For example, running:
% hdfs fsck / -files –blocks will list the blocks that make up each file in the file system.
Namenodes and Datanodes
An HDFS cluster has two types of nodes operating in a master-worker pattern:
 Namenode (the master)

 Number of datanodes (workers).
The namenode manages the file system namespace. It maintains the file system tree and the metadata for all the files and directories in the tree. This information is stored persistently on the local disk in the form of two files:
 The namespace image

  The edit log.
 The namenode also knows the datanodes on which all the blocks for a given file are
located; however, it does not store block locations persistently, because this information is reconstructed from datanodes when the system starts.
 A client accesses the file system on behalf of the user by communicating with the namenode and datanodes. The client presents a file system interface similar to a Portable
Operating System Interface (POSIX), so the user code does not need to know about the namenode and datanodes to function.
 Datanodes are the workhorses of the file system. They store and retrieve blocks when they are told to (by clients or the namenode), and they report back to the namenode periodically with lists of blocks that they are storing.
 Without the namenode, the file system cannot be used. In fact, if the machine running the namenode were obliterated, all the files on the file system would be lost since there would be no way of knowing how to reconstruct the files from the blocks on the datanodes. For this reason, it is important to make the namenode resilient to failure, and Hadoop provides two mechanisms for this.
 The first way is to back up the files that make up the persistent state of the file system metadata. Hadoop can be configured so that the namenode writes its persistent state to multiple file systems. These writes are synchronous and atomic. The usual configuration choice is to write to local disk as well as a remote NFS mount.
 It is also possible to run a secondary namenode, which despite its name does not act as a namenode. Its main role is to periodically merge the namespace image with the edit log to prevent the edit log from becoming too large.
 The secondary namenode usually runs on a separate physical machine because it requires plenty of CPU and as much memory as the namenode to perform the merge. It keeps a copy of the merged namespace image, which can be used in the event of the namenode failing.
 However, the state of the secondary namenode lags that of the primary, so in the event of total failure of the primary, data loss is almost certain. The usual course of action in this case is to copy the namenode’s metadata files that are on NFS to the secondary and run it as the new primary.

22.Discuss in detail about the basic file system operations of HDFS

BASIC FILE SYSTEM OPERATIONS
The file system is ready to be used, and we can do all of the usual file system operations, such as reading files, creating directories, moving files, deleting data, and listing directories.Starting HDFS Initially you have to format the configured HDFS file system, open namenode (HDFS server), and execute the following command.
$ hadoop namenode -format
After formatting the HDFS, start the distributed file system. The following command will start the namenode as well as the data nodes as cluster.
$ start-dfs.sh
Listing Files in HDFS
After loading the information in the server, we can find the list of files in a directory, status
of a file, using ‘ls’. Given below is the syntax of ls that you can pass to a directory or a filename as an argument.
$ $HADOOP_HOME/bin/hadoop fs -ls <args>
Inserting Data into HDFS Assume we have data in the file called file.txt in the local system which is ought to be saved
in the hdfs file system. The steps given below to insert the required file in the Hfs
Step 1 You have to create an input directory.
$ $HADOOP_HOME/bin/hadoop fs -mkdir /user/input
Step 2 Transfer and store a data file from local systems to the HFS using the put command.
$ $HADOOP_HOME/bin/hadoop fs -put /home/file.txt /user/input
Step 3 You can verify the file using ls command.
$ $HADOOP_HOME/bin/hadoop fs -ls /user/input
Retrieving Data from HDFS Assume we have a file in HDFS called outfile. Given below is a simple demonstration for
retrieving the required file from the Hadoop file system.
Step 1 Initially, view the data from HDFS using cat command.
$ $HADOOP_HOME/bin/hadoop fs -cat /user/output/outfile
Step 2 Get the file from HDFS to the local file system using get command.
$ $HADOOP_HOME/bin/hadoop fs -get /user/output/ /home/hadoop_tp/
Shutting Down the HDFS You can shut down the HDFS by using the following command.
A table of all the operations is shown below. The following conventions are used for parameters:
"<path>" means any file or directory name. "<path>..." means one or more file or directory names. "<file>" means any filename. "<src>" and "<dest>" are path names in a directed operation. "<localSrc>" and "<localDest>" are paths as above, but on the local file system.
1. ls <path>
Lists the contents of the directory specified by path, showing the names, permissions, owner, size and modification date for each entry.
2. lsr <path>
Behaves like -ls, but recursively displays entries in all subdirectories of path. 3.
du <path> Shows disk usage, in bytes, for all the files which match path
4. dus <path>
Like -du, but prints a summary of disk usage of all files/directories in the path. 5.
mv <src><dest> Moves the file or directory indicated by src to dest, within HDFS.
6. cp <src> <dest>
Copies the file or directory identified by src to dest, within HDFS.
7. rm <path>
Removes the file or empty directory identified by path. 8.
rmr <path> Removes the file or directory identified by path. Recursively deletes any child entries (i.e., files or subdirectories of path).
9. put <localSrc> <dest>
Copies the file or directory from the local file system identified by localSrc to dest within the DFS.
10. copyFromLocal <localSrc> <dest>
Identical to –put 11.
moveFromLocal <localSrc> <dest> Copies the file or directory from the local file system identified by localSrc to dest within HDFS, and then deletes the local copy on success.
12. get [-crc] <src> <localDest>
Copies the file or directory in HDFS identified by src to the local file system path identified by localDest.
13. getmerge <src> <localDest>
Retrieves all files that match the path src in HDFS, and copies them to a single, merged file in the local file system identified by localDest.
14. cat <filen-ame> Displays the contents of filename on stdout.
15. copyToLocal <src> <localDest> Identical to –get
16. moveToLocal <src> <localDest>
Works like -get, but deletes the HDFS copy on success. 17.
mkdir <path> Creates a directory named path in HDFS. Creates any parent directories in path that are missing (e.g., mkdir -p in Linux).
18. test -[ezd] <path>

Returns 1 if path exists; has zero length; or is a directory or 0 otherwise.
19. stat [format] <path> Prints information about path. Format is a string which accepts file size in blocks (%b), filename (%n), block size (%o), replication (%r), and modification date (%y, %Y).
20. help <cmd-name> Returns usage information for one of the commands listed above.
23.Explain in detail about the data units or main components of Hive?

Hive data is organized into:

Databases: Namespaces that separate tables and other data units from naming confliction.

Tables: Homogeneous units of data, which have the same schema. An example of a table could be page_views table, where each row could comprise of the following columns (schema): timestamp - which is of INT type that corresponds to a unix timestamp of when the page was viewed.

userid - which is of BIGINT type that identifies the user who viewed the page.

page_url - which is of STRING type that captures the location of the page.

referer_url - which is of STRING that captures the location of the page from where the user arrived at the current page.

IP - which is of STRING type that captures the IP address from where the page request was made.

Partitions: Each Table can have one or more partition Keys which determines how the data is stored. Partitions - apart from being storage units - also allow the user to efficiently identify the rows that satisfy a certain criteria. For example, a date_partition of type STRING and country_partition of type STRING. Each unique value of the partition keys defines a partition of the Table. For example all "US" data from "2009-12-23" is a partition of the page_views table. Therefore, if you run analysis on only the "US" data for 2009-12-23, you can run that query only on the relevant partition of the table thereby speeding up the analysis significantly.

Partition columns are virtual columns, they are not part of the data itself but are derived on load.

Buckets (or Clusters): Data in each partition may in turn be divided into Buckets based on the value of a hash function of some column of the Table. For example the page_views table may be bucketed by userid, which is one of the columns, other than the partitions columns, of the page_view table. These can be used to efficiently sample the data.

24.Explain in detail about the datatypes of Hive.

Hive Data Types

Hive Support two types of data type formats

1.Primitivedatatype
2. Collection data type
1. Primitive Data Types

[image: image34.png]Data Type Size Example
TINYINT 1Byte 10,-10
SMALLINT 2Byte 10,-10
INT 4Byte 10,-10
BIGINT 8 Byte 10,-10
FLOAT Single precision float_| 10.8932
DOUBLE Double precision 10.8932
float
BOOLEAN Boolean true or false | TRUE
STRING Sequence of “Sample string”
characters
TIMESTAMP Integer, float or 129357385
string values. 8929245.879395
2013-01-01
12:00:00.123456789"
BINARY Array of bytes

· TINYINT, SMALLINT, INT, BIGINT are four integer data types with only differences in their size.

· FLOAT and DOUBLE are two floating point data types. BOOLEAN is to store true or false.

· STRING is to store character strings. Note that, in hive, we do not specify length for STRING like in other databases. It’s more flexible and variable in length.

· TIMESTAMP can be an integer which is interpreted as seconds since UNIX epoch time. It may be a float where number after decimal is nanosecond. It may be string which is interpreted

· according to the JDBC date string format i.e. YYYY-MM-DD hh:mm:ss.fffffffff. Time component is interpreted as UTC time.

· BINARY is used to place raw bytes which will not be interpreted by hive. It is suitable for binary data.

2. Collection Data Types

1. STRUCT

2. MAP

3. ARRAY

[image: image35.png]Type
STRUCT

ARRAY

Desaription
AnalogoustoaCstructoran“object.”Fieldscan beaccessed
using the “dot” notation. Fo example if 2 column name s of

type STRUCT {fixst STRING; last STRING},then
thefirst name field can be referenced using name. fixst.

Acollecton of key-value tupls, where thefelds are accessed
using amay notation (e, [key'). For example, i a olumn
name is oftype MAP with key~value pirs
*first's'John' and *last'>'Doe’, thenthe last
name canbe referenced using name['Last ' .

Ordered sequencesof the same type that are indexable using
zero-based inegers. For example, fa column name s oftype
ARRAY of strings with thevalue [*John", *Doe’], then
the second element can be referenced using name[1].

Literal syntax examples
struct(*John’, ‘Doe’)

map(*first', 'John',
"last’, 'Doe’)

array(*John’, 'Doe’)

25.Discuss in detail about the file formats of Hive.

Hive supports all the Hadoop file formats, plus Thrift encoding, as well as supporting pluggable SerDe (serializer/deserializer) classes to support custom formats.

There are several file formats supported by Hive.

· TEXTFILE is the easiest to use, but the least space efficient.

· SEQUENCEFILE format is more space efficient.

· MAPFILE which adds an index to a SEQUENCEFILE for faster retrieval of particular records.

Hive defaults to the following record and field delimiters, all of which are non-printable control characters and all of which can be customized.

[image: image36.png]Hive’s default record ana field delimiters

Delimiter
\n
“A(“control" A)

B

“C

Description
For text files, each lineis a record, o th lnefeed character separates records.

Separatesall fieds (columns). Witten using th octal code \001 when explictly
specified in CREATE TABLE statements.

Separate the elements in an ARRAY or STRUCT, or the key-value pairs in a MAP.
Witten using the octal code \002 when explicitly specified in CREATE TABLE
statements.

Separate the key from the corresponding value in MAP key-value pairs. Written using
the octal code \003 when explicitly specified in CREATE TABLE statements.

Let us take an example to understand it. I am assuming an employee table with below structure in hive.

[image: image37.png]CREATE TABLE employees (name STRING,
salary FLOAT,
subordinates ARRAY<STRING>,
deductions MAP<STRING, FLOAT>

address STRUCT<stree:STRING,
city:STRING,
2ip:INT>

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY \001"
COLLECTION ITEMS TERMINATED BY '\002'
MAP KEYS TERMINATED BY '\003'

LINES TERMINATED BY ‘\n'

STORED AS TEXTFILE;

Note that \001 is an octal code for ^A, \002 is ^B and \003 is ^C. for further explanation, we will

use text instead of octal code. Let’s assume one record as shown in below table.

[image: image38.png]Name salary Subordinates Deductions Address
Prashant | 10000 | Purna Dash PF. 750 _| Marathalli
Sudarshan Raju [1000 | Bangalore

560037

[image: image39.png]So, we have an employee named as Prashant. Salary is 10000. He has two subordinates Purna
‘and Sudarshan. From his monthly salary, there are two deductions i.e. 750 for PF and 1000 as
income tax. His address is Steet= Marathalli, City is Bangalore and zip code is 560037.

Let’s build this record in hive table format as described by hive table structure above.

Fields are terminated by A. We have five fields Name, Salary, Subordinates, Deductions and
Address. You might see it like below.

NameAASalary*ASubordinates*ADeductions®A Address
Let’s replace it with actual values for first two fields because they are straight.

Prashant®A10000AASubordinatestADeductionstA Address

[image: image40.png]Now, we have two subordinates and we know that collection items will be delimited by "B
giving below record. Same will apply to address parts.

PrashantAA10000°APurna DashABSudarshan Raju AADeductionsiA
MarathalliBBangaloreAB560037

Deduction s bit complex than others. You need to understand that deductions has two
collection items (PF=750 and IT=1000) and each of those two collection items is a MAP. MAP
will be delimited by AC (PFAC750 and ITAC1000) then collection will be delimited by AB giving
below record.

Prashant®A10000APurna DashABSudarshan Raju AA PFAC7S0AB ITACLO00AA
MarathalliABBangalorenBS60037

There are other file formats but for now you can consider that's how data in Hive table will be
stored. It's a series of records in the above format where each record is terminated by a new
line as specified in LINES TERMINATED BY '\n' clause of create table.

All delimiters used in above example are default delimiters for hive. If you do not specify them,
default values will be assumed by hive. You are free to change these values for each table you
have.

26.What is HiveQl.Explain in detail about that.

· HiveQL is the Hive query language

· Hadoop is an open source framework for the distributed processing of large amounts of data across a cluster. It relies upon the MapReduce paradigm to reduce complex tasks into smaller parallel tasks that can be executed concurrently across multiple machines. However, writing MapReduce tasks on top of Hadoop for processing data is not for everyone since it requires learning a new framework and a new programming paradigm altogether. What is needed is an easy-to-use abstraction on top of Hadoop that allows people not familiar with it to use its capabilities as easily.

· Hive aims to solve this problem by offering an SQL-like interface, called HiveQL, on top of Hadoop. Hive achieves this task by converting queries written in HiveQL into MapReduce tasks that are then run across the Hadoop cluster to fetch the desired results

· Hive is best suited for batch processing large amounts of data (such as in data warehousing) but is not ideally suitable as a routine transactional database because of its slow response times (it needs to fetch data from across a cluster).

A common task for which Hive is used is the processing of logs of web servers. These logs have a regular structure and hence can be readily converted into a format that Hive can understand and process Hive query language (HiveQL) supports SQL features like CREATE tables, DROP tables, SELECT ... FROM ... WHERE clauses, Joins (inner, left outer, right outer and outer joins), Cartesian products, GROUP BY, SORT BY, aggregations, union and many useful functions on primitive as well as complex data types. Metadata browsing features such as list databases, tables and so on are also provided. HiveQL does have limitations compared with traditional RDBMS SQL. HiveQL allows creation of new tables in accordance with partitions(Each table can have one or more partitions in Hive) as well as buckets (The data in partitions is further distributed as buckets)and allows insertion of data in single or multiple tables but does not allow deletion or updating of data

HiveQL: Data Definition

First open the hive console by typing:

$ hive

Once the hive console is opened, like

hive>

you need to run the query to create the table.

1. Create and Show database
They are very useful for larger clusters with multiple teams and users, as a way of avoiding table name collisions. It’s also common to use databases to organize production tables into logical groups. If you don’t specify a database, the default database is used.

hive> CREATE DATABASE IF NOT EXISTS financials;

At any time, you can see the databases that already exist as follows:

hive> SHOW DATABASES;
output is

default

financials

hive> CREATE DATABASE human_resources;

 hive> SHOW DATABASES;

output is

default

financials

human_resources

2. DESCRIBE database

· shows the directory location for the database.

hive> DESCRIBE DATABASE financials;

output is

3. USE database

The USE command sets a database as your working database, analogous to changing working directories in a filesystem

hive> USE financials;

4.DROP database

you can drop a database:

hive> DROP DATABASE IF EXISTS financials;

The IF EXISTS is optional and suppresses warnings if financials doesn’t exist.

3. Alter Database

You can set key-value pairs in the DBPROPERTIES associated with a database using the ALTER DATABASE command. No other metadata about the database can be changed,including its name and directory location:

hive> ALTER DATABASE financials SET DBPROPERTIES ('edited-by' = 'active steps');

4. Create Tables

The CREATE TABLE statement follows SQL conventions, but Hive’s version offers sig- nificant extensions to support a wide range of flexibility where the data files for tables are stored, the formats used, etc.

· Managed Tables

· The tables we have created so far are called managed tables or sometimes called internal tables, because Hive controls the lifecycle of their data. As we’ve seen,Hive stores the data for these tables in subdirectory under the directory defined by hive.metastore.warehouse.dir (e.g., /user/hive/warehouse), by default.

· When we drop a managed table, Hive deletes the data in the table.

· Managed tables are less convenient for sharing with other tools

· External Tables

CREATE EXTERNAL TABLE IF NOT EXISTS stocks (

exchange STRING,

symbol STRING,

ymd STRING,

price_open FLOAT,

price_high FLOAT,

price_low FLOAT,

price_close FLOAT,

volume INT,

price_adj_close FLOAT

)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

LOCATION '/data/stocks/';

The EXTERNAL keyword tells Hive this table is external and the LOCATION … clause is required to tell Hive where it’s located. Because it’s external

Partitioned, Managed Tables

Partitioned tables help to organize data in a logical fashion, such as hierarchically.

Example:Our HR people often run queries with WHERE clauses that restrict the results to a particular country or to a particular first-level subdivision (e.g., state in the United States or province in Canada).

we have to use address.state to project the value inside the address. So, let’s partition the data first by country and then by state:

CREATE TABLE IF NOT EXISTS mydb.employees (

 name STRING,

 salary FLOAT,

 subordinates ARRAY<STRING>,

 deductions MAP<STRING, FLOAT>,

 address STRUCT<street:STRING, city:STRING, state:STRING, zip:INT>

)

PARTITIONED BY (country STRING, state STRING)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\001'

COLLECTION ITEMS TERMINATED BY '\002'

MAP KEYS TERMINATED BY '\003'

LINES TERMINATED BY '\n'

STORED AS TEXTFILE;

Partitioning tables changes how Hive structures the data storage. If we create this table in the mydb database, there will still be an employees directory for the table:

LOAD DATA LOCAL INPATH '/path/to/employees.txt'
INTO TABLE employees
PARTITION (country = 'US', state = 'IL');
hdfs://master_server/user/hive/warehouse/mydb.db/employees
Once created, the partition keys (country and state, in this case) behave like regular columns.

hive> SHOW PARTITIONS employees;

output is

OK

country=US/state=IL

Time taken: 0.145 seconds

5. Dropping Tables

The familiar DROP TABLE command from SQL is supported:

DROP TABLE IF EXISTS employees;

27.Discuss in detail about the Data Manipulation concepts of HiveQL.

1. Loading Data into Managed Tables

Create stocks table

CREATE EXTERNAL TABLE IF NOT EXISTS stocks (

exchange STRING,

symbol STRING,

ymd STRING,

price_open FLOAT,

price_high FLOAT,

price_low FLOAT,

price_close FLOAT,

volume INT,

price_adj_close FLOAT)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

LOCATION '/data/stocks/';

Queries on Sotck Data Set

Load the stocks

LOAD DATA LOCAL INPATH '/path/to/employees.txt'

INTO TABLE stocks

PARTITION (exchange = 'NASDAQ', symbol = 'AAPL');
This command will first create the directory for the partition, if it doesn’t already exist,

then copy the data to it.

2. Inserting Data into Tables from Queries

INSERT OVERWRITE TABLE employees PARTITION (country = 'US', state = 'OR')

With OVERWRITE, any previous contents of the partition are replaced. If you drop the keyword OVERWRITE or replace it with INTO, Hive appends the data rather than replaces it.

HiveQL queries

1. SELECT … FROM Clauses

SELECT is the projection operator in SQL. The FROM clause identifies from which table, view, or nested query we select records

Create employees

CREATE EXTERNAL TABLE employees (

 name STRING,

salary FLOAT,

subordinates ARRAY<STRING>,

deductions MAP<STRING, FLOAT>,

address STRUCT<street:STRING, city:STRING, state:STRING, zip:INT>

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\001'

COLLECTION ITEMS TERMINATED BY '\002'

MAP KEYS TERMINATED BY '\003'

LINES TERMINATED BY '\n'

STORED AS TEXTFILE

LOCATION '/data/employees';

Load data

LOAD DATA LOCAL INPATH '/path/to/employees.txt'

INTO TABLE employees

PARTITION (country = 'US', state = 'IL');

Data in employee.txt is assumed as

[image: image41.png]John Doe 100000.0 [” 8
Mary Smith 80060.0 ["Bill King"] {"Federal Taxes":0.2,"State Taxes":
Todd Jones 70000.0 [] {"Federal Taxes!

Bill King 66000.6 [] {"Federal Taxes"
Boss Man 200000.6 ["John Doe”,"Fred Finance
Fred Finance 150809.0 ["Stacy Accountant”]
Stacy Accountant 60000.0 [] {“Federal Taxes'

Tnsurance”:
"1} {"street"

Select data

hive> SELECT name, salary FROM employees;

output is

[image: image42.png]John Doe
166000.6

Mary Smith 86600.6
Todd Jones 76600.6
Bill King 60060.0

When you select columns that are one of the collection types, Hive uses JSON (Java- Script Object Notation) syntax for the output. First, let’s select the subordinates, an ARRAY, where a comma-separated list surrounded with […] is used.

hive> SELECT name, subordinates FROM employees;

output is

[image: image43.png]John Doe
["Hary Smith","Todd Jones"]
Mary Smith ["Bill King"]
Todd Jones []

Bill King []

The deductions is a MAP, where the JSON representation for maps is used, namely a comma-separated list of key:value pairs, surrounded with {…}:

hive> SELECT name, deductions FROM employees;

output is

[image: image44.png]John Doe
{"Federal Taxes":0.2,"State Taxe
Hary Smith {"Federal Taxes

Todd Jones {"Federal Taxe:
Bill King {"Federal Taxes

. .03, "Insurancs
.15, "State Taxes":0.03, Insurance

Finally, the address is a STRUCT, which is also written using the JSON map format:

hive> SELECT name, address FROM employees;

output is

[image: image45.png]"100 Ontario St.
"200 Chicago Ave

Todd Jones {
Bill King {"street”

UNIT II
DATA SECURITY AND PRIVACY
PART A- TWO MARK QUESTIONS
1. What is secure program?

Security implies some degree of trust that theprogram enforces expected confidentiality, integrity, and availability.

2. Mention the types of flaws.
· validation error (incomplete or inconsistent): permission checks

· domain error: controlled access to data

· serialization and aliasing: program flow order

· Inadequate identification and authentication: basis for

· authorization

· boundary condition violation: failure on first or last case

· other exploitable logic errors
3. What is meant by Bug?
A bug can be a mistake in interpreting a requirement, a syntax error in a piece of code, or the (as-yet-unknown) cause of a system crash.
4. Write the difference between fault and failiure

 When a human makes a mistake, called an error, in performing some software activity, the error may lead to a fault, or an incorrect step, command, process, or data definition in a computer program.

 A failure is a departure from the system's required behavior, a fault is an inside view of the system, as seen by the eyes of the user sees.
5. What is meant by Nonmalicious Program Errors.

 Being human, programmers and other developers make many mistakes, most of which are unintentional and nonmalicious. Many such errors cause program malfunctions but do not lead to more serious security vulnerabilities.

6. Mention the types of Nonmalicious Program Errors.

· Buffer Overflow

· Incomplete Mediation
· Time-of-Check to Time-of-Use Errors
7. Define Buffer Overflow.
 The condition wherein the data transferred to a buffer exceeds the storage capacity of the buffer and some of the data "overflows" into another buffer, one that the data was not intended to go into. Since buffers can only hold a specific amount of data, when that capacity has been reached the data has to flow somewhere else, typically into another buffer, which can corrupt data that is already contained in that buffer.
8. Explain the term “Incomplete Mediation”.
 Incomplete mediation occurs when a computer program leaves sensitive data in an exposed, uncontrolled condition. The vulnerability occurs primarily in the form of web URLs that expose data in such a way that user-made alterations to the URL allow the user to manipulate the program or website. For example, if a website returned the URL http://www.somesite.com/subpage/userinput&phone=8885551212&date=20070101 in response to a particular request, the user could manipulate what clearly looks like a phone number and date in the URL.
9. What is Time-of-Check to Time-of-Use Errors (TOCTTOU)?

 Suppose a request to access a file were presented as a data structure, with the name of the file and the mode of access presented in the structure.
[image: image46.emf]
To carry out this authorization sequence, the access control mediator would have to look up the file name in tables. The mediator could compare the names in the table to the file name in the data structure to determine whether access is appropriate. More likely, the mediator would copy the file name into its own local storage area and compare from there
While the mediator is checking access rights for the file my_file, the user could change the file name descriptor to your file
[image: image47.emf]
The problem is called a time-of-check to time-of-use flaw because it exploits the delay between the two times. That is, between the time the access was checked and the time the result of the check was used, a change occurred, invalidating the result of the check.
10. What is meant by malicious Error?

 Malicious code is the kind of harmful computer code or web script designed to create system vulnerabilities leading to back doors, security breaches, information and data theft, and other potential damages to files and computing systems. It's a type of threat that may not be blocked by antivirus software on its own.

11. List few kinds of Malicious code. (NOV/DEC 2017)
· Virus

· Trojan horse
· logic bomb
· trapdoor or backdoor
· worm
· rabbit
12. Define virus

 A virus is a program that can pass on malicious code to other non malicious programs by modifying them.
A transient virus has a life that depends on the life of its host; the virus runs when its attached program executes and terminates when its attached program ends.
 A resident virus locates itself in memory; then it can remain active or be activated as a stand-alone program, even after its attached program ends.
13. What is Trojan horse?

 A Trojan horse is malicious code that, in addition to its primary effect, has a second, nonobvious malicious effect.1 As an example of a computer Trojan horse.

14. Define time bomb.

 A logic bomb is a class of malicious code that "detonates" or goes off when a specified condition occurs. A time bomb is a logic bomb whose trigger is a time or date.
15. Explain the term “trapdoor or backdoor “
 A trapdoor or backdoor is a feature in a program by which someone can access the program other than by the obvious, direct call, perhaps with special privileges

16. What is worm?

A worm is a program that spreads copies of itself through a network.

17. Differentiate Virus and Worm.

	Virus
	Worm

	Virus can spread through any medium (but usually uses copied program or data files).
	worm operates through networks

	virus spreads copies of itself as a program that attaches to or embeds in other programs
	worm spreads copies of itself as a stand-alone program

18. Define rabbit

A rabbit is a virus or worm that self-replicates without bound, with the intention of exhausting some computing resource.
19. State the qualities of viruses.

· It is hard to detect.

· It is not easily destroyed or deactivated.

· It spreads infection widely.

· It can reinfect its home program or other programs.

· It is easy to create.

· It is machine independent and operating system independent.
20. Mention few homes of viruses

· One-Time Execution – the majority of viruses

· Boot Sector Viruses
· Memory-Resident Viruses

· Other Homes for Viruses

 Application programs

 Libraries
 Data files – need a startup program
21. What is meant by virus signature?

 A virus cannot be completely invisible. Code must be stored somewhere, and the code must be in memory to execute. Moreover, the virus executes in a particular way, using certain methods to spread. Each of these characteristics yields a telltale pattern, called a signature that can be found by a program that knows to look for it. The virus's signature is important for creating a program, called a virus scanner that can automatically detect and, in some cases, remove viruses. The scanner searches memory and long-term storage, monitoring execution and watching for the telltale signatures of viruses.
22. State the Effects and Causes of viruses

	Virus Effect
	How It Is Caused

	Attach to executable program
	· Modify file directory

· Write to executable program file

	Attach to data or control file
	· Modify directory

· Rewrite data

· Append to data

· Append data to self

	Remain in memory handler address table
	· Intercept interrupt by modifying interrupt

· Load self in nontransient memory area

	Infect disks
	· Intercept interrupt

· Intercept operating system call (to format disk, for example)

· Modify system file

· Modify ordinary executable program

	Conceal self falsify result
	· Intercept system calls that would reveal self and

· Classify self as "hidden" file

	Spread infection
	· Infect boot sector

· Infect systems program

· Infect ordinary program

· Infect data ordinary program reads to control its execution

	Prevent deactivation deactivation
	· Activate before deactivating program and block

· Store copy to reinfect after deactivation

23. What is polymorphic virus?

 A virus that can change its appearance is called a polymorphic virus.
 A simple variety of polymorphic virus uses encryption under various keys to make the stored form of the virus different. These are sometimes called encrypting viruses, it Contains three distinct parts:

· a decryption key,

· the (encrypted) object code of the virus

· the (unencrypted) object code of the decryption routine.
24. How to prevent virus infection?
 The only way to prevent the infection of a virus is not to receive executable code from an infected source.

25. Mention some techniques for building a reasonably safe community for electronic contact.

· Use only commercial software acquired from reliable, well-established vendors.

· Test all new software on an isolated computer.

· Open attachments only when you know them to be safe

· Make a recoverable system image and store it safely.

· Make and retain backup copies of executable system files.

· Use virus detectors (often called virus scanners) regularly and update them daily.

26. What are the cases of Trapdoor?

· forget to remove them

· intentionally leave them in the program for testing

· intentionally leave them in the program for maintenance of the finished program, or

· intentionally leave them in the program as a covert means of access to the component after it becomes an accepted part of a production system
27. What is salami attack?
 It merges bits of seemingly inconsequential data to yield powerful results.
28.Why Salami Attacks Persist?
Computer computations are notoriously subject to small errors involving rounding and truncation, especially when large numbers are to be combined with small ones.

29. Explain the following terms

Privilege Escalation - means for malicious code to be launched by the user with lower privileges but run with higher privileges.

 Interface Illusions - a spoofing attack in which all or part of a web page is false.

 Keystroke Logging - retains a surreptitious copy of all keys pressed.

Man-in-the-Middle Attacks - interjects itself between two other programs

Covert Channels: Programs That Leak Information

Storage Channels - pass information by using the presence or absence of objects in storage.
30. What are the types of controls against program threats?

· Developmental

· Operating system

· Administrative
31. Explain the term encapsulation

 If a component is isolated from the effects of other components, then it is easier to trace a problem to the fault that caused it and to limit the damage the fault causes. It is also easier to maintain the system, since changes to an isolated component do not affect other components. And it is easier to see where vulnerabilities may lie if the component is isolated. We call this isolation encapsulation.
32. What is meant by modularity?

 Modularization is the process of dividing a task into subtasks. This division is done on a logical or functional basis. Each component performs a separate, independent part of the task.
33. State the necessary conditions meet by components

The goal is to have each component meet four conditions:

· single-purpose: performs one function

· small: consists of an amount of information for which a human can readily grasp both structure and content

· simple: is of a low degree of complexity so that a human can readily understand the purpose and structure of the module

· independent: performs a task isolated from other modules

34. What are the advantages of using small individual components?

· Maintenance. If a component implements a single function, it can be replaced easily with a revised one if necessary.

· Understandability

· Reuse

· Correctness

· Testing.
35. What is cohesion and coupling?

Cohesion, we mean that all the elements of a component have a logical and functional reason for being there.
Coupling refers to the degree with which a component depends on other components in the system.
36. Explain three types of peer reviews

· Review: The artifact is presented informally to a team of reviewers; the goal is consensus and buy-in before development proceeds further.

· Walk-through: The artifact is presented to the team by its creator, who leads and controls the discussion. Here, education is the goal, and the focus is on learning about a single document.

· Inspection: This more formal process is a detailed analysis in which the artifact is checked against a prepared list of concerns. The creator does not
37. What is Hazard Analysis?

 A set of systematic techniques intended to expose potentially hazardous system states.

 Usually involves developing hazard lists, as well as procedures for exploring "what if" scenarios to trigger consideration of nonobvious hazards.

38. Mention the techniques to identify and manage potential hazards.

· Hazard and operability studies (HAZOP)

· Failure modes and effects analysis (FMEA)

· Fault tree analysis (FTA)
39. Define Testing.

Testing can be described as a process used for revealing defects in software, and for establishing that the software has attained a specified degree of quality with respect to selected attributes.
40. Define Unit Testing.

A unit is the smallest possible testable software component that can be characterized in several ways.
41. Define Integration Testing.

Integration testing is the process of verifying that the system components work together as described in the system and program design specifications.

42. Define function test.

 A function test evaluates the system to determine whether the functions described by the requirements specification are actually performed by the integrated system.
43. What is meant by performance test?
 A performance test compares the system with the remainder of these software and hardware requirements.

44. Define acceptance test.

 An acceptance test, in which the system is checked against the customer's requirements description.
45. Define Regression testing.

Regression testing is not a level of testing, but it is the retesting of the software that occurs when the changes are made to ensure that the new version of the software has retained the capabilities of the old version and that has no defect have been introduced due to the changes.
46. Define white box testing (clear box testing)

 It is way of testing the external functionality of the code by examining and testing the program code that realizes the external functionality. This is also known as clear box, or glass box or open box testing. It takes into account the program code, code structures and internal design flow.
47. Define Black Box Testing.

Black-box testing is a method of software testing that examines the functionality of an application without peering into its internal structures or workings
48. State the activities involved in configuration management.

· configuration identification

· configuration control and change management

· configuration auditing

· status accounting

49. What are the ways to control changes in configuration management?

· Separate files - have different files for each release or version.

· Delta - designate a particular version as the main version of a system and then define other versions in terms of what is different.

· Conditional compilation, whereby a single code component addresses all versions, relying on the compiler to determine which statements to apply to which versions.
50. Define the terms configuration audit and status accounting.
 Configuration Audit confirms that the baseline is complete and accurate, that changes are recorded, that recorded changes are made, and that the actual software (that is, the software as used in the field) is reflected accurately in the documents.
 Status Accounting records information about the components: where they came from (for instance, purchased, reused, or written from scratch), the current version, the change history, and pending change requests.
51. Categorize The Functions of Operating Systems.

· access control

· identity and credential management

· information flow

· audit and integrity protection

52. What are the aspects of protection required in multiprogramming computing system?

· Memory
· sharable I/O devices, such as disks

· serially reusable I/O devices, such as printers and tape drives

· sharable programs and sub procedures
· networks sharable data
 53. What are the types of separation can occur in Operating Systems?
· Physical Separation, in which different processes use different physical objects, such as separate printers for output requiring different levels of security.

· Temporal Separation, in which processes having different security requirements are executed at different times.

· Logical Separation, in which users operate under the illusion that no other processes exist, as when an operating system constrains a program's accesses so that the program cannot access objects outside its permitted domain .

· Cryptographic Separation, in which processes conceal their data and computations in such a way that they are unintelligible to outside processes.

54. State the types of protection supported by resource sharing.

· Do not protect
· Isolate
· Share all or share nothing
· Share via access limitation

· Share by capabilities

· Limit use of an object
55. Define fence and fence register.

The simplest form of memory protection was introduced in single-user operating systems to prevent a faulty user program from destroying part of the resident portion of the operating system. As its name implies, a fence is a method to confine users to one side of a boundary.
Fence register: containing the address of the end of the operating system.

56. Define Reallocation.

Relocation is the process of taking a program written as if it began at address 0 and changing all addresses to reflect the actual address at which the program is located in memory. In many instances, this effort merely entails adding a constant relocation factor to each address of the program. That is, the relocation factor is the starting address of the memory assigned for the program.
57. What is meant by tagged architecture?

An alternative is tagged architecture, in which every word of machine memory has one or more extra bits to identify the access rights to that word. These access bits can be set only by privileged (operating system) instructions. The bits are tested every time an instruction accesses that location.
58. Define segmentation.

Segmentation, involves the simple notion of dividing a program into separate pieces. Each piece has a logical unity, exhibiting a relationship among all of its code or data values.
59. State the advantages of hiding addresses for the operating system.

· The operating system can place any segment at any location or move any segment to any location, even after the program begins to execute. Because it translates all address references by a segment address table, the operating system needs only update the address in that one table when a segment is moved.

· A segment can be removed from main memory (and stored on an auxiliary device) if it is not being used currently.

· Every address reference passes through the operating system, so there is an opportunity to check each one for protection.
60. Write the benefits of segmentation.

· Each address reference is checked for protection.

· Many different classes of data items can be assigned different levels of protection.

· Two or more users can share access to a segment, with potentially different access rights.

· A user cannot generate an address or access to an unpermitted segment.
61. Define paging.

One alternative to segmentation is paging. The program is divided into equal-sized pieces called pages, and memory is divided into equalized units called page frames.

62. Mention the kinds of objects for which protection is desirable.

· a file or data set on an auxiliary storage device

· an executing program in memory

· a directory of files

· a hardware device
· a data structure, such as a stack

· a table of the operating system

· instructions, especially privileged instructions

· passwords and the user authentication mechanism

· the protection mechanism itself
63. What is Access Control Matrix?
 An access control matrix is a table in which each row represents a subject, each column represents an object, and each entry is the set of access rights for that subject to that object.
In general, the access control matrix is sparse (meaning that most cells are empty): Most subjects do not have access rights to most objects. The access matrix can be represented as a list of triples, having the form <subject, object, rights>. Searching a large number of these triples is inefficient enough that this implementation is seldom used.

64. Define Exhaustive Attack. (NOV/DEC 2017)
In an exhaustive or brute force attack, the attacker tries all possible passwords, usually in some automated fashion. Of course, the number of possible passwords depends on the implementation of the particular computing system.
65. State the guidelines for password selection.
· Use characters other than just AZ.

· Choose long passwords.

· Avoid actual names or words.
· Choose an unlikely password.

· Change the password regularly..

· Don't write it down.

· Don't tell anyone else.

66. What is meant by one time password?

A one-time password is one that changes every time it is used. Instead of assigning a static phrase to a user, the system assigns a static mathematical function. The system provides an argument to the function, and the user computes and returns the function value. Such systems are also called challenge response systems because the system presents a challenge to the user and judges the authenticity of the user by the user's response.

67. Explain Biometric Authentication.

Biometrics are biological authenticators, based on some physical characteristic of the human body. The list of biometric authentication technologies is still growing. Now there are devices to recognize the following biometrics: fingerprints, hand geometry (shape and size of fingers), retina and iris (parts of the eye), voice, handwriting, blood vessels in the finger, and face. Authentication with biometrics has advantages over passwords because a biometric cannot be lost, stolen, forgotten, lent, or forged and is always available, always at hand, so to speak.
68. State few Demerits of Biometrics.

· Biometrics are relatively new, and some people find their use intrusive..
· Biometric recognition devices are costly.
· All biometric readers use sampling and establish a threshold for when a match is close enough to accept.
· Biometrics can become a single point of failure.
· Although equipment is improving, there are still false readings.
· The speed at which a recognition must be done limits accuracy
69. What Is a Firewall?

 A firewall is a device that filters all traffic between a protected or "inside" network and a less trustworthy or "outside" network. Usually a firewall runs on a dedicated device; because it is a single point through which traffic is channeled, performance is important, which means nonfirewall functions should not be done on the same machine. Because a firewall is executable code, an attacker could compromise that code and execute from the firewall's device. Thus, the fewer pieces of code on the device, the fewer tools the attacker would have by compromising the firewall. Firewall code usually runs on a proprietary or carefully minimized operating system.
70. What Are The Types Of Firewalls?

· packet filtering gateways or screening routers

· stateful inspection firewalls

· application proxies

· guards

· personal firewalls

71. Define Packet Filtering Gateway.
 A packet filtering gateway or screening router is the simplest, and in some situations, the most effective type of firewall. A packet filtering gateway controls access to packets on the basis of packet address (source or destination) or specific transport protocol type (such as HTTP web traffic).
72. Define Stateful Inspection Firewall.

Stateful inspection firewall maintains state information from one packet to another in the input stream.

73. Define Application Proxy Gateway.
An application proxy gateway, also called a bastion host, is a firewall that simulates the (proper) effects of an application so that the application receives only requests to act properly. A proxy gateway is a two-headed device: It looks to the inside as if it is the outside (destination) connection, while to the outside it responds just as the insider would.

74.Define Guard.
 A guard is a sophisticated firewall. Like a proxy firewall, it receives protocol data units, interprets them, and passes through the same or different protocol data units that achieve either the same result or a modified result.
The guard decides what services to perform on the user's behalf in accordance with its available knowledge, such as whatever it can reliably know of the (outside) user's identity, previous interactions, and so forth.
 The degree of control a guard can provide is limited only by what is computable. But guards and proxy firewalls are similar enough that the distinction between them is sometimes fuzzy. That is, we can add functionality to a proxy firewall until it starts to look a lot like a guard.

75. Define Personal Firewall

Personal firewall is an application program that runs on a workstation to block unwanted traffic, usually from the network. A personal firewall can complement the work of a conventional firewall by screening the kind of data a single host will accept, or it can compensate for the lack of a regular firewall, as in a private DSL or cable modem connection.
76.Compare firewall Types.

[image: image48.png]Packet Filtering | Stateful Inspection | Application Proxy | Guard Personal Firewall
Simplest ‘More complex Even more complex: | Most complex Similar to packet
fitering firewall
Sees only addresses | Can see either Sees full data Seesfull textof | Can see full data
and service protocol | addressesordata [portion of packet | communication | portion of packet
type
Auditing difficult | Auditing possible | Can audit activity | Can auditactivity | Canand usually
doesaudit activity
Screens basedon | Screensbasedon | Screensbasedon | Screensbasedon | Typically, screens
connectionrules | information across | behavior of proxies | iterpretation of | based on
packetsin either message content | information in a
‘header or data field single packet, using
header or data
Complex addressing | Usually Simple proxies can | Complex guard | Usually starts in
rules can make to | substitute for functionality can | "deny all inbound”
configuration ricky | detect certain attack | complex addressing | limit assurance | mode, to which user
signatures rules adds trusted.
addresses as they

77. Define Intrusion Detection System (IDS).

 An intrusion detection system (IDS) is a device, typically another separate computer, that monitors activity to identify malicious or suspicious events. An IDS is a sensor, like a smoke detector, that raises an alarm if specific things occur.
78. What are the components of an Intrusion Detection Framework?

[image: image49.png]Reactions to

= Events
High-Level, i ©)
Interpreted | Eoduiomeasures |
Events
I: . S)
Ay Storage
(E) Raw or Low-
Events Level Events

Raw Event Source

79. State some functions of Intrusion Detection System (IDS).

· monitoring users and system activity

· auditing system configuration for vulnerabilities and misconfigurations

· assessing the integrity of critical system and data files

· recognizing known attack patterns in system activity

· identifying abnormal activity through statistical analysis

· managing audit trails and highlighting user violation of policy or normal activity

· correcting system configuration errors

· installing and operating traps to record information about intruders
80. What are the types of IDS?
81. Mention the Strengths and Limitations of IDS.
Strengths:

· IDSs detect an ever-growing number of serious problems.
· we learn more about problems, we can add their signatures to the IDS model.
· Thus, over time, IDSs continue to improve. At the same time, they are becoming cheaper and easier to administer.
Limitations:

· An IDS that is not well defended is useless.
· Fortunately, stealth mode IDSs are difficult even to find on an internal network, let alone to compromise.

· Similar IDSs may have identical vulnerabilities, and their selection criteria may miss similar attacks. .

· Another IDS limitation is its sensitivity, which is difficult to measure and adjust. IDSs will never be perfect, so finding the proper balance is critical.

· A final limitation is not of IDSs per se, but is one of use. An IDS does not run itself; someone has to monitor its track record and respond to its alarms.
82. List eight dimensions of privacy.

· Information collection: Data are collected only with knowledge and explicit consent.

· Information usage: Data are used only for certain specified purposes.

· Information retention: Data are retained for only a set period of time.

· Information disclosure: Data are disclosed to only an authorized set of people.

· Information security: Appropriate mechanisms are used to ensure the protection of the data.

· Access control: All modes of access to all forms of collected data are controlled.

· Monitoring: Logs are maintained showing all accesses to data.

· Policy changes: Less restrictive policies are never applied after-the-fact to already obtained data.
83. Name the principles of fair Information Policies.

· Collection limitation. Data should be obtained lawfully and fairly.

· Data quality. Data should be relevant to their purposes, accurate, complete, and up-to-date.

· Purpose specification. The purposes for which data will be used should be identified and the data destroyed if no longer necessary to serve that purpose.

· Use limitation. Use for purposes other than those specified is authorized only with consent of the data subject or by authority of law.

· Security safeguards. Procedures to guard against loss, corruption, destruction, or misuse of data should be established.

· Openness. It should be possible to acquire information about the collection, storage, and use of personal data systems.

· Individual participation. The data subject normally has a right to access and to challenge data relating to her.

· Accountability. A data controller should be designated and accountable for complying with the measures to give effect to the principles.
84. Suggest the ways to protect stored data.

· Reduce exposure by limiting the amount of data maintained, asking for only what is necessary and using random samples instead of complete surveys.

· Reduce data sensitivity by interchanging data items or adding subtle errors to the data (and warning recipients that the data have been altered).
· Anonymize the data by removing or modifying identifying data items.

· Encrypt the data.
 85. Write the five privacy factors government web sites would have to address.
· Notice. Data collectors must disclose their information practices before collecting personal information from consumers.
· Choice. Consumers must be given a choice as to whether and how personal information collected from them may be used.

· Access. Consumers should be able to view and contest the accuracy and completeness of data collected about them.

· Security. Data collectors must take reasonable steps to ensure that information collected from consumers is accurate and secure from unauthorized use.
· Enforcement. A reliable mechanism must be in place to impose sanctions for noncompliance with these fair information practices.
PART B

1. Explain different types of nonmalicious program errors. (NOV/DEC 2017)
· Buffer Overflow

· Incomplete Mediation
· Time-of-Check to Time-of-Use Errors
Buffer Overflows
 A buffer (or array or string) is a space in which data can be held.

 A buffer's capacity is finite.
Suppose a C language program contains the declaration:

 char sample[10];

Now we execute the statement:

 sample[10] = 'B';

 However, if the statement were

 sample[i] = 'B';

we could not identify the problem until i was set during execution to a too-big subscript.
Suppose each of the ten elements of the array sample is filled with the letter A and the erroneous reference uses the letter B, as follows:

 for (i=0; i<=9; i++)

 sample[i] = 'A';

 sample[10] =’B’;

[image: image50.png]User’s Data
—

Memory AAAAAAAAAB

(a) Affects user's data

ta User's Program Code

Memory

(b) Affects user's code

[image: image51.png]Memory

Memory

User's Data

System Data

- >
AlA HA AlA Al
(©) Affects system data
User's Data tem Program Code
- >

Ala|a|a]afafa|a

A

(d) Affects system code

Security Implication
Two buffer overflow attacks that are used frequently

1. The attacker may replace code in the system space. By replacing a few instructions right after returning from his or her own procedure the instructions right after returning from his or her own procedure, the attacker regains control from the operating system, possibly with raised privileges.

2. On the other hand, the attacker may make use of the stack pointer or the return register. Subprocedure calls are handled with a stack, a data structure in which the most recent item inserted is the next one removed (last arrived, first served).
An alternative style of buffer overflow occurs when parameter values are passed into a routine, especially when the parameters are passed to a web server on the Internet. Parameters are passed in the URL line,with a syntax similar to
http://www.somesite.com/subpage/userinput.asp?

parm1=(808)555-1212 &parm2=2009Jan17

The attacker might question what the server would do with a really long telephone number, say, one with 500 or 1000 digits.
Incomplete Mediation
Consider the example

http://www.somesite.com/subpage/userinput.asp?

parm1=(808)555-1212 &parm2=2009Jan17

 What would happen if parm2 were submitted as 1800Jan01? Or

1800Feb30? Or 2048Min32? Or 1Aardvark2Many?
Security Implication

 Consider this example

http://www.things.com/order.asp?custID=101&part=555A&q

y=20&price =10&ship=boat&shipcost=5&total=205
 A malicious attacker may decide to exploit this peculiarity by supplying instead the following URL, where the price has been

Reduced from $205 to $25:

http://www.things.com/order.asp?custID=101&part=555A&qp//g/p p q

y=20&price =1&ship=boat&shipcost=5&total=25
Time-of-Check to Time-of-Use Errors
Suppose a request to access a file were presented as a data structure, with the name of the file and the mode of access presented in the structure.
[image: image52.emf]
To carry out this authorization sequence, the access control mediator would have to look up the file name in tables. The mediator could compare the names in the table to the file name in the data structure to determine whether access is appropriate. More likely, the mediator would copy the file name into its own local storage area and compare from there
While the mediator is checking access rights for the file my_file, the user could change the file name descriptor to your_file
[image: image53.emf]
The problem is called a time-of-check to time-of-use flaw because it exploits the delay between the two times. That is, between the time the access was checked and the time the result of the check was used, a change occurred, invalidating the result of the check.
Security Implication

· Pretty clear
· Checking one action and performing another is an example of ineffective access control
· There are ways to prevent exploitation of the time lag.

· One way is to ensure that critical parameters are not exposed during any loss of control.

· Another way is to ensure serial integrity; that is, to allow no interruption (loss of control) during the validation.
2. Explain the different types of malicious code.

Malicious code is the kind of harmful computer code or web script designed to create system vulnerabilities leading to back doors, security breaches, information and data theft, and other potential damages to files and computing systems. It's a type of threat that may not be blocked by antivirus software on its own.

Types:

· Virus

· Trojan horse

· logic bomb

· trapdoor or backdoor

· worm
· rabbit
Virus:
A virus is a program that can pass on malicious code to other non malicious programs by modifying them.

· A transient virus has a life that depends on the life of its host; the virus runs when its attached program executes and terminates when its attached program ends.

· A resident virus locates itself in memory; then it can remain active or be activated as a stand-alone program, even after its attached program ends

 Trojan horse:

 A Trojan horse is malicious code that, in addition to its primary effect, has a second, nonobvious malicious effect.1 As an example of a computer Trojan horse.

Time bomb:

 A logic bomb is a class of malicious code that "detonates" or goes off when a specified condition occurs. A time bomb is a logic bomb whose trigger is a time or date.

 Trapdoor or backdoor :
 A trapdoor or backdoor is a feature in a program by which someone can access the program other than by the obvious, direct call, perhaps with special privileges

Worm

A worm is a program that spreads copies of itself through a network.

Rabbit

A rabbit is a virus or worm that self-replicates without bound, with the intention of exhausting some computing resource.

3. How viruses attaches to a program?

A more common means of virus activation is as an attachment to an e-mail message. In this attack, the virus writer tries to convince the victim (the recipient of the e-mail message) to open the attachment. Once the viral attachment is opened, the activated virus can do its work. Some modern e-mail handlers, in a drive to "help" the receiver (victim), automatically open attachments as soon as the receiver opens the body of the e-mail message. The virus can be executable code embedded in an executable attachment, but other types of files are equally dangerous.
 For example, objects such as graphics or photo images can contain code to be executed by an editor, so they can be transmission agents for viruses. In general, it is safer to force users to open files on their own rather than automatically; it is a bad idea for programs to perform potentially security-relevant actions without a user's consent. However, ease-of-use often trumps security, so programs such as browsers, e-mail handlers, and viewers often "helpfully" open files without asking the user first.
Appended Viruses

A program virus attaches itself to a program; then, whenever the program is run, the virus is activated. This kind of attachment is usually easy to program.In the simplest case, a virus inserts a copy of itself into the executable program file before the first executable instruction. Then, all the virus instructions execute first; after the last virus instruction, control flows naturally to what used to be the first program instruction.
[image: image54.png]Origival
Progesmn

Virus Code.

Virus Code

Original
Progam

Viruses That Surround a Program

An alternative to the attachment is a virus that runs the original program but has control before and after its execution. For example, a virus writer might want to prevent the virus from being detected. If the virus is stored on disk, its presence will be given away by its file name, or its size will affect the amount of space used on the disk. The virus writer might arrange for the virus to attach itself to the program that constructs the listing of files on the disk. If the virus regains control after the listing program has generated the listing but before the listing is displayed or printed, the virus could eliminate its entry from the listing and falsify space counts so that it appears not to exist.
[image: image55.emf]
Integrated Viruses and Replacements
A third situation occurs when the virus replaces some of its target, integrating itself into the original code of the target. Such a situation is shown in Figure 3-6. Clearly, the virus writer has to know the exact structure of the original program to know where to insert which pieces of the virus.
[image: image56.emf]
Document Viruses

Currently, the most popular virus type is what we call the document virus, which is implemented within a formatted document, such as a written document, a database, a slide presentation, a picture, or a spreadsheet. These documents are highly structured files that contain both data (words or numbers) and commands (such as formulas, formatting controls, links). The commands are part of a rich programming language, including macros, variables and procedures, file accesses, and even system calls. The writer of a document virus uses any of the features of the programming language to perform malicious actions.
The ordinary user usually sees only the content of the document (its text or data), so the virus writer simply includes the virus in the commands part of the document, as in the integrated program virus.
How Viruses Gain Control

The virus (V) has to be invoked instead of the target (T). Essentially, the virus either has to seem to be T, saying effectively "I am T" or the virus has to push T out of the way and become a substitute for T, saying effectively "Call me instead of T." A more blatant virus can simply say "invoke me [you fool]." The virus can assume T's name by replacing (or joining to) T's code in a file structure; this invocation technique is most appropriate for ordinary programs. The virus can overwrite T in storage (simply replacing the copy of T in storage, for example). Alternatively, the virus can change the pointers in the file table so that the virus is located instead of T whenever T is accessed through the file system.
[image: image57.emf]
4.Explain the different Home for Viruses.

One-Time Execution

The majority of viruses today execute only once, spreading their infection and causing their effect in that one execution. A virus often arrives as an e-mail attachment of a document virus. It is executed just by being opened.

Boot Sector Viruses

A special case of virus attachment, but formerly a fairly popular one, is the so-called boot sector virus. When a computer is started, control begins with firmware that determines which hardware components are present, tests them, and transfers control to an operating system. A given hardware platform can run many different operating systems, so the operating system is not coded in firmware but is instead invoked dynamically, perhaps even by a user's choice, after the hardware test.

The operating system is software stored on disk. Code copies the operating system from disk to memory and transfers control to it; this copying is called the bootstrap (often boot) load because the operating system figuratively pulls itself into memory by its bootstraps. The firmware does its control transfer by reading a fixed number of bytes from a fixed location on the disk (called the boot sector) to a fixed address in memory and then jumping to that address (which will turn out to contain the first instruction of the bootstrap loader).

The bootstrap loader then reads into memory the rest of the operating system from disk. To run a

different operating system, the user just inserts a disk with the new operating system and a bootstrap loader. When the user reboots from this new disk, the loader there brings in and runs another operating system. This same scheme is used for personal computers, workstations, and large mainframes.

To allow for change, expansion, and uncertainty, hardware designers reserve a large amount of space for the bootstrap load. The boot sector on a PC is slightly less than 512 bytes, but since the loader will be larger than that, the hardware designers support "chaining," in which each block of the bootstrap is chained to (contains the disk location of) the next block. This chaining allows big bootstraps but also simplifies the installation of a virus. The virus writer simply breaks the chain at any point, inserts a pointer to the virus code to be executed, and reconnects the chain after the virus has been installed.

[image: image58.emf]
The boot sector is an especially appealing place to house a virus. The virus gains control very early in the boot process, before most detection tools are active, so that it can avoid, or at least complicate, detection.
The files in the boot area are crucial parts of the operating system. Consequently, to keep users from accidentally modifying or deleting them with disastrous results, the operating system makes them "invisible" by not showing them as part of a normal listing of stored files, preventing their deletion. Thus, the virus code is not readily noticed by users.
Memory-Resident Viruses

Some parts of the operating system and most user programs execute, terminate, and disappear, with their space in memory being available for anything executed later. For very frequently used parts of the operating system and for a few specialized user programs, it would take too long to reload the program each time it was needed. Such code remains in memory and is called "resident" code. Examples of resident code are the routine that interprets keys pressed on the keyboard, the code that handles error conditions that arise during a program's execution, or a program that acts like an alarm clock, sounding a signal at a time the user determines. Resident routines are sometimes called TSRs or "terminate and stay resident" routines.
Virus writers also like to attach viruses to resident code because the resident code is activated many times while the machine is running. Each time the resident code runs, the virus does too. Once activated, the virus can look for and infect uninfected carriers.
For example, after activation, a boot sector virus might attach itself to a piece of resident code.

Then, each time the virus was activated it might check whether any removable disk in a disk

drive was infected and, if not, infect it. In this way the virus could spread its infection to all

removable disks used during the computing session.
A virus can also modify the operating system's table of programs to run. On a Windows startup. If the virus gains control once, it can insert a registry entry so that it will be reinvoked each time the system restarts. In this way, even if the user notices and deletes the executing copy of the virus from memory, the virus will return on the next system restart.
Other Homes for Viruses

One popular home for a virus is an application program. Many applications, such as word

processors and spreadsheets, have a "macro" feature, by which a user can record a series of

commands and repeat them with one invocation. Such programs also provide a "startup macro" that is executed every time the application is executed.
 A virus writer can create a virus macro that adds itself to the startup directives for the application. It also then embeds a copy of itself in data files so that the infection spreads to anyone receiving one or more of those files.

Libraries are also excellent places for malicious code to reside. Because libraries are used by many programs, the code in them will have a broad effect. Additionally, libraries are often shared among users and transmitted from one user to another, a practice that spreads the infection. Finally, executing code in a library can pass on the viral infection to other transmission media. Compilers, loaders, linkers, runtime monitors, runtime debuggers, and even virus control programs are good candidates for hosting viruses because they are widely shared.

5. Describe Virus Signatures.

A virus cannot be completely invisible. Code must be stored somewhere, and the code must be in memory to execute. Moreover, the virus executes in a particular way, using certain methods to spread. Each of these characteristics yields a telltale pattern, called a signature, that can be found by a program that looks for it. The virus's signature is important for creating a program, called a virus scanner, that can detect and, in some cases, remove viruses.
The scanner searches memory and long-term storage, monitoring execution and watching for the telltale signatures of viruses. For example, a scanner looking for signs of the Code Red worm can look for a pattern containing the following characters:

/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

%u9090%u6858%ucbd3

%u7801%u9090%u6858%ucdb3%u7801%u9090%u6858

%ucbd3%u7801%u9090

%u9090%u8190%u00c3%u0003%ub00%u531b%u53ff

%u0078%u0000%u00=a

HTTP/1.0

When the scanner recognizes a known virus's pattern, it can then block the virus, inform the user, and deactivate or remove the virus. However, a virus scanner is effective only if it has been kept up to date with the latest information on current viruses.

Storage Patterns

Most viruses attach to programs that are stored on media such as disks. The attached virus piece is invariant, so the start of the virus code becomes a detectable signature. The attached piece is always located at the same position relative to its attached file. For example, the virus might always be at the beginning, 400 bytes from the top, or at the bottom of the infected file. Most likely, the virus will be at the beginning of the file because the virus writer wants to obtain control of execution before the bona fide code of the infected program is in charge. In the simplest case, the virus code sits at the top of the program, and the entire virus does its malicious duty before the normal code is invoked. In other cases, the virus infection consists of only a handful of instructions that point or jump to other, more detailed instructions elsewhere. For example, the infected code may consist of condition testing and a jump or call to a separate virus module. In either case, the code to which control is transferred will also have a recognizable pattern.

A virus may attach itself to a file, in which case the file's size grows. Or the virus may obliterate all or part of the underlying program, in which case the program's size does not change but the program's functioning will be impaired. The virus writer has to choose one of these detectable effects.

The virus scanner can use a code or checksum to detect changes to a file. It can also look for suspicious patterns, such as a JUMP instruction as the first instruction of a system program (in case the virus has positioned itself at the bottom of the file but is to be executed first.

Execution Patterns:

A virus writer may want a virus to do several things at the same time, namely, spread infection, avoid detection, and cause harm. Unfortunately, many of these behaviors are perfectly normal and might otherwise go undetected. For instance, one goal is modifying the file directory; many normal programs create files, delete files, and write to storage media. Thus, no key signals point to the presence of a virus.

Most virus writers seek to avoid detection for themselves and their creations. Because a disk's boot sector is not visible to normal operations (for example, the contents of the boot sector do not show on a directory listing), many virus writers hide their code there. A resident virus can monitor disk accesses and fake the result of a disk operation that would show the virus hidden in a boot sector by showing the data that should have been in the boot sector (which the virus has moved elsewhere).

There are no limits to the harm a virus can cause. On the modest end, the virus might do nothing; some writers create viruses just to show they can do it. Or the virus can be relatively benign, displaying a message on the screen, sounding the buzzer, or playing music.

Transmission Patterns
A virus is effective only if it has some means of transmission from one location to another. As we have already seen, viruses can travel during the boot process by attaching to an executable file or traveling within data files. The travel itself occurs during execution of an already infected program. Since a virus can execute any instructions a program can, virus travel is not confined to any single medium or execution pattern. For example, a virus can arrive on a disk or from a network connection, travel during its host's execution to a hard disk boot sector, reemerge next time the host computer is booted, and remain in memory to infect other disks as they are accessed.

Polymorphic Viruses:

A virus that can change its appearance is called a polymorphic virus. (Poly means "many" and morph means "form.")

A simple variety of polymorphic virus uses encryption under various keys to make the stored form of the virus different. These are sometimes called encrypting viruses. This type of virus must contain three distinct parts: a decryption key, the (encrypted) object code of the virus, and the (unencrypted) object code of the decryption routine. For these viruses, the decryption routine itself, or a call to a decryption library routine, must be in the clear so that becomes the signature.

6. List the effects and causes of viruses.

	Virus Effect
	How It Is Caused

	Attach to executable program
	· Modify file directory

· Write to executable program file

	Attach to data or control file

	· Modify directory

· Rewrite data

· Append to data

· Append data to self

	Remain in memory
	· Intercept interrupt by modifying Interrupt handler address table

· Load self in nontransient memory area

	Infect disks
	· Intercept interrupt

· Intercept operating system call (to

· Format disk, for example).

· Modify system file

· Modify ordinary executable program

	Conceal self

	· Intercept system calls that would reveal self and falsify result

· Classify self as "hidden" file

	Spread infection

	· Infect boot sector

· Infect systems program

· Infect ordinary program

· Infect data ordinary program reads to control its execution

	Prevent deactivation

	· Activate before deactivating program and block deactivation

· Store copy to reinfect after deactivation

7. Explain how to prevent virus infection?

The only way to prevent the infection of a virus is not to receive executable code from an infected source. This philosophy used to be easy to follow because it was easy to tell if a file was executable or not. For example, on PCs, a .exe extension was a clear sign that the file was executable. However, as we have noted, today's files are more complex, and a seemingly nonexecutable file may have some executable code buried deep within it. For example, a word processor may have commands within the document file; as we noted earlier, these commands, called macros, make it easy for the user to do complex or repetitive things.
But they are really executable code embedded in the context of the document. Similarly, spreadsheets, presentation slides, other office- or business-related files, and even media files

can contain code or scripts that can be executed in various waysand thereby harbor viruses. And, as we have seen, the applications that run or use these files may try to be helpful by automatically invoking the executable code, whether you want it run or nota Against the principles of good security, e-mail handlers can be set to automatically open (without performing access control) attachments or embedded code for the recipient, so your e-mail message can have animated bears dancing across the top.
Nevertheless, there are several techniques for building a reasonably safe community for

electronic contact, including the following:
· Use only commercial software acquired from reliable, well-established vendors. There is always a chance that you might receive a virus from a large manufacturer with a name everyone would recognize. However, such enterprises have significant reputations that could be seriously damaged by even one bad incident, so they go to some degree of trouble to keep their products virus-free and to patch any problem-causing code right away. Similarly, software distribution companies will be careful about products they handle.
· Test all new software on an isolated computer. If you must use software from a questionable source, test the software first on a computer that is not connected to a network and contains no sensitive or important data. Run the software and look for unexpected behavior, even simple behavior such as unexplained figures on the screen. Test the computer with a copy of an up-to-date virus scanner created before the suspect program is run. Only if the program passes these tests should you install it on a less isolated machine.
· Open attachments only when you know them to be safe. What constitutes "safe" is up to you, as you have probably already learned in this chapter. Certainly, an attachment from an unknown source is of questionable safety. You might also distrust an attachment from a known source but with a peculiar message.
· Make a recoverable system image and store it safely. If your system does become infected, this clean version will let you reboot securely because it overwrites the corrupted system files with clean copies. For this reason, you must keep the image write-protected during reboot. Prepare this image now, before infection; after infection it is too late. For safety, prepare an extra copy of the safe boot image.
· Make and retain backup copies of executable system files. This way, in the event of a virus infection, you can remove infected files and reinstall from the clean backup copies (stored in a secure, offline location, of course). Also make and retain backups of important data files that might contain infectable code; such files include word-processor documents, spreadsheets, slide presentations, pictures, sound files, and databases. Keep these backups on inexpensive media, such as CDs or DVDs so that you can keep old backups for a long time. In case you find an infection, you want to be able to start from a clean backupthat is, one taken before the infection.
· Use virus detectors (often called virus scanners) regularly and update them daily. Many of the available virus detectors can both detect and eliminate infection from viruses. Several scanners are better than one because one may detect the viruses that others miss. Because scanners search for virus signatures, they are constantlybeing revised as new viruses are discovered. New virus signature files or new versions of scanners are distributed frequently; often, you can request automatic downloads from the vendor's web site. Keep your detector's signature file up to date
8. Mention the Truths and Misconceptions about Viruses.

Because viruses often have a dramatic impact on the computer-using community, they are often highlighted in the press, particularly in the business section. However, there is much misinformation in circulation about viruses. Let us examine some of the popular claims about them.
· Viruses can infect only Microsoft Windows systems. False. Among students and office workers, PCs running Windows are popular computers, and there may be more people writing software (and viruses) for them than for any other kind of processor. Thus, the PC is most frequently the target when someone decides to write a virus. However, the principles of virus attachment and infection apply equally to other processors, including Macintosh computers, Unix and Linux workstations, and mainframe computers.

· Cell phones and PDAs are now also virus targets. In fact, no writeable stored-program computer is immune to possible virus attack. As we noted in Chapter 1, this situation means that all devices containing computer code, including automobiles, airplanes, microwave ovens, radios, televisions, voting machines, and radiation therapy machines have the potential for being infected by a virus.
· Viruses can modify ahiddena or aread-onlya files. True. We may try to protect files by using two operating system mechanisms. First, we can make a file a hidden file so that a user or program listing all files on a storage device will not see the file's name. Second, we can apply a read-only protection to the file so that the user cannot change the file's contents. However, each of these protections is applied by software, and virus software can override the native software's protection. Moreover, software protection is layered, with the operating system providing the most elementary protection. If a secure operating system obtains control before a virus contaminator has executed, the operating system can prevent contamination as long as it blocks the attacks the virus will make.
· Viruses can appear only in data files, or only in Word documents, or only in programs. False. What are data? What is an executable file? The distinction between these two= concepts is not always clear, because a data file can control how a program executes and even cause a program to execute. Sometimes a data file lists steps to be taken by the program that reads the data, and these steps can include executing a program. For example, some applications contain a configuration file whose data are exactly such steps. Similarly, word-processing document files may contain startup commands to execute when the document is opened; these startup commands can contain malicious code. Although, strictly speaking, a virus can activate and spread only when a program executes, in fact, data files are acted on by programs. Clever virus writers have been able to make data control files that cause programs to do many things, including pass along copies of the virus to other data files.
· Viruses spread only on disks or only through e-mail. False. File-sharing is often done as one user provides a copy of a file to another user by writing the file on a transportable disk. However, any means of electronic file transfer will work. A file can be placed in a network's library or posted on a bulletin board. It can be attached to an e-mail message or made available for download from a web site. Any mechanism for sharing filesof programs, data, documents, and so forthcan be used to transfer a virus.
· Viruses cannot remain in memory after a complete power off/power on reboot. Truea but . . . If a virus is resident in memory, the virus is lost when the memory loses power. That is, computer memory (RAM) is volatile, so all contents are deleted when power is lost.[2] However, viruses written to disk certainly can remain through a reboot cycle. Thus, you can receive a virus infection, the virus can be written to disk (or to network storage), you can turn the machine off and back on, and the virus can be reactivated during the reboot. Boot sector viruses gain control when a machine reboots (whether it is a hardware or software reboot), so a boot sector virus may remain through a reboot cycle because it activates immediately when a reboot has completed.
· Some very low-evel hardw are settings (for example, the size of disk installed) are retained in memory called anonvolatile RAM,a but these locations are not directly accessible by programs and are w ritten only by programs run from read-only memory (ROM) during hardw are initialization. Thus, they are highly immune to virus attack.
· Viruses cannot infect hardware. True. Viruses can infect only things they can modify; memory, executable files, and data are the primary targets. If hardware contains writeable storage (so-called firmware) that can be accessed under program control,that storage is subject to virus attack. There have been a few instances of firmware viruses. Because a virus can control hardware that is subject to program control, it may seem as if a hardware device has been infected by a virus, but it is really the software driving the hardware that has been infected. Viruses can also exercise hardware in any way a program can. Thus, for example, a virus could cause a disk to loop incessantly, moving to the innermost track then the outermost and back again to nthe innermost.
· Viruses can be malevolent, benign, or benevolent. True. Not all viruses are bad. For example, a virus might locate uninfected programs, compress them so that they occupy less memory, and insert a copy of a routine that decompresses the program when its execution begins. At the same time, the virus is spreading the compression function to other programs. This virus could substantially reduce the amount of storage required for stored programs, possibly by up to 50 percent. However, the compression would be done at the request of the virus, not at the request, or even knowledge, of the program owner.

9. Explain how we can implement secure software?

.

Modularity

Modularization is the process of dividing a task into subtasks. This division is done on a logical or functional basis. Each component performs a separate, independent part of the task.
The goal is to have each component meet four conditions:
· single-purpose: performs one function
· small: consists of an amount of information for which a human can readily grasp both structure and content

· simple: is of a low degree of complexity so that a human can readily understand the purpose and structure of the module

· independent: performs a task isolated from other modules
There are several advantages to having small, independent components.
· Maintenance. If a component implements a single function, it can be replaced easily with a revised one if necessary. The new component may be needed because of a change in requirements, hardware, or environment. Sometimes the replacement is an enhancement, using a smaller, faster, more correct, or otherwise better module. The interfaces between this component and the remainder of the design or code are few and well described, so the effects of the replacement are evident.

· Understandability. A system composed of many small components is usually easier to comprehend than one large, unstructured block of code.

· Reuse. Components developed for one purpose can often be reused in other systems. Reuse of correct, existing design or code components can significantly reduce the difficulty of implementation and testing.

· Correctness. A failure can be quickly traced to its cause if the components perform only one task each.

· Testing. A single component with well-defined inputs, outputs, and function can be tested exhaustively by itself, without concern for its effects on other modules (other than the expected function and output, of course).

A modular component usually has high cohesion and low coupling. By cohesion, we mean that all the elements of a component have a logical and functional reason for being there; every aspect of the component is tied to the component's single purpose. A highly cohesive component has a high degree of focus on the purpose; a low degree of cohesion means that the component's contents are an unrelated jumble of actions, often put together because of time-dependencies or convenience.

Coupling refers to the degree with which a component depends on other components in the system. Thus, low or loose coupling is better than high or tight coupling because the loosely coupled components are free from unwitting interference from other components
[image: image59.png]Ninule |

Module 3

o] | |] | | [
1ttt
Mt Maodule 4

Coupling

Encapsulation
Encapsulation hides a component's implementation details, but it does not necessarily mean complete isolation. Many components must share information with other components, usually with good reason. However, this sharing is carefully documented so that a component is affected only in known ways by others in the system. Sharing is minimized so that the fewest interfaces possible are used. Limited interfaces reduce the number of covert channels that can be constructed.
Information Hiding
Developers who work where modularization is stressed can be sure that other components will have limited effect on the ones they write. Thus, we can think of a component as a kind of black box, with certain well-defined inputs and outputs and a well-defined function. Other components' designers do not need to know how the module completes its function; it is enough to be assured that the component performs its task in some correct manner.
[image: image60.png]N YK
- =>
PAFIAN

Access 10 all parts of nadute Method, data hidden

Information Hiding
Mutual Suspicion
Therefore, we use the concept of mutual suspicion to describe the relationship between two programs. Mutually suspicious programs operate as if other routines in the system were malicious or incorrect. A calling program cannot trust its called subprocedures to be correct, and a called subprocedure cannot trust its calling program to be correct. Each protects its interface data so that the other has only limited access. For example, a procedure to sort the entries in a list cannot be trusted not to modify those elements, while that procedure cannot trust its caller to provide any list at all or to supply the number of elements predicted.
Confinement
Confinement is a technique used by an operating system on a suspected program. A confined program is strictly limited in what system resources it can access. If a program is not trustworthy, the data it can access are strictly limited. Strong confinement would be helpful in limiting the spread of viruses. Since a virus spreads by means of transitivity and shared data, all the data and programs within a single compartment of a confined program can affect only the data and programs in the same compartment. Therefore, the virus can spread only to things in that compartment; it cannot get outside the compartment.

10. State the practices and techniques can assist us in finding real and potential security flaws and fixing them before we turn the system over to the users.
· peer reviews
· hazard analysis

· testing

· good design

· prediction

· static analysis

· configuration management

· analysis of mistakes
Peer reviews:

There are careful distinctions among three types of peer reviews:

 Review: The artifact is presented informally to a team of reviewers; the goal is consensus and buy-in before development proceeds further.

 Walk-through: The artifact is presented to the team by its creator, who leads and controls the discussion. Here, education is the goal, and the focus is on learning about a single document.

 Inspection: This more formal process is a detailed analysis in which the artifact is checked against a prepared list of concerns. The creator does not lead the discussion, and the fault identification and correction are often controlled by statistical measurements.

A wise engineer who finds a fault can deal with it in at least three ways:

1. by learning how, when, and why errors occur

2. by taking action to prevent mistakes

3. by scrutinizing products to find the instances and effects of errors that were missed Peer reviews address this problem directly. Unfortunately, many organizations give only lip service to peer review, and reviews are still not part of mainstream software engineering activities.

 Hazard analysis:

Hazard analysis is a set of systematic techniques intended to expose potentially hazardous system states. In particular, it can help us expose security concerns and then identify prevention or mitigation strategies to address them.
That is, hazard analysis ferrets out likely causes of problems so that we can then apply an appropriate technique for preventing the problem or softening its likely consequences. Thus, it usually involves developing hazard lists, as well as procedures for exploring "what if" scenarios to trigger consideration of nonobvious hazards. The sources of problems can be lurking in any artifacts of the development or maintenance process, not just in the code, so a hazard analysis must be broad in its domain of investigation; in other words, hazard analysis is a system issue, not just a code issue.

Similarly, there are many kinds of problems, ranging from incorrect code to unclear consequences of a particular action. A good hazard analysis takes all of them into account. Although hazard analysis is generally good practice on any project, it is required in some regulated and critical application domains, and it can be invaluable for finding security flaws.
 It is never too early to be thinking about the sources of hazards; the analysis should begin when you first start thinking about building a new system or when someone proposes a significant upgrade to an existing system. Hazard analysis should continue throughout the system life cycle; you must identify potential hazards that can be introduced during system design, installation, operation, and maintenance.
A variety of techniques support the identification and management of potential hazards.Among the most effective are hazard and operability studies (HAZOP), failure modes and effects analysis (FMEA), and fault tree analysis (FTA). HAZOP is a structured analysis technique originally developed for the process control and chemical plant industries.
 Over the last few years it has been adapted to discover potential hazards in safety-critical software systems. FMEA is a bottom-up technique applied at the system component level. A team identifies each component's possible faults or fault modes; the team then determines what

could trigger the fault and what systemwide effects each fault might have. By keeping system consequences in mind, the team often finds possible system failures that are not made visible by other analytical means. FTA complements FMEA. It is a top-down technique that begins with a postulated hazardous system malfunction. Then, the FTA team works backward to identify the possible precursors to the mishap. By tracing back from a specific hazardous malfunction, the team can locate unexpected contributors to mishaps, and can then look for opportunities to mitigate the risks.

Perspectives for Hazard Analysis
	Effect
	Known Cause
	Unknown Cause

	known effect
	description of system behavior
	deductive analysis, including

fault tree analysis

	unknown effect
	inductive analysis, including failure modes and effects analysis studies.
	exploratory analysis, including hazard and operability

Testing:

Testing is a process activity that homes in on product quality: making the product failure free or failure tolerant. Each software problem (especially when it relates to security) has the potential not only for making software fail but also for adversely affecting a business or a life.
Testing usually involves several stages
 First each program component is tested on its own, isolated from the other components in the system. Such testing, known as module testing.
component testing, or unit testing, verifies that the component functions properly with the types of input expected from a study of the component's design.
Integration testing is the process of verifying that the system components work together as described in the system and program design specifications.
A function test evaluates the system to determine whether the functions described by the requirements specification are actually performed by the integrated system. The result is a functioning system. Then, a performance test compares the system with the remainder of these software and hardware requirements. It is during the function and performance tests that security requirements are examined, and the testers confirm that the system is as secure as it is required to be.
An acceptance test, in which the system is checked against the customer's requirements description. Upon completion of acceptance testing, the accepted system is installed in the environment in which it will be used. A final installation test is run to make sure that the system still functions as it should.
After a change is made to enhance the system or fix a problem, regression testing ensures that all remaining functions are still working and that performance has not been degraded by the change. Each of the types of tests listed here can be performed from two perspectives: black box and clear box (sometimes called white box). Black-box testing treats a system or its components as black boxes; testers cannot "see inside" the system, so they apply particular inputs and verify that they get the expected output. Clear-box testing allows visibility.

Good Design:

 Designers should try to anticipate faults and handle them in ways that minimize disruption and maximize safety and security. Ideally, we want our system to be fault free. But in reality, we must assume that the system will fail, and we make sure that unexpected failure does not bring the system down, destroy data, or destroy life. For example, rather than waiting for the system to fail (called passive fault detection), we might construct the system so that it reacts in an acceptable way to a failure's occurrence. Active fault detection could be practiced by, for instance, adopting a philosophy of mutual suspicion. Instead of assuming that data passed from other systems or components are correct, we can always check that the data are within bounds and of the right type or format. We can also use redundancy, comparing the results of two or more processes to see that they agree, before we use their result in a task.
If correcting a fault is too risky, inconvenient, or expensive, we can choose instead to practice fault tolerance: isolating the damage caused by the fault and minimizing disruption to users.

Typically, failures include

· failing to provide a service

· providing the wrong service or data

· corrupting data

We can build into the design a particular way of handling each problem, selecting from one of

three ways:

1. Retrying: restoring the system to its previous state and performing the service again, using a different strategy

2. Correcting: restoring the system to its previous state, correcting some system characteristic, and performing the service again, using the same strategy

3. Reporting: restoring the system to its previous state, reporting the problem to an error-handling component, and not providing the service again

Prediction

Among the many kinds of prediction we do during software development, we try to predict the

risks involved in building and using the system.

Risk prediction and management are especially important for security, where we are always dealing with unwanted events that have negative consequences. Our predictions help us decide which controls to use and how many.
For example, if we think the risk of a particular security breach is small, we may not want to invest a large amount of money, time, or effort in installing sophisticated controls. Or we may use the likely risk impact to justify using several controls at once, a technique called "defense in depth."
Static Analysis

Before a system is up and running, we can examine its design and code to locate and repair security flaws. We noted earlier that the peer review process involves this kind of scrutiny. But static analysis is more than peer review, and it is usually performed before peer review.We can use tools and techniques to examine the characteristics of design and code to see if the characteristics warn us of possible faults lurking within. For example, a large number of levels of nesting may indicate that the design or code is hard to read and understand, making it easy for a malicious developer to bury dangerous code deep within the system.
To this end, we can examine several aspects of the design and code:

· control flow structure

· data flow structure

· data structure

The control flow is the sequence in which instructions are executed, including iterations and loops. This aspect of design or code can also tell us how often a particular instruction or routine is executed.Data flow follows the trail of a data item as it is accessed and modified by the system. Many times, transactions applied to data are complex, and we use data flow measures to show us how and when each data item is written, read, and changed.

The data structure is the way in which the data are organized, independent of the system itself. For instance, if the data are arranged as lists, stacks, or queues, the algorithms for manipulating them are likely to be well understood and well defined.
Configuration Management

When we develop software, it is important to know who is making which changes to what and when:
· corrective changes: maintaining control of the system's day-to-day functions

· adaptive changes: maintaining control over system modifications

· perfective changes: perfecting existing acceptable functions

· preventive changes: preventing system performance from degrading to unacceptable levels.

Configuration management is the process by which we control changes during development and maintenance, and it offers several advantages in security. In particular, configuration management scrutinizes new and changed code to ensure, among other things, that security flaws have not been inserted, intentionally or accidentally.

Four activities are involved in configuration management:

· configuration identification

· configuration control and change management

· configuration auditing

· status accounting

11. Explain the techniques to protect Memory.
 Fence:
The simplest form of memory protection was introduced in single-user operating systems to prevent a faulty user program from destroying part of the resident portion of the operating system. As its name implies, a fence is a method to confine users to one side of a boundary. In one implementation, the fence was a predefined memory address, enabling the operating system to reside on one side and the user to stay on the other.

Unfortunately, this kind of implementation was very restrictive because a predefined amount of space was always reserved for the operating system, whether it was needed or not. If less than the predefined space was required, the excess space was wasted.

Conversely, if the operating system needed more space, it could not grow beyond the fence boundary.

A fence register protects only in one direction. In other words, an operating system can be protected from a single user, but the fence cannot protect one user from another user.

Similarly, a user cannot identify certain areas of the program as inviolable (such as the code of the program itself or a read-only data area).
[image: image61.jpg]Memory

Operating System

Addresses
0
Hardware
Address
Limitation
N
nel
Addressing
Range

|

High

User Program Space

 Fixed Fence

[image: image62.jpg]Address.
Limit
R

Addresses

Memory Addresses Memory
[
Operating Operating
System Version 1 System Version 2
P
7T

User Program
Space

User Program
Space

 Variable fence Register

Relocation
If the operating system can be assumed to be of a fixed size, programmers can write their code assuming that the program begins at a constant address. This feature of the operating system makes it easy to determine the address of any object in the program. However, it also makes it essentially impossible to change the starting address if, for example, a new version of the operating system is larger or smaller than the old. If the size of the operating system is allowed to change, then programs must be written in a way that does not depend on placement at a specific location in memory.Relocation is the process of taking a program written as if it began at address 0 and changing all addresses to reflect the actual address at which the program is located in memory. In many instances, this effort merely entails adding a constant relocation factor to each address of the program. That is, the relocation factor is the starting address of the memory assigned for the program.Conveniently, the fence register can be used in this situation to provide an important extra benefit: The fence register can be a hardware relocation device. The contents of the fence register are added to each program address. This action both relocates the address and guarantees that no one can access a location lower than the fence address. (Addresses are treated as unsigned integers, so adding the value in the fence register to any number is guaranteed to produce a result at or above the fence address.) Special instructions can be added for the few times when a program legitimately intends to access a location of the operating system.
Base/Bounds Registers

A major advantage of an operating system with fence registers is the ability to relocate; this characteristic is especially important in a multiuser environment. With two or more users, none can know in advance where a program will be loaded for execution. The relocation register solves the problem by providing a base or starting address. All addresses inside a program are offsets from that base address. A variable fence register is generally known as a base register.
Fence registers provide a lower bound (a starting address) but not an upper one. An upper bound can be useful in knowing how much space is allotted and in checking for overflows into "forbidden" areas. To overcome this difficulty, a second register is often added, The second register, called a bounds register, is an upper address limit, in the same way that a base or fence register is a lower address limit. Each program address is forced to be above the base address because the contents of the base register are added to the address; each address is also checked to ensure that it is below the bounds address. In this way, a program's addresses are neatly confined to the space between the base and the bounds registers.
[image: image63.jpg]Base Register

Bounds Register

Addresses.

A — —

High

Memory

Operating
System

UserA
Program Space

UserB
Program Space

UserC
Program Space

User Program
Space

 Pair of Base and Bound Registers

This technique protects a program's addresses from modification by another user. When execution changes from one user's program to another's, the operating system must change the contents of the base and bounds registers to reflect the true address space for that user.

This change is part of the general preparation, called a context switch, that the operating system must perform when transferring control from one user to another. With a pair of base/bounds registers, a user is perfectly protected from outside users, or, more correctly, outside users are protected from errors in any other user's program.
 Erroneous addresses inside a user's address space can still affect that program because the base/bounds checking guarantees only that each address is inside the user's address space. For example, a user error might occur when a subscript is out of range or an undefined variable generates an address reference within the user's space but, unfortunately, inside the executable instructions of the user's program. In this manner, a user can accidentally store data on top of instructions. Such an error can let a user inadvertently destroy a program, but (fortunately) only the user's own program.

We can solve this overwriting problem by using another pair of base/bounds registers, one for the instructions (code) of the program and a second for the data space. Then, only instruction fetches (instructions to be executed) are relocated and checked with the first register pair, and only data accesses (operands of instructions) are relocated and checked with the second register pair.

Although two pairs of registers do not prevent all program errors, they limit the effect of data-manipulating instructions to the data space. The pairs of registers offer another more important advantage: the ability to split a program into two pieces that can be relocated separately.
Tagged Architecture
Another problem with using base/bounds registers for protection or relocation is their contiguous nature. Each pair of registers confines accesses to a consecutive range of addresses. A compiler or loader can easily rearrange a program so that all code sections are adjacent and all data sections are adjacent.

However, in some cases you may want to protect some data values but not all. For example, a personnel record may require protecting the field for salary but not office location and phone number. Moreover, a programmer may want to ensure the integrity of certain data values by allowing them to be written when the program is initialized but prohibiting the program from modifying them later.
 This scheme protects against errors in the programmer's own code. A programmer may also want to invoke a shared subprogram from a common library. We can address some of these issues by using good design, both in the operating system and in the other programs being run.

Information hiding and modularity in program design share with another module only the minimum amount of data necessary for both of them to do their work.

Additional, operating-system-specific design features can help, too. Base/bounds registers create an all-or-nothing situation for sharing: Either a program makes all its data available to be baccessed and modified or it prohibits access to all. Even if there were a third set of registers for shared data, all data would need to be located together. A procedure could not effectively share data items A, B, and C with one module, A, C, and D with a second, and A, B, and D with a third. The only way to accomplish the kind of sharing we want would be to move each appropriate set of data values to some contiguous space. However, this solution would not be acceptable if the data items were large records, arrays, or structures.
An alternative is tagged architecture, in which every word of machine memory has one or more extra bits to identify the access rights to that word. These access bits can be set only by privileged (operating system) instructions. The bits are tested every time an instruction accesses that location.

For example, one memory location may be protected as execute-only (for example, the object code of instructions), whereas another is protected for fetch-only (for example, read) data access, and another accessible for modification (for example, write).

In this way, two adjacent locations can have different access rights. Furthermore, with a few extra tag bits, different classes of data (numeric, character, address or pointer, and undefined) can be separated, and data fields can be protected for privileged (operatingsystem) access only.

[image: image64.jpg]Tag Memory Word

R 0001

RW 0137

R o099
| O

"¢ N~

X —Wh—

x 1

X -

X =N

R 4091

RW 0002

Code: R =Read-only ~RW =Read/Write
X = Execute-only

 This protection technique has been used on a few systems, although the number of tag bits has been rather small. The Burroughs B6500-7500 system used three tag bits to separate data words (three types), descriptors (pointers), and control words (stack pointers and addressing control words).
The IBM System/38 used a tag to control both integrity and access. A variation used one tag that applied to a group of consecutive locations, such as 128 or 256 bytes. With one tag for a block of addresses, the added cost for implementing tags was not as high as with one tag per location. The Intel I960 extended architecture processor used a tagged architecture with a bit on each memory word that marked the word as a "capability," not as an ordinary location for data or instructions. A capability controlled access to a variable-sized memory block or segment. This large number of possible tag values supported memory segments that ranged in size from 64 to 4 billion bytes, with a potential 2256 different protection domains.
Segmentation

We present two more approaches to protection, each of which can be implemented on top of a conventional machine structure, suggesting a better chance of acceptance. Although these approaches are ancient by computing's standardsthey were designed between 1965 and 1975they have been implemented on many machines since then. Furthermore, they offer important advantages in addressing, with memory protection being a delightful bonus.

The first of these two approaches, segmentation, involves the simple notion of dividing a program into separate pieces. Each piece has a logical unity, exhibiting a relationship among all of its code or data values. For example, a segment may be the code of a single procedure, the data of an array, or the collection of all local data values used by a particular module. Segmentation was developed as a feasible means to produce the effect of the equivalent of an unbounded number of base/bounds registers. In other words, segmentation allows a program to be divided into many pieces having different access rights.

Each segment has a unique name. A code or data item within a segment is addressed as the offset is its location within the segment (that is, its distance from the start of the segment). Logically, the programmer pictures a program as a long collection of segments. Segments can be separately relocated, allowing any segment to be placed in any available memory locations.
Logical and Physical Representation of Segments
[image: image65.png]Logical Arrangement of
Program

MAIN

SEG_A

DATA_SEG

Physical Placement of
Program’s Segments

SUB

MAIN

DATA_SEG

Operating
System
Segments

Segments for
Other Users

The operating system must maintain a table of segment names and their true addresses in memory. When a program generates an address of the form <name, offset>, the operating system looks up name in the segment directory and determines its real beginning memory address. To that address the operating system adds offset, giving the true memory address of the code or data item.
For efficiency there is usually one operating system segment address table for each process in execution. Two processes that need to share access to a single segment would have the same segment name and address in their segment tables.
Translation of Segment Address
[image: image66.png]Segment Translation Table

Adiress
|« "
Logiat Progran 1
AN
o | X
SEG_A h
b
TCHEDATA
sos
d
L O —
.
h

jon 20 Within Segment DATA_SEG

Thus, a user's program does not know what true memory addresses it uses. It has no way and no need to determine the actual address associated with a particular <name, offset>.

The <name, offset> pair is adequate to access any data or instruction to which a program should have access.

This hiding of addresses has three advantages for the operating system.

· The operating system can place any segment at any location or move any segment to any location, even after the program begins to execute. Because it translates all address references by a segment address table, the operating system needs only update the address in that one table when a segment is moved.

· A segment can be removed from main memory (and stored on an auxiliary device) if it is not being used currently.

· Every address reference passes through the operating system, so there is an opportunity to check each one for protection.
Segmentation offers these security benefits:
· Each address reference is checked for protection.
· Many different classes of data items can be assigned different levels of protection.
· two or more users can share access to a segment, with potentially different access rights
· A user cannot generate an address or access to an unpermitted segment.
12. Explain paging in detail.
One alternative to segmentation is paging. The program is divided into equal-sized pieces called pages, and memory is divided into equal-sized units called page frames. (For implementation reasons, the page size is usually chosen to be a power of two between 512 and 4096 bytes.) As with segmentation, each address in a paging scheme is a two-part object, this time consisting of <page, offset>.

Each address is again translated by a process similar to that of segmentation: The operating system maintains a table of user page numbers and their true addresses in memory. The page portion of every <page, offset> reference is converted to a page frame address by a table lookup; the offset portion is added to the page frame address to produce the real memory address of the object referred to as <page, offset>.
[image: image67.jpg]Page Translation Table ‘Memory
Logical Prsirani Page adiess " Adres e
Page 0 o] o 2
127 &
[FETCriar] Ak Pags 0
T <
age 2 | i Page 4,07
Page 2 <
Page 3 5
Page 7
Page 4 ¢
Page |
Page 5 s
h
Page 6 y
Page 2
Page 7 :
K
1
Page 3
n
Page 6

Location
37.Page 4

Page Address Translation

Unlike segmentation, all pages in the paging approach are of the same fixed size, so fragmentation is not a problem. Each page can fit in any available page in memory, and thus there is no problem of addressing beyond the end of a page.
The binary form of a <page, offset> address is designed so that the offset values fill a range of bits in the address.

Therefore, an offset beyond the end of a particular page results in a carry into the page portion of the address, which changes the address.
To see how this idea works, consider a page size of 1024 bytes (1024 = 210), where 10 bits are allocated for the offset portion of each address. A program cannot generate an offset value larger than 1023 in 10 bits. Moving to the next location after <x,1023> causes a carry into the page portion, thereby moving translation to the next page.
During the translation, the paging process checks to verify that a <page, offset>reference does not exceed the maximum number of pages the process has defined.

With a segmentation approach, a programmer must be conscious of segments. However, a programmer is oblivious to page boundaries when using a paging-based operating system. Moreover, with paging there is no logical unity to a page; a page is simply the next 2n bytes of the program. Thus, a change to a program, such as the addition of one instruction, pushes all subsequent instructions to lower addresses and moves a few bytes from the end of each page to the start of the next. This shift is not something about which the programmer need be concerned because the entire mechanism of paging and address translation is hidden from the programmer.

 However, when we consider protection, this shift is a serious problem. Because segments are logical units, we can associate different segments with individual protection rights, such as read-only or execute-only. The shifting can be handled efficiently during address translation. But with paging there is no necessary unity to the items on a page, so there is no way to establish that all values on a page should be protected at the same level, such as read-only or execute-only.
Paging-Segmentation
· Combing the benefits of Paging and Segmentation
[image: image68.png]Segment Translation Table

Page M
Segment Tat%le Add(r)ess cmory
MAIN X
Page Translation Tables a
Logical Program SEG_A * For Segment MAIN b
MAIN Page Address DATA_SEG Page 1
----------------- B c
SU < 0 ¢ MAIN Page 0
SEG A £+ PFDATA_SEG| @ 1 f d
""""""""" - “ e
.
~ FETCH<DATA_SEG,2.0>|) or Segment SEG_A) SEG_A Page 1
E -“ Page Address MAIN Page |
SUB . . 0 n g
. o SEG_A Page 2
- .
DATA_SEG s tle h
----------------- H ‘- 2 g i
H ‘, SUB Page 0
L] .
H % Yor Segment SUB
= %\ Page Address k
. P
. *Y 0 i |
% IDATA_SEG Page 0
H For Segment DATA_SEG m 4“#—
. "rage Address e
TTEL T — T n d
H " 20 = Page 0 0 1 o, ““"SEG_A Page 0
: 1] b ”;‘ R
‘lll@SegmentDATA_SEG WOl'd20

13. Mention the techniques to protect objects.

Directory

One simple way to protect an object is to use a mechanism that works like a file directory. Imagine we are trying to protect files (the set of objects) from users of a computing system (the set of subjects). Every file has a unique owner who possesses "control" access rights (including the rights to declare who has what access) and to revoke access to any person at any time. Each user has a file directory, which lists all the files to which that user has access. Clearly, no user can be allowed to write in the file directory because that would be a way to forge access to a file. Therefore, the operating system must maintain all file directories, under commands from the owners of files. The obvious rights to files are the common read, write, and execute familiar on many shared systems. Furthermore, another right, owner, is possessed by the owner, permitting that user to grant and revoke access rights.
[image: image69.png]User A Directory User B Directory

Fieame RS phise FicName R pomer
oroarc | orw | e ———| boos [|«
T T st ox | o
o | o | e v | orw | o
HELP.TXT R \\ [HELP.TXT R .
e | orw E

Directory Access

This approach is easy to implement because it uses one list per user, naming all the objects that user is allowed to access. However, several difficulties can arise. First, the list becomes too large if many shared objects, such as libraries of subprograms or a common table of users, are accessible to all users. The directory of each user must have one entry for each such shared object, even if the user has no intention of accessing the object. Deletion must be reflected in all directories.
A second difficulty is revocation of access. If owner A has passed to user B the right to read file F, an entry for F is made in the directory for B. This granting of access implies a level of trust between A and B. If A later questions that trust, A may want to revoke the access right of B. The operating system can respond easily to the single request to delete the right of B to access F because that action involves deleting one entry from a specific directory. But if A wants to remove the rights of everyone to access F, the operating system must search each individual directory for the entry F, an activity that can be time consuming on a large system.

For example, large timesharing systems or networks of smaller systems can easily have 5,000 to 10,000 active accounts. Moreover, B may have passed the access right for F to another user, so A may not know that F's access exists and should be revoked. This problem is particularly serious in a network.
A third difficulty involves pseudonyms. Owners A and B may have two different files named F, and they may both want to allow access by S. Clearly, the directory for S cannot contain two entries under the same name for different files. Therefore, S has to be able to uniquely identify the F for A (or B). One approach is to include the original owner's designation as if it were part of the file name, with a notation such as A:F (or B:F).

Suppose, however, that S has trouble remembering file contents from the name F. Another approach is to allow S to name F with any name unique to the directory of S. Then, F from A could be called Q to S. S may have forgotten that Q is F from A, and so S requests access again from A for F. But by now A may have more trust in S, so A transfers F with greater rights than before. This action opens up the possibility that one subject, S, may have two distinct sets of access rights to F, one under the name Q and one under the name F. In this way, allowing pseudonyms leads to multiple permissions that are not necessarily consistent. Thus, the directory approach is probably too simple for most object protection situations.
[image: image70.png]User A Directory

Files.

User § Directory ng
Access File Access!
R
v S — 2 '
woo_Jonw v aw
mocic |onw P e Jorw | e
HELPIXT |R Ll \ HELPTXT |R -
PRoGLEXE [0x N
UsrB Dty
e Fic
File Nan Rights _Pointer
ween e
o |+
e oo | e

Alternative Access Paths
Access Control List

An alternative representation is the access control list. There is one such list for each object, and the list shows all subjects who should have access to the object and what their access is. This approach differs from the directory list because there is one access control list per object; a directory is created for each subject. Although this difference seems small,
there are some significant advantages.

To see how, consider subjects A and S, both of whom have access to object F. The operating system will maintain just one access list for F, showing the access rights for A and S.the access control list can include general default entries for any users.

In this way, specific users can have explicit rights, and all other users can have a default set of rights. With this organization, a public file or program can be shared by all possible users of the system without the need for an entry for the object in the individual directory of each user.
[image: image71.png]Directory
Access List

Access Lists

File Pointer
BIBLIOG o—
TEMP .\
F .\
HELP.TXT .\

Access
User Rights
USER_A ORW
USER_B R
USER_S RW
USER_A ORW
USER_A ORW
USER_S R
USER_A R
USER_B R
USER_S R
USER_T R
SYSMGR RW
USER_SVCS 0]

Files

BIBLIOG

TEMP

HELP.TXT

Access Control List

The Multics operating system used a form of access control list in which each user belonged to three protection classes: a user, a group, and a compartment. The user designation identified a specific subject, and the group designation brought together subjects who had a common interest, such as coworkers on a project. The compartment confined an untrusted object; a program executing in one compartment could not access objects in another compartment without specific permission. The compartment was also a way to collect objects that were related, such as all files for a single project.
Access Control Matrix

We can think of the directory as a listing of objects accessible by a single subject, and the access list as a table identifying subjects that can access a single object. The data in these two representations are equivalent, the distinction being the ease of use in given situations. As an alternative, we can use an access control matrix, a table in which each row represents a subject, each column represents an object, and each entry is the set of access rights for that subject to that object.
 In general, the access control matrix is sparse (meaning that most cells are empty): Most subjects do not have access rights to most objects. The access matrix can be represented as a list of triples, having the form <subject, object, rights>. Searching a large number of these triples is inefficient enough that this implementation is seldom used.’

Access Control Matrix.
[image: image72.emf]
14.Explain Different Types of File protection techniques.

All “None Protection

In the original IBM OS operating systems, files were by default public. Any user could read, modify, or delete a file belonging to any other user. Instead of software- or hardware-based protection, the principal protection involved trust combined with ignorance. System designers supposed that users could be trusted not to read or modify others' files, because the users would expect the same respect from others. Ignorance helped this situation, because a user could access a file only by name ; presumably users knew the names only of those files to which they had legitimate access.

However, it was acknowledged that certain system files were sensitive and that the system administrator could protect them with a password. A normal user could exercise this feature, but passwords were viewed as most valuable for protecting operating system files. Two philosophies guided password use. Sometimes, passwords were used to control all accesses (read, write, or delete), giving the system administrator complete control over all files. But at other times passwords would control only write and delete accesses , because only these two actions affected other users. In either case, the password mechanism required a system operator's intervention each time access to the file began .

However, this all-or-none protection is unacceptable for several reasons.

· Lack of trust . The assumption of trustworthy users is not necessarily justified. For systems with few users who all know each other, mutual respect might suffice; but in large systems where not every user knows every other user, there is no basis for trust.

· All or nothing . Even if a user identifies a set of trustworthy users, there is no convenient way to allow access only to them.

· Rise of timesharing . This protection scheme is more appropriate for a batch environment, in which users have little chance to interact with other users and in which users do their thinking and exploring when not interacting with the system. However, on timesharing systems, users interact with other users. Because users choose when to execute programs, they are more likely in a timesharing environment to arrange computing tasks to be able to pass results from one program or one user to another.

· Complexity . Because (human) operator intervention is required for this file protection, operating system performance is degraded. For this reason, this type of file protection is discouraged by computing centers for all but the most sensitive data sets.

· File listings . For accounting purposes and to help users remember for what files they are responsible, various system utilities can produce a list of all files. Thus, users are not necessarily ignorant of what files reside on the system. Interactive users may try to browse through any unprotected files.

Group Protection

Because the all-or-nothing approach has so many drawbacks, researchers sought an improved way to protect files. They focused on identifying groups of users who had some common relationship. In a typical implementation, the world is divided into three classes: the user, a trusted working group associated with the user, and the rest of the users. For simplicity we can call these classes user, group, and world . This form of protection is used on some network systems and the Unix system.

All authorized users are separated into groups. A group may consist of several members working on a common project, a department, a class, or a single user. The basis for group membership is need to share . The group members have some common interest and therefore are assumed to have files to share with the other group members. In this approach, no user belongs to more than one group. (Otherwise, a member belonging to groups A and B could pass along an A file to another B group member.)

When creating a file, a user defines access rights to the file for the user, for other members of the same group, and for all other users in general. Typically, the choices for access rights are a limited set, such as {read, write, execute, delete}. For a particular file, a user might declare read-only access to the general world, read and write access to the group, and all rights to the user. This approach would be suitable for a paper being developed by a group, whereby the different members of the group might modify sections being written within the group. The paper itself should be available for people outside the group to review but not change.

A key advantage of the group protection approach is its ease of implementation. A user is recognized by two identifiers (usually numbers): a user ID and a group ID. These identifiers are stored in the file directory entry for each file and are obtained by the operating system when a user logs in. Therefore, the operating system can easily check whether a proposed access to a file is requested from someone whose group ID matches the group ID for the file to be accessed.

Although this protection scheme overcomes some of the shortcomings of the all-or-nothing scheme, it introduces some new difficulties of its own.

· Group affiliation . A single user cannot belong to two groups. Suppose Tom belongs to one group with Ann and to a second group with Bill. If Tom indicates that a file is to be readable by the group, to which group(s) does this permission refer? Suppose a file of Ann's is readable by the group; does Bill have access to it? These ambiguities are most simply resolved by declaring that every user belongs to exactly one group. (This restriction does not mean that all users belong to the same group.)

· Multiple personalities . To overcome the one-person one-group restriction, certain people might obtain multiple accounts, permitting them, in effect, to be multiple users. This hole in the protection approach leads to new problems, because a single person can be only one user at a time. To see how problems arise, suppose Tom obtains two accounts, thereby becoming Tom1 in a group with Ann and Tom2 in a group with Bill. Tom1 is not in the same group as Tom2, so any files, programs, or aids developed under the Tom1 account can be available to Tom2 only if they are available to the entire world. Multiple personalities lead to a proliferation of accounts, redundant files, limited protection for files of general interest, and inconvenience to users.

· All groups . To avoid multiple personalities, the system administrator may decide that Tom should have access to all his files any time he is active. This solution puts the responsibility on Tom to control with whom he shares what things. For example, he may be in Group1 with Ann and Group2 with Bill. He creates a Group1 file to share with Ann. But if he is active in Group2 the next time he is logged in, he still sees the Group1 file and may not realize that it is not accessible to Bill, too.

· Limited sharing . Files can be shared only within groups or with the world. Users want to be able to identify sharing partners for a file on a per-file basis, for example, sharing one file with ten people and another file with twenty others.

Single Permissions

In spite of their drawbacks, the file protection schemes we have described are relatively simple and straightforward. The simplicity of implementing them suggests other easy-to-manage methods that provide finer degrees of security while associating permission with a single file.

Password or Other Token

We can apply a simplified form of password protection to file protection by allowing a user to assign a password to a file. User accesses are limited to those who can supply the correct password at the time the file is opened. The password can be required for any access or only for modifications (write access).

Password access creates for a user the effect of having a different "group" for every file. However, file passwords suffer from difficulties similar to those of authentication passwords:

· Loss . Depending on how the passwords are implemented, it is possible that no one will be able to replace a lost or forgotten password. The operators or system administrators can certainly intervene and unprotect or assign a particular password, but often they cannot determine what password a user has assigned; if the user loses the password, a new one must be assigned.

· Use . Supplying a password for each access to a file can be inconvenient and time consuming.

· Disclosure . If a password is disclosed to an unauthorized individual, the file becomes immediately accessible. If the user then changes the password to reprotect the file, all the other legitimate users must be informed of the new password because their old password will fail.

· Revocation . To revoke one user's access right to a file, someone must change the password, thereby causing the same problems as disclosure.

Temporary Acquired Permission

The Unix operating system provides an interesting permission scheme based on a three-level user “group “world hierarchy. The Unix designers added a permission called set userid (suid) . If this protection is set for a file to be executed, the protection level is that of the file's owner , not the executor . To see how it works, suppose Tom owns a file and allows Ann to execute it with suid . When Ann executes the file, she has the protection rights of Tom, not of herself.

This peculiar-sounding permission has a useful application. It permits a user to establish data files to which access is allowed only through specified procedures.

Per-Object and Per-User Protection

The primary limitation of these file protection schemes is the ability to create meaningful groups of related users who should have similar access to one or more data sets. The access control lists or access control matrices described earlier provide very flexible protection. Their disadvantage is for the user who wants to allow access to many users and to many different data sets; such a user must still specify each data set to be accessed by each user. As a new user is added, that user's special access rights must be specified by all appropriate users.
15.Explain Different Attacks on Password.

How secure are passwords themselves ? Passwords are somewhat limited as protection devices because of the relatively small number of bits of information they contain.

Here are some ways you might be able to determine a user's password.

· Try all possible passwords.

· Try many probable passwords.

· Try passwords likely for the user.

· Search for the system list of passwords.

· Ask the user.

These suggestions are arranged in decreasing order of difficulty; the later ones are, or at least should be, less likely to succeed.

Exhaustive Attack

In an exhaustive or brute force attack , the attacker tries all possible passwords, usually in some automated fashion. Of course, the number of possible passwords depends on the implementation of the particular computing system. For example, if passwords are words consisting of the 26 characters AZ and can be of any length from 1 to 8 characters , there are 26 1 passwords of 1 character, 26 2 passwords of 2 characters, and 26 8 passwords of 8 characters. Therefore, the system as a whole has 26 1 + 26 2 + ... + 26 8 = 26 9 1 [image: image73.png]

 5 * 1012 or five million million possible passwords. That number seems intractable enough. If we were to use a computer to create and try each password at a rate of one password per millisecond, it would take on the order of 150 years to test all passwords. But if we can speed up the search to one password per microsecond, the work factor drops to about two months. This amount of time is reasonable if the reward is large. For instance, an intruder may try to break the password on a file of credit card numbers or bank account information.

But the break-in time can be made more tractable in a number of ways. Searching for a single particular password does not necessarily require all passwords to be tried; an intruder needs to try only until the correct password is identified. If the set of all possible passwords were evenly distributed, an intruder would likely need to try only half of the password space: the expected number of searches to find any particular password. However, an intruder can also use to advantage the fact that passwords are not evenly distributed. Because a password has to be remembered , people tend to pick simple passwords. This feature reduces the size of the password space.

Probable Passwords

Think of a word.

Is the word you thought of long? Is it uncommon? Is it hard to spell or to pronounce ? The answer to all three of these questions is probably no.

Penetrators searching for passwords realize these very human characteristics and use them to their advantage. Therefore, penetrators try techniques that are likely to lead to rapid success. If people prefer short passwords to long ones, the penetrator will plan to try all passwords but to try them in order by length. There are only 26 1 + 26 2 + 26 3 = 18,278 passwords of length 3 or less. At the assumed rate of one password per millisecond, all of these passwords can be checked in 18.278 seconds, hardly a challenge with a computer. Even expanding the tries to 4 or 5 characters raises the count only to 475 seconds (about 8 minutes) and 12,356 seconds (about 3.5 hours), respectively.

This analysis assumes that people choose passwords such as vxlag and msms as often as they pick enter and beer . However, people tend to choose names or words they can remember. Many computing systems have spelling checkers that can be used to check for spelling errors and typographic mistakes in documents. These spelling checkers sometimes carry online dictionaries of the most common English words. One contains a dictionary of 80,000 words. Trying all of these words as passwords takes only 80 seconds.

Passwords Likely for a User

If Sandy is selecting a password, she is probably not choosing a word completely at random. Most likely Sandy's password is something meaningful to her. People typically choose personal passwords, such as the name of a spouse, a child, a brother or sister, a pet, a street name, or something memorable or familiar. If we restrict our password attempts to just names of people (first names), streets , projects, and so forth, we generate a list of only a few hundred possibilities at most. Trying this number of passwords takes under a second! Even a person working by hand could try ten likely candidates in a minute or two.

Thus, what seemed formidable in theory is in fact quite vulnerable in practice, and the likelihood of successful penetration is frightening. Morris and Thompson [MOR79] confirmed our fears in their report on the results of having gathered passwords from many users, shown in Table .

Distribution of Actual Passwords.

	15
	0.5%
	were a single(!) ASCII character

	72
	2%
	were two ASCII characters

	464
	14%
	were three ASCII characters

	477
	14%
	were four alphabetic letters

	706
	21%
	were five alphabetic letters, all of the same case

	605
	18%
	were six lowercase alphabetic letters

	492
	15%
	were words in dictionaries or lists of names

	2831
	86%
	total of all above categories

16.Explain Different types of firewalls

Types of Firewalls

Firewalls have a wide range of capabilities. Types of firewalls include

· packet filtering gateways or screening routers

· stateful inspection firewalls

· application proxies

· guards

· personal firewalls

.

Packet Filtering Gateway

A packet filtering gateway or screening router is the simplest, and in some situations, the most effective type of firewall. A packet filtering gateway controls access to packets based on packet address (source or destination) or specific transport protocol type (such as HTTP web traffic). As described earlier in this chapter, putting ACLs on routers may severely impede their performance. But a separate firewall behind (on the local side) of the router can screen traffic before it gets to the protected network. Figure 7-35 shows a packet filter that blocks access from (or to) addresses in one network; the filter allows HTTP traffic but blocks traffic using the Telnet protocol.

Figure 7-35. Packet Filter Blocking Addresses and Protocols.

[image: image74.png]Remote
(Blocked)
Network |

For example, suppose an international company has three LANs at three locations throughout the world, as shown in Figure 7-36. In this example, the router has two sides: inside and outside. We say that the local LAN is on the inside of the router, and the two connections to distant LANs through wide area networks are on the outside. The company might want communication only among the three LANs of the corporate network. It could use a screening router on the LAN at 100.24.4.0 to allow in only communications destined to the host at 100.24.4.0 and to allow out only communications addressed either to address 144.27.5.3 or 192.19.33.0.

Figure 7-36. Three Connected LANs.

[image: image75.png]Address
144.27.53

Address
1002440

Address /

192.19.33.0

Packet filters do not "see inside" a packet; they block or accept packets solely on the basis of the IP addresses and ports. Thus, any details in the packet's data field (for example, allowing certain Telnet commands while blocking other services) is beyond the capability of a packet filter.

Packet filters can perform the very important service of ensuring the validity of inside addresses. Inside hosts typically trust other inside hosts for all the reasons described as characteristics of LANs. But the only way an inside host can distinguish another inside host is by the address shown in the source field of a message. Source addresses in packets can be forged, so an inside application might think it was communicating with another host on the inside instead of an outside forger. A packet filter sits between the inside network and the outside net, so it can know if a packet from the outside is forging an inside address, as shown in Figure 7-37. A screening packet filter might be configured to block all packets from the outside that claimed their source address was an inside address. In this example, the packet filter blocks all packets claiming to come from any address of the form 100.50.25. x (but, of course, it permits in any packets with destination 100.50.25. x).

Figure 7-37. Filter Screening Outside Addresses.

[image: image76.png]100.50.25.3

=] 100.50.25.x

&l
A B

100.5025.1 10050.25.2

Screening
Router

Subnet 100.50.25.x

The primary disadvantage of packet filtering routers is a combination of simplicity and complexity. The router's inspection is simplistic; to perform sophisticated filtering, the filtering rules set needs to be very detailed. A detailed rules set will be complex and therefore prone to error. For example, blocking all port 23 traffic (Telnet) is simple and straightforward. But if some Telnet traffic is to be allowed, each IP address from which it is allowed must be specified in the rules; in this way, the rule set can become very long.

Stateful Inspection Firewall

Filtering firewalls work on packets one at a time, accepting or rejecting each packet and moving on to the next. They have no concept of "state" or "context" from one packet to the next . A stateful inspection firewall maintains state information from one packet to another in the input stream.

One classic approach used by attackers is breaking an attack into multiple packets by forcing some packets to have very short lengths so that a firewall will not be able to detect the signature of an attack split across two or more packets. (Remember that with the TCP protocols, packets can arrive in any order, and the protocol suite is responsible for reassembling the packet stream in proper order before passing it along to the application.) A stateful inspection firewall would track the sequence of packets and conditions from one packet to another to thwart such an attack.

Application Proxy

Packet filters look only at the headers of packets, not at the data inside the packets. Therefore, a packet filter would pass anything to port 25, assuming its screening rules allow inbound connections to that port. But applications are complex and sometimes contain errors. Worse, applications (such as the e-mail delivery agent) often act on behalf of all users, so they require privileges of all users (for example, to store incoming mail messages so that inside users can read them). A flawed application, running with all users' privileges, can cause much damage.

An application proxy gateway , also called a bastion host , is a firewall that simulates the (proper) effects of an application so that the application will receive only requests to act properly. A proxy gateway is a two-headed device: It looks to the inside as if it is the outside (destination) connection, while to the outside it responds just as the insider would.

An application proxy runs pseudoapplications. For instance, when electronic mail is transferred to a location, a sending process at one site and a receiving process at the destination communicate by a protocol that establishes the legitimacy of a mail transfer and then actually transfers the mail message. The protocol between sender and destination is carefully defined. A proxy gateway essentially intrudes in the middle of this protocol exchange, seeming like a destination in communication with the sender that is outside the firewall, and seeming like the sender in communication with the real destination on the inside. The proxy in the middle has the opportunity to screen the mail transfer, ensuring that only acceptable e-mail protocol commands are sent to the destination.

As an example of application proxying, consider the FTP (file transfer) protocol. Specific protocol commands fetch (get) files from a remote location, store (put) files onto a remote host, list files (ls) in a directory on a remote host, and position the process (cd) at a particular point in a directory tree on a remote host. Some administrators might want to permit gets but block puts, and to list only certain files or prohibit changing out of a particular directory (so that an outsider could retrieve only files from a prespecified directory). The proxy would simulate both sides of this protocol exchange. For example, the proxy might accept get commands, reject put commands, and filter the local response to a request to list files.

To understand the real purpose of a proxy gateway, let us consider several examples.

· A company wants to set up an online price list so that outsiders can see the products and prices offered . It wants to be sure that (a) no outsider can change the prices or product list and (b) outsiders can access only the price list, not any of the more sensitive files stored inside.

· A school wants to allow its students to retrieve any information from World Wide Web resources on the Internet. To help provide efficient service, it wants to know what sites have been visited, and what files from those sites have been fetched ; particularly popular files will be cached locally.

· A government agency wants to respond to queries through a database management system. However, because of inference attacks against databases, the agency wants to restrict queries that return the mean of a set of fewer than five values.

· A company with multiple offices wants to encrypt the data portion of all e-mail to addresses at its other offices. (A corresponding proxy at the remote end will remove the encryption.)

· A company wants to allow dial-in access by its employees , without exposing its company resources to login attacks from remote nonemployees.

Each of these requirements can be met with a proxy. In the first case, the proxy would monitor the file transfer protocol data to ensure that only the price list file was accessed, and that file could only be read, not modified. The school's requirement could be met by a logging procedure as part of the web browser. The agency's need could be satisfied by a special-purpose proxy that interacted with the database management system, performing queries but also obtaining the number of values from which the response was computed and adding a random minor error term to results from small sample sizes. The requirement for limited login could be handled by a specially written proxy that required strong user authentication (such as a challenge “response system), which many operating systems do not require. These functions are shown in Figure 7-38.

Figure 7-38. Actions of Firewall Proxies.

[image: image77.png]Logging

WWW Access
N

Remote
File Fetches

The proxies on the firewall can be tailored to specific requirements, such as logging details about accesses. They can even present a common user interface to what may be dissimilar internal functions. Suppose the internal network has a mixture of operating system types, none of which support strong authentication through a challenge “response token. The proxy can demand strong authentication (name, password, and challenge “response), validate the challenge “response itself, and then pass on only simple name and password authentication details in the form required by a specific internal host's operating system.

The distinction between a proxy and a screening router is that the proxy interprets the protocol stream to an application, to control actions through the firewall on the basis of things visible within the protocol, not just on external header data.

Guard

A guard is a sophisticated firewall. Like a proxy firewall, it receives protocol data units, interprets them, and passes through the same or different protocol data units that achieve either the same result or a modified result. The guard decides what services to perform on the user's behalf in accordance with its available knowledge, such as whatever it can reliably know of the (outside) user's identity, previous interactions, and so forth. The degree of control a guard can provide is limited only by what is computable. But guards and proxy firewalls are similar enough that the distinction between them is sometimes fuzzy. That is, we can add functionality to a proxy firewall until it starts to look a lot like a guard.

Guard activities can be quite sophisticated, as illustrated in the following examples:

· A university wants to allow its students to use e-mail up to a limit of so many messages or so many characters of e-mail in the last so many days. Although this result could be achieved by modifying e-mail handlers, it is more easily done by monitoring the common point through which all e-mail flows, the mail transfer protocol.

· A school wants its students to be able to access the World Wide Web but, because of the slow speed of its connection to the web, it will allow only so many characters per downloaded image (that is, allowing text mode and simple graphics, but disallowing complex graphics, animation, music, or the like).

· A library wants to make available certain documents but, to support fair use of copyrighted matter, it will allow a user to retrieve only the first so many characters of a document. After that amount, the library will require the user to pay a fee that will be forwarded to the author.

· A company wants to allow its employees to fetch files via ftp . However, to prevent introduction of viruses, it will first pass all incoming files through a virus scanner. Even though many of these files will be nonexecutable text or graphics, the company administrator thinks that the expense of scanning them (which should pass) will be negligible.

Each of these scenarios can be implemented as a modified proxy. Because the proxy decision is based on some quality of the communication data, we call the proxy a guard. Since the security policy implemented by the guard is somewhat more complex than the action of a proxy, the guard's code is also more complex and therefore more exposed to error. Simpler firewalls have fewer possible ways to fail or be subverted.

Personal Firewalls

Firewalls typically protect a (sub)network of multiple hosts. University students and employees in offices are behind a real firewall. Increasingly, home users, individual workers, and small businesses use cable modems or DSL connections with unlimited, always-on access. These people need a firewall, but a separate firewall computer to protect a single workstation can seem too complex and expensive. These people need a firewall's capabilities at a lower price.

A personal firewall is an application program that runs on a workstation to block unwanted traffic, usually from the network. A personal firewall can complement the work of a conventional firewall by screening the kind of data a single host will accept, or it can compensate for the lack of a regular firewall, as in a private DSL or cable modem connection.

Just as a network firewall screens incoming and outgoing traffic for that network, a personal firewall screens traffic on a single workstation. A workstation could be vulnerable to malicious code or malicious active agents (ActiveX or Java applets), leakage of personal data stored on the workstation, and vulnerability scans to identify potential weaknesses. Commercial implementations of personal firewalls include Norton Personal Firewall from Symantec, McAfee Personal Firewall, and Zone Alarm from Zone Labs.

The personal firewall is configured to enforce some policy. For example, the user may decide that certain sites, such as computers on the company network, are highly trustworthy, but most other sites are not. The user defines a policy permitting download of code, unrestricted data sharing, and management access from the corporate segment, but not from other sites. Personal firewalls can also generate logs of accesses, which can be useful to examine in case something harmful does slip through the firewall.

Combining a virus scanner with a personal firewall is both effective and efficient. Typically, users forget to run virus scanners daily, but they do remember to run them occasionally, such as sometime during the week. However, leaving the virus scanner execution to the user's memory means that the scanner detects a problem only after the fact ”such as when a virus has been downloaded in an e-mail attachment. With the combination of a virus scanner and a personal firewall, the firewall directs all incoming e-mail to the virus scanner, which examines every attachment the moment it reaches the target host and before it is opened.

A personal firewall runs on the very computer it is trying to protect. Thus, a clever attacker is likely to attempt an undetected attack that would disable or reconfigure the firewall for the future. Still, especially for cable modem, DSL, and other "always on" connections, the static workstation is a visible and vulnerable target for an ever-present attack community. A personal firewall can provide reasonable protection to clients that are not behind a network firewall.

17.Compare Firewall Types

	Packet Filtering
	Stateful Inspection
	Application Proxy
	Guard
	Personal Firewall

	Simplest
	More complex
	Even more complex
	Most complex
	Similar to packet filtering firewall

	Sees only addresses and service protocol type
	Can see either addresses or data
	Sees full data portion of packet
	Sees full text of communication
	Can see full data portion of packet

	Auditing difficult
	Auditing possible
	Can audit activity
	Can audit activity
	Can ”and usually does ”audit activity

	Screens based on connection rules
	Screens based on information across packets ”in either header or data field
	Screens based on behavior of proxies
	Screens based on interpretation of message content
	Typically, screens based on information in a single packet, using header or data

	Complex addressing rules can make configuration tricky
	Usually preconfigured to detect certain attack signatures
	Simple proxies can substitute for complex addressing rules
	Complex guard functionality can limit assurance
	Usually starts in "deny all inbound" mode, to which user adds trusted addresses as they appear

18.Explain Different Types of IDSs

The two general types of intrusion detection systems are signature based and heuristic.Signature-based intrusion detection systems perform simple pattern-matching and report situations that match a pattern corresponding to a known attack type. Heuristic intrusion detection systems, also known as anomaly based , build a model of acceptable behavior and flag exceptions to that model; for the future, the administrator can mark a flagged behavior as acceptable so that the heuristic IDS will now treat that previously unclassified behavior as acceptable.

Signature-Based Intrusion Detection

A simple signature for a known attack type might describe a series of TCP SYN packets sent to many different ports in succession and at times close to one another, as would be the case for a port scan. An intrusion detection system would probably find nothing unusual in the first SYN, say, to port 80, and then another (from the same source address) to port 25. But as more and more ports receive SYN packets, especially ports that are not open, this pattern reflects a possible port scan. Similarly, some implementations of the protocol stack fail if they receive an ICMP packet with a data length of 65535 bytes, so such a packet would be a pattern for which to watch.

The problem with signature-based detection is the signatures themselves . An attacker will try to modify a basic attack in such a way that it will not match the known signature of that attack. For example, the attacker may convert lowercase to uppercase letters or convert a symbol such as "blank space" to its character code equivalent %20. The IDS must necessarily work from a canonical form of the data stream in order to recognize that %20 matches a pattern with a blank space. The attacker may insert malformed packets that the IDS will see, to intentionally cause a pattern mismatch; the protocol handler stack will discard the packets because of the malformation. Each of these variations could be detected by an IDS, but more signatures require additional work for the IDS, which reduces performance.

Of course, signature-based IDSs cannot detect a new attack for which a signature is not yet installed in the database. Every attack starts as a new attack at some time, and the IDS is helpless to warn of its existence.

Ideally, signatures should match every instance of an attack, match subtle variations of the attack, but not match traffic that is not part of an attack. However, this goal is grand but unreachable.

Heuristic Intrusion Detection

Because signatures are limited to specific, known attack patterns, another form of intrusion detection becomes useful. Instead of looking for matches, heuristic intrusion detection looks for behavior that is out of the ordinary. The original work in this area (for example, [TEN90]) focused on the individual, trying to find characteristics of that person that might be helpful in understanding normal and abnormal behavior. For example, one user might always start the day by reading e-mail, write many documents using a word processor, and occasionally back up files. These actions would be normal. This user does not seem to use many administrator utilities. If that person tried to access sensitive system management utilities, this new behavior might be a clue that someone else was acting under the user's identity. The approach has been extended to networks in [MUK94]. Later work (for example, [FOR96]) sought to build a dynamic model of behavior, to accommodate variation and evolution in a person's actions over time. The technique compares real activity with a known representation of normality.

Alternatively, intrusion detection can work from a model of known bad activity. For example, except for a few utilities (login, change password, create user), any other attempt to access a password file is suspect. This form of intrusion detection is known as misuse intrusion detection . In this work, the real activity is compared against a known suspicious area.

All heuristic intrusion detection activity is classified in one of three categories: good/ benign , suspicious, or unknown. Over time, specific kinds of actions can move from one of these categories to another, corresponding to the IDS's learning whether certain actions are acceptable or not.

As with pattern-matching, heuristic intrusion detection is limited by the amount of information the system has seen (to classify actions into the right category) and how well the current actions fit into one of these categories.

Stealth Mode

An IDS is a network device (or, in the case of a host-based IDS, a program running on a network device). Any network device is potentially vulnerable to network attacks. How useful would an IDS be if it itself were deluged with a denial-of-service attack? If an attacker succeeded in logging in to a system within the protected network, wouldn't trying to disable the IDS be the next step?

To counter those problems, most IDSs run in stealth mode , whereby an IDS has two network interfaces: one for the network (or network segment) being monitored and the other to generate alerts and perhaps other administrative needs. The IDS uses the monitored interface as input only; it never sends packets out through that interface. Often, the interface is configured so that the device has no published address through the monitored interface; that is, a router cannot route anything to that address directly, because the router does not know such a device exists. It is the perfect passive wiretap. If the IDS needs to generate an alert, it uses only the alarm interface on a completely separate control network. Such an architecture is shown in Figure 7-43.

Figure 7-43. Stealth Mode IDS Connected to Two Networks.

[image: image78.jpg]Alarm Network

Server
Server Server Server

Other IDS Types

Some security engineers consider other devices to be IDSs as well. For instance, to detect unacceptable code modification, programs can compare the active version of a software code with a saved version of a digest of that code. The tripwire program [KIM98] is the most well known software (or static data) comparison program. You run tripwire on a new system, and it generates a hash value for each file; then you save these hash values in a secure place (offline, so that no intruder can modify them while modifying a system file). If you later suspect your system may have been compromised, you rerun tripwire , providing it the saved hash values. It recomputes the hash values and reports any mismatches , which would indicate files that were changed.

System vulnerability scanners , such as ISS Scanner or Nessus , can be run against a network. They check for known vulnerabilities and report flaws found.

As we have seen, a honeypot is a faux environment intended to lure an attacker. It can be considered an IDS, in the sense that the honeypot may record an intruder's actions and even attempt to trace who the attacker is from actions, packet data, or connections.

UNIT III
INFORMATION GOVERNANCE

PART A-TWO MARK QUESTIONS
1.Define Data Governance.

Data governance is a process focused on managing the quality, consistency, usability, security, and availability of information. This process is closely linked to the notions of data ownership and stewardship

2.Define the term data stewardship

The concept of data stewardship is different from data ownership. Data stewards do not own the data and do not have complete control over its use. Their role is to ensure that adequate, agreed-upon quality metrics are maintained on a continuous basis. In order to be effective, data stewards should work with data architects, database administrators, ETL (Extract-Transform-Load) designers, business intelligence and reporting application architects, and business data owners to define and apply data quality metrics. These cross-functional teams are responsible for identifying deficiencies in systems, applications, data stores, and processes that create and change data and thus may introduce or create data quality problems

3.Discuss about Data Quality.(NOV/DEC 2017)

Data quality is one of the key components of any successful data strategy and data governance initiative, and is one of the core enabling requirements for Master Data Management and Customer Data Integration.
4.Define the term Canonical Data Format

 Canonical data format is a format that is independent of any specific application. It provides a level of abstraction from applications’ native data formats by supporting a common format that can either be used by all applications or may require transformation adapters that convert data between the canonical and native formats. Adding a new application or a new data source may only require a new adapter or modifying an old one, thus drastically reducing the impact on applications. A canonical format is often encoded in XML.

5.What is Loose Coupling Coupling

In software design, loose coupling refers to the design approach that avoids rigid, tightly coupled structures where changes to one component force that change to propagate throughout the systems, and where a failure or a poor performance of one component may bring the entire system down.

6.What is Business Rules Engine?
A business rules engine (BRE) is a software application or a system that is designed to manage and enforce business rules based on a specified stimulus, for example, an event of attribute value changes. Business rules engines are usually architected as pluggable software components that separate the business rules from the application code. This separation helps reduce the time, effort, and costs of application maintenance by allowing the business users to modify the rules as necessary without the need for application changes

7.What is Rule Set?
Rule Set A rule set is a collection of rules that apply to a particular event and must be evaluated together

8.What is Enterprise Information Integration?
Enterprise Information Integration (EII) is a set of technologies that leverage information collected and stored in the enterprise metadata repository to deliver accurate, complete, and correct data to all authorized consumers of such information without the need to create or use persistent data storage facilities
8.What is Master Data?
Master data is composed of those entities, relationships, and attributes that are critical for an enterprise and foundational to key business processes and application systems.
9.Define Master Data Management

Master Data Management (MDM) is the framework of processes and technologies

aimed at creating and maintaining an authoritative, reliable, sustainable, accurate,

and secure data environment that represents a “single and holistic version of the

truth,” for master data and its relationships, as well as an accepted benchmark used within an enterprise as well as across enterprises and spanning a diverse set of application systems, lines of business, channels, and user communities.

10.Define CDI

Customer Data Integration is a comprehensive set of technology componenets,services and business process that create,maintain and make available an accurate,timely,integrated and complete view of a customer across lines of business ,channels aand business partners.
11.Why we need Master Data Management now?

Master Data Management has become a universal requirement for almost any business and any industry.

Reasons:

· Regulatory Compliance

· Privacy and Data Protection

· Safety and security
12.List out the Benefits of Data Governance.

[image: image79.png]Assurance and evidence that data is managed effectively reduces
regulatory compliance risk and improves confidence in operational and
management decisions

Known individuals, their responsibilites and escalation route reduces the
time and effort to resolve data issues

Increased capability to respond to change and events faster through joint
understanding across users and IT

Reduced system design and integration effort

Reduced risk of departmental silos and duplication leading to
reconciliation effort and argument

13.List out the Benefits of Master Data Management

[image: image80.png]Master Data Management (MDM) is a methodology
for researching and implementing controls and
business rules around your data.

The many benefits to implementing Master Data
Management include;

- Preventing critical errors in data quality
- Preventing data loss, breach and negligence

- Improve efficiency and availability of information
needed for business decision making

14. Define Regulatory Compliance for MDM. (NOV/DEC 2017)
Regulatory compliance is an organization's adherence to laws, regulations, guidelines and specifications relevant to its business. Violations of regulatory compliance regulations often result in legal punishment, including federal fines.

Examples of regulatory compliance laws and regulations include the Dodd-Frank Act, Payment Card Industry Data Security Standard (PCI DSS) , Health Insurance Portability and Accountability Act (HIPAA), the Federal Information Security Management Act (FISMA) and the Sarbanes-Oxley Act (SOX)
As the number of rules has increased since the turn of the century, regulatory compliance has become more prominent in a variety of organizations. The trend has even led to the creation of corporate, chief and regulatorycompliance officer positions to hire employees whose sole focus is to make sure the organization conforms to stringent, complex legal mandates.

15.Discuss about Sarbabes-Oxley Act.

The Sarbanes-Oxley Act of 2002 (often shortened to SOX) is legislation enacted in response to the high-profile Enron and WorldCom financial scandals to protect shareholders and the general public from accounting errors and fraudulent practices in the enterprise. The act is administered by the Securities and Exchange Commission (SEC), which sets deadlines for compliance and publishes rules on requirements. Sarbanes-Oxley is not a set of business practices and does not specify how a business should store records; rather, it defines which records are to be stored and for how long

16.What is Gramm-Leach Bliley Act.

The Gramm-Leach-Bliley Act (GLB Act), also known as the Financial Modernization Act of 1999, is a federal law enacted in the United States to control the ways that financial institutions deal with the private information of individuals.
Part-B

1.Discuss in detail about the components of Master Data Management Platform. (NOV/DEC 2017)
Master Data Management platform.

• Customer Information File (CIF) Many companies have established LOB-specific or company-wide customer information file environments. Historically, CIF solutions used older file management or database management systems (DBMS) technology and represented some very basic point-in-time (static) information about the customers.
In other words, CIFs offer limited flexibility and extensibility and are not well suited to capturing and maintaining real-time customer data,customer privacy preferences, customer behavior traits, and customer relationships.Moreover, traditional CIF does not support new complex business processes, event management, and data element–level security constraints known as “data visibility” .Shortcomings like these prevent traditional CIF environments from becoming a cross-LOB integration vehicle of customer data. Although CIF systems do not deliver a “single version of the truth” about the customer, in most cases existing CIF systems are used to feed the company’s Customer Relationship Management systems. Moving forward, a CIF can and should be treated as a key source data file that feeds a new Master Data Management Customer Data Hub system.

• Extract, Transform, and Load (ETL) These tools are typically classified as data integration

tools and are used to extract data from multiple data sources, transform the data to a required target structure, and load the data into the target data store.A key functionality required from the ETL tool is its ability to perform complex transformations from source formats to the target; these transformations may include Boolean expressions, calculations, substitutions, reference table lookup, support for business rules for aggregation and consolidation, and many other features.

Contemporary ETL tools include components that perform data consistency and data quality analysis as well as the ability to generate and use metadata definitions for data attributes and entities. Many tools can create output data in XML format according to the predefined schema. Finally, the enterprise-class ETL tools are designed for high scalability and performance and can parallelize most of their operations to achieve acceptable throughput and processing times when dealing with very large data sets or complex transformations.

Although many ETL processes run in batch mode, best-in-class ETL tools can support near-real-time transformations and load functionality. Given that description, it is quite clear that an ETL component can and should be used to transform and load data into an MDM platform—Data Hub—both for the initial load and possibly for the incremental data updates that keep the Data Hub in sync with existing sources.

• Enterprise Data Warehouse (EDW)
Strictly speaking, a data warehouse is an information system that provides its users with current and historical decision support information that is hard to access or present using traditional operational data stores. An enterprise-wide data warehouse of customer information can become an integration vehicle where most of the customer data can be stored. Likewise, an

enterprise data warehouse of product information can act as an integration point for many product-related transactions.
Typically, EDW solutions support business intelligence (BI) applications and, in the case of customer domain, Customer Relationship Management (CRM) systems. EDW’s design, technology platform, and data schema are optimized to support the efficient storage of large amounts of data and the processing of complex queries against a large number of interconnected data tables that include current and historical information. Traditionally, companies use EDW systems as informational environments rather than operational systems that process real-time, transactional data.
Because EDW cleanses and rationalizes the data it manages in order to satisfy the needs of the consuming BI and CRM systems, an EDW becomes a good platform from which data should be loaded into the Data Hub.

• Operational data store (ODS) This technology allows transaction-level detail data records to be stored in a nonsummarized, query accessible, and long-lasting form.

An ODS supports transaction-level analysis and other applications that deal with

the low level of details. An ODS differs from a data warehouse in that it does not maintain summarized data, nor does it manage historical information. An ODS allows users to aggregate transaction-level data into higher-level attributes but does not support a drill-down into the underlying detail records. An ODS is frequently used in conjunction with the Enterprise Data Warehouse to provide the company with both historical and transactional real-time data.

Similar to the EDW, an ODS that contains customer or product data can and should be considered a valuable source of information for constructing an MDM solution.

• Data quality (DQ) technologies From the point of view of a business value proposition, the focus of data quality technologies and tools is to help all applications to produce meaningful and reliable results. These tools are especially important for delivering accurate business intelligence and decision support as well as improving customer retention, sales and customer service, customer experience, risk management, compliance, and fraud detection. Companies use data quality technologies to profile data, to report anomalies, and to standardize and “fix” data in order to correct data inconsistencies and known data quality issues, such as missing or invalid data. Although data quality tools are especially effective when dealing with the name and

address attributes of customer data records, they are also very useful for managing

data quality in other data domains. Thus, data quality tools and technologies are

key components of most Master Data Management solutions.
 • Enterprise Information Integration (EII) Enterprise Information Integration tools are frequently used to aggregate subsets of distributed data in memory or nonpersistent storage, usually in real time. Companies use EII solutions to perform search queries across distributed databases and aggregate the results of the queries at the application or presentation layer. Contrast that with the data integration.Solutions that aggregate and persist the information at the back end (that is, in a data warehouse or an MDM Data Hub).
 An EII engine queries a distributed database environment and delivers a virtualized aggregated data view that appears as if it came from a single source. EII engines are also used often in a service-oriented architecture (SOA) implementation as the data access and

abstraction components (we discuss SOA later in this chapter).

Some MDM implementations use EII technologies to provide users with a virtualized

total view of a master data without creating a persistent physical image of the

aggregation, thus providing additional data model flexibility for the target Data Hub.

• Customer Relationship Management (CRM) Customer Relationship Management

uses a set of technologies and business processes designed to help the company

understand the customer, improve customer experience, and optimize customerfacing

business processes across marketing, sales, and servicing channels. From the

architecture perspective, CRM systems often act as consumers of customer data and

are some of the primary beneficiaries of the MDM Data Hubs.

• Product Master Manufacturing companies manage a variety of complex products

and product hierarchies. Complex products consist of multiple parts, and those

parts contain lower-level components, materials, or parts. This hierarchy represents

what is often called a “Bill of Materials” (BOM). BOM management software helps

centralize and control complex BOM processes, reduce error rates, and improve

control over operational processes and costs.

An MDM system that is integrated with BOM management software can

significantly enhance an integrated multidomain view of the master data. For

example, a product characterized by BOM components can be integrated with

suppliers’ component data.

2.Explain in detail about the architecture of MDM.

MDM Design and Deployment Dimension

The Design and Deployment viewpoint addresses MDM consumption and reconciliation

architecture concerns, and the resulting MDM architecture styles. Armed with the architecture

framework approach, we can recognize that these “styles” represent architecture viewpoints

that determine the way the MDM system is intended to be used and be kept reliably in sync

with its data providers (data sources) and data consumers. These viewpoints represent an

intersection of the functional and data dimensions of the enterprise architecture framework at

the logical, conceptual, and contextual levels. The resulting design constructs are a direct

consequence of the different breadth and depth of the MDM data model coverage The architecture styles vary in the context of other dimensions of the enterprise architecture framework, including the organizational need and readiness to create and fully deploy a new system of records about customer data. And, of course, these architecture styles manifest themselves in different service-oriented architecture viewpoints.

The MDM architecture, design, and deployment styles include the following:

• External reference

• Registry

• Reconciliation engine

• Transaction hub

The underlying principle behind these styles is the fact that an MDM Data Hub data model may contain all data attributes about the data domain it manages, or just some attributes, while other attributes remain in their original data stores. It is logical to assume that the Data Hub can be the “master” of those master entities whose data attributes it manages or just arbitrates the entities and attributes across operational systems where the master data is created and maintained. This assumption is one of the drivers defining the MDM architecture styles. Let’s look at this issue in detail.

(i)External Reference Style In this case, an MDM Data Hub is a reference database pointing to

all source data stores but does not usually contain actual data for a given domain—for example, customer data for a customer domain, product for product domain, and so on:

• This is the most extreme case, where a Data Hub contains only a reference to the source or system of record data that continues to reside in the legacy data stores. In this case, the Data Hub acts as a special “directory” and points to the master data that continues to be created and updated by the existing legacy applications. This design option, known as the “External Reference Data Hub,” is the least complex of the Data Hub styles.

• One of the main architecture concerns of this style is the ability of the MDM Data Hub to maintain accurate, timely, and valid references to the master data at all times, which may require design focus on a reliable, just-in-time interconnection between source systems and the Data Hub, perhaps by using an enterprise-class messaging mechanism.

• A significant limitation of this architectural style is that the Data Hub does not hold any attributes, even those needed for matching and entity resolution. The Data Hub service responsible for matching has to access matching attributes across multiple systems in a federated fashion.

(ii)Registry Style This style of the MDM Data Hub architecture represents a Registry of unique

master entity identifiers (created using identity attributes). It maintains only the identifying attributes. These attributes are used by an entity resolution service to identify which master
entity records should be linked because they represent the same entity (i.e., customer,product, location, and so on). The Data Hub matches and links the records that share the same identity. The Data Hub creates and maintains links with data sources that were used to obtain the identity attributes. The MDM Data Hub exposes a service that returns a fully assembled holistic entity view to the consuming application either as retrieval or an assembly operation (for example, a customer, at run time). Using MDM for customer domain as an example, a Registry-style Data Hub should support the following features:

• Maintain some, at least matching customer profile attributes that it uses to generate a unique customer identifier. Such attributes may include customer name, address,date of birth, and externally assigned identifiers (social security number, an employer identification number, a business reference number such as a DUNS number, and so on).

• Automatically generate and maintain links with all upstream systems that maintain data about the customers. Consuming applications query the Registry for a given customer or a set of customers, and the Registry would use its customer identification number and legacy pointers or links and record merge rules to allow the application to retrieve and construct a view of the customer from the underlying data.

• Act as the “master” of the unique identifiers, and support arbitration of data conflicts by determining which attribute values in the source systems are better than others by applying attribute survivorship rules across multiple systems.

(iii)Reconciliation Engine This MDM architecture style is a system of record for some entity

attributes; it provides active synchronization between itself and the legacy systems.

• In this case, the Data Hub is the master for those data attributes that it actively maintains by supporting authoring of master data content. The Reconciliation Engine Data Hub style relies on the upstream source systems to maintain other data attributes. One implication of this approach is the fact that some applications that handle source or master data may have to be changed or redesigned based on the business processes, application interfaces, and the data they use. The same is true for the corresponding business processes. The other implication is that the Data

Hub has to maintain, create, and change those data attributes for which it is the master. The Data Hub has to propagate changes for these attributes to the systems that use these attributes. The result is a data environment that continuously synchronizes the data content among its participants to avoid data inconsistencies.

• A shortcoming is that the complexity of synchronization increases as some of the data attributes maintained in the Data Hub are derived from the data attributes maintained in other systems. For example, a typical Reconciliation Engine–style Data Hub for customer domain has to create and maintain unique customer identifications as well as references to the legacy systems and data stores where the customer data is sourced from or continues to reside.
(iv)Transaction Hub This is the most sophisticated option, in which the Data Hub becomes the

primary source of and the system of record for the entire master data domain, including appropriate reference pointers:

• This is the case where the Data Hub maintains practically all data attributes about the entity. For a given entity domain, such as a customer domain (individuals or businesses), the Data Hub becomes a “master” of the master entity information, and as such should be the source of all changes to any attribute about the master entity. In this case, the Data Hub has to be engineered as a complete transactional environment that maintains its data integrity and is the sole source of changes that it propagates to all downstream systems that use the customer data.

• The Transactional Hub has some profound implications for the overall environment, the existing applications, and business processes already in place. For example, an existing account maintenance application may have to undergo modifications to update the Data Hub instead of an existing legacy system, and appropriate synchronization mechanisms have to be in place to propagate and apply the changes from the Data Hub to some or all downstream systems. Moreover, most of the previously deployed transactions that change entity information should be redesigned to work directly with the Data Hub, which may also change existing business processes, workflows, and user navigation. This is the most complex case, which is known as a Full Transaction Hub.

• Practically speaking, the intrusiveness of the Transaction Hub style makes it a viable choice mostly in two scenarios:

• When dealing with a new enterprise that does not have a massive legacy infrastructure maintaining the master entity the Data Hub is supposed to resolve.

• When the current processes and applications already manage the master entity as a Transaction-style Data Hub. In this scenario, the new Data Hub is built to replace the existing master entity management system with a new system (for example, a customer-centric solution). For instance, it can be the case where the enterprise has already been using a home-grown Transaction-style MDM Data Hub and is looking to replace it with a more advanced vendor solution.

MDM and Use Pattern Dimension

The Use Pattern classification dimension differentiates MDM architectures based on how the master data is used.
Three primary use patterns for MDM data usage:
(i) Analytical MDM,

(ii) Operational MDM, and
(iii) Collaborative MDM.

• Analytical MDM supports business processes and applications that use master data primarily to analyze business performance and provide appropriate reporting and analytical capabilities, often by directly interfacing with business intelligence (BI) tools and packages. Analytical MDM tends to be read-mostly, it usually does not change or create source data in the operational systems, but it does cleanse and enrich data in the MDM Data Hub. From the overall system architecture view, Analytical MDM can be architected as a feed into the data warehouse and can create or enrich an accurate,integrated view of the master data inside the data warehouse. BI tools are typically deployed to access this cleansed, enriched, and integrated data for reporting, perform

deep analytics, and provide drill-through capabilities for the required level of detail.

• Operational MDM allows master data to be collected, changed, and used to process business transactions; Operational MDM is designed to maintain the semantic consistency of the master data affected by the transactional activity. Operational MDM provides a mechanism to improve the quality of the data in the operational systems, where the data is usually created. By design, Operational MDM systems ensure that the accurate, single version of the truth is maintained in the MDM Data Hub and propagated to the core systems used by existing and new processes and applications.

• Collaborative MDM allows its users to author master data objects and collaborate in the process of creation and maintenance of master data and its associated metadata.

3.Discuss in detail about the reference architecture of MDM.
Reference architecture is a high-level abstraction of a technical solution to a particular

problem domain; it is a set of interlinked components, services, processes, and interfaces organized into functional layers, where each layer provides services to the layers above and consumes services from the layers below. As such, reference architecture does not define specific technologies or implementation details.

The key value proposition of reference architecture is in its ability to help architects and

designers to define the functionality and placement of all architecture components in the context of the overall system and problem domain. In other words, reference architecture provides a blueprint and helps create a set of patterns for designing specific solution/system components and their interactions. That is why a reference architecture viewpoint is such a powerful tool for designing systems of MDM-level complexity and interdependencies.

Using this definition of the reference architecture, we can define an MDM reference architecture viewpoint as an industry- and data domain–agnostic architectural multilayered abstraction that consists of services, components, processes, and interfaces
[image: image81.png]Business Processes Layer

Proces Mgt Relaorsh Document

ContactMgmt | CampaignMgme | e Memt e =
Data Management Laer

Resoloion & e Metsdats|| Hierarchy || Enichment and

e ([] e [] | o] P
Data Rules Layer

Tacnity | | Aggrogmion& | | Symchmonization | | Vibiy || Trrsformation || Roles Caprre

Matching | | Spi Rlen Ruler Rules Ruler Ehgmt
Data Quality Layer

GUID | Taeney i Do Qualiy Teomsformarion

]| ety | Posimtestns Mgt e S
System Services Layer

Sy || Bt || Serviee [Tormacion

Vistlty e Aucit || Mgt || Orchewration || & State Mgt

Data Sources

The Data Management layer includes:

• Interface services, which expose a published and consistent entry point to request MDM services.

• Entity resolution and lifecycle management services, which enable entity recognition by resolving various levels of identities, and manage life stages of master data by supporting business interactions including traditional Create, Read, Update and Delete (CRUD) activities.

• Search services, for easy access to the information managed by the MDM Data Hub.

• (author), manage, customize/change, and approve definitions of master data (metadata), including hierarchies and entity groups. In addition, Authoring services enable users to manage (CRUD) specific instances of master data.

• The metadata management service, which provides support for data management aspects of metadata creation, manipulation, and maintenance. The metadata management service supports a metadata repository and relies on and supports internal Data Hub services such as attribute and record locator services and even key generation services.

• Hierarchy, relationships, and groupings management services, which deliver functions designed to manage master data hierarchies, groupings, and relationships. These can process requests from the authoring services.

• Enrichment and sustaining services, which are focused on acquiring and maintaining the correct content of master data, controlled by external data references and user-driven adjustments.

• The Data Rules layer includes key services that are driven by business-defined rules for entity resolution, aggregation, synchronization, visibility and privacy, and transformation.

• The Data Quality layer includes services that are designed to validate and enforce data quality rules, resolve entity identification and hierarchical attributes, and perform data standardization, reconciliation, and lineage. These services also generate and manage global unique identifiers as well as provide data quality profiling and reporting.

• The System Services layer includes a broad category of base services such as security, data visibility, event management (these are designed to react to predefined events detected within the master data by triggering appropriate actions), service management (orchestration, choreography), transaction and state management,system synchronization, and intersystem connectivity/data integration services, including
4.What are the key steps for designing the generic data governance strategy program.

 Define a data governance process. This is the key in enabling monitoring and reconciliation of data between Data Hub and its sources and consumers. The data governance process should cover not only the initial data load but also data refinement, standardization, and aggregation activities along the path of the end-to-end information flow. The data governance process includes such data management and data quality concerns as the elimination of duplicate entries and creation of linking and matching keys.

Design, select, and implement a data management and data delivery technology suite. In the case of a CDI Data Hub both data management and data delivery technologies play a key role in enabling a fully integrated CDI solution regardless of the architecture style of the Data Hub, be it a Registry, a Reconciliation Engine, or a Transaction Hub.

Enable auditability and accountability for all data under management that is in scope for data governance strategy. Auditability is extremely important as it not only provides verifiable records of the data access activities, but also serves as an invaluable tool to help achieve compliance with the current and emerging regulations including the Gramm-Leach-Bliley Act and its data protection clause, the Sarbanes-Oxley Act, and the Basel II Capital Accord. Auditability works hand in hand with accountability of data management and data delivery actions. Accountability requires the creation and empowerment of several data governance roles within the organization including data owners and data stewards. These roles should be created at appropriate levels of the organization and assigned to the dedicated organizational units or individuals.

5.Discuss in detail about the concepts of data synchronization.
As data content changes, a sophisticated and efficient synchronization activity between the “master” and the “slaves” has to take place on a periodic or an ongoing basis depending on the business requirements. Where the Data Hub is the master, the synchronization flows have to originate from the Hub toward other systems.
Complexity grows if an existing application or a data store acts as a master for certain attributes that are also stored in the Data Hub. In this case, every time one of these data attributes changes in the existing system, this change has to be delivered to the Data Hub for synchronization.
One good synchronization design principle is to implement one or many unidirectional synchronization flows as opposed to a more complex bidirectional synchronization. In either approach, the synchronization process may require transactional conflict-resolution mechanisms, compensating transaction design, and other synchronization and reconciliation functionality.

A variety of reasons drive the complexity of data synchronization across multiple distributed systems. In the context of a CDI Data Hub, synchronization becomes difficult to manage when the entire data environment that includes Data Hub and the legacy systems is in a peer-to-peer relationship. This is not a CDI-specific issue; however, if it exists, it may defeat the entire purpose and benefits of building a CDI platform. In this case, there is no clear master role assigned to a Data Hub or other systems for some or all data attributes, and thus changes to some “shared” data attributes may occur simultaneously but on different systems and applications.
Synchronizing these changes may involve complex business-rules-driven reconciliation logic. For example, consider a typical non-key attribute such as telephone number. Let’s assume that this attribute resides in the legacy Customer Information File (CIF), a customer service center (CRM) system, and also in the Data Hub, where it is used for matching and linking of records. An example of a difficult scenario would be as follows:

· A customer changes his/her phone number and makes a record of this change via an online self-service channel that updates CIF. At the same time, the customer contacts a service center and tells a customer service representative (CSR) about the change. The CSR uses the CRM application to make the change in the customer profile and contact records but mistypes the number. As the result, the CIF and the CRM systems now contain different information, and both systems are sending their changes to each other and to the Data Hub for the required record update.

· If the Data Hub received two changes simultaneously, it will have to decide which information is correct or should take precedence before the changes are applied to the Hub record.

· If the changes arrive one after another over some time interval, the Data Hub needs to decide if the first change should override the second, or vice versa. This is not a simple “first-in first-serve” system since the changes can arrive into the Data Hub after the internal CIF and CRM processing is completed, and their timing does not have to coincide with the time when the change transaction was originally applied.
· Of course, you can extend this scenario by imagining a new application that accesses the Data Hub and can make changes directly to it. Then all systems participating in this change transaction are facing the challenge of receiving two change records and deciding which one to apply if any.
This situation is not just possible but also quite probable, especially when you consider that the Data Hub has to be integrated into an existing large enterprise data and application environment. Of course, should the organization implement a com prehensive data governance strategy and agree to recognize and respect data owners and data stewards, it will be in a position to decide on a single ownership for each data attribute under management. Unfortunately, not every organization is successful in implementing these data management structures. Therefore, we should consider defining conceptual Data Hub components that can perform data synchronization and reconciliation services in accordance with a set of business rules enforced by a business rules engine (BRE).
6.Explain in detail about components and engines of Business Rule Engine.
At a minimum, a full-function BRE will include the following components:

· Business Rule Repository A database that stores the business rules defined by the business users

· Business Rule Designer/Editor An intuitive, easy-to-use, front-end application and a user interface that allows users to define, design, document, and edit business rules

· A Query and Reporting Component Allows users and rules administrators to query and report existing rules

· Rules Engine Execution Core Actual code that enforces the rules

There are several types of business rules engines available today that differ by at least the following two dimensions: by the way they enforce the rules and by the types of rules they support. The first dimension differentiates the engines that interpret business rules in a way similar to a script execution, from the engines that “compile” business rules into an internal executable form to drastically increase the performance of the engine. The second dimension is driven by the types of rules—inference rules and reaction rules:

· Inference Engines support complex rules that require an answer to be inferred based on conditions and parameters. For example, an Inference BRE would answer a question like “Should this customer be offered an increased credit line?”

· Reaction Rules Engines evaluate reaction rules automatically based on the context of the event. The engine would provide an automatic reaction in the form of real-time message, directive, feedback, or alert to a designated user. For example, if the customer age in the Data Hub was changed to qualify for mandatory retirement distribution, the reaction BRE would initiate the process of the retirement plan distribution by contacting an appropriate plan administrator.

7. Explain in detail about data quality tools and technology.
There are many tools that automate portions of the tasks associated with cleansing, extracting, loading, and auditing data from existing data stores into a new target environment, be it a data warehouse or a CDI Data Hub. Most of these tools fall into several major categories:

 Auditing tools These tools enhance the accuracy and correctness of the data at the source. These tools generally compare the data in the source database to a set of business rules that are either explicitly defined or automatically inferred from a scan operation of the data file or a database catalog. Auditing tools can determine the cardinality of certain data attributes, value ranges of the attributes in the data set, and the missing and incomplete data values, among other things. These tools would produce various data quality reports and can use their output to automate certain data cleansing and data correction operations.

 Data cleansing tools These tools would employ various deterministic, probabilistic or machine learning techniques to correct the data problems discovered by the auditing tools. These tools generally compare the data in the data source to a set of business rules and domain constraints stored in the metadata repository or in an external rules repository. Traditionally, these tools were designed to access external, reference data such as a valid name and address file from an external “trusted” data provider (e.g., Acxiom or Dun & Bradstreet), or an authoritative postal information file (e.g., National Change of Address [NCOA] file), or to use a service that validates social security numbers. The data cleansing process improves the quality of the data and potentially adds new, accurate content. Therefore, this process is sometimes referred to as data enrichment.

 Data parsing and standardization tools The parsers would break a record into atomic units that can be used in subsequent steps. For example, such a tool would parse one contiguous address record into separate street, city, state, and zip code fields. Data standardization tools convert the data attributes to what is often called a canonical format or canonical data model—a standard format used by all components of the data acquisition process and the target Data Hub.

 Data extraction, transformation, and loading (ETL) tools are not data quality tools in the pure sense of the term. ETL tools are primarily designed to extract data from known structures of the source systems based on prepared and validated source data mapping, transforming input formats of the extracted fi les into a predefi ned target data store format (e.g., a Data Hub), and loading the transformed data into a target data environment, e.g., the Data Hub. Since ETL tools are aware of the target schema, they can prepare and load the data to preserve various integrity constraints including referential integrity and the domain integrity constraints. They can fi lter out records that fail a data validity check, and usually produce exception reports used by data stewards to address data quality issues discovered at the load stage. This functionality helps ensure data quality and integrity of the target data store, which is the reason we mentioned ETL tools in this section. Hybrid packages These packages may contain a complete set of ETL components enriched by a data parser and a standardization engine, the data audit components, and the data cleansing components. These extract, parse, standardize, cleans, transform, and load processes are executed by a hybrid package software in sequence and load consistently formatted and cleansed data into the Data Hub.

8. Explain in detail about benefits and various categories of Meta Data.
Metadata provides a number of very important benefits to the enterprise, including:

 Consistency of definitions Metadata contains information about data that helps reconcile the difference in terminology such as “clients” and “customers,” “revenue” and “sales,” etc.

 Clarity of relationships Metadata helps resolve ambiguity and inconsistencies when determining the associations between entities stored throughout data environment. For example, if a customer declares a “beneficiary” in one application, and this beneficiary is called a “participant” in another application, metadata definitions would help clarify the situation.

 Clarity of data lineage Metadata contains information about the origins of a particular data set and can be granular enough to define information at the attribute level; metadata may maintain allowed values for a data attribute, its proper format, location, owner, and steward. Operationally, metadata may maintain auditable information about users, applications, and processes that create, delete, or change data, the exact timestamp of the change, and the authorization that was used to perform these actions.

There are three broad categories of metadata:

 Business metadata includes definitions of data files and attributes in business terms. It may also contain definitions of business rules that apply to these attributes, data owners and stewards, data quality metrics, and similar information that helps business users to navigate the “information ocean.” Some reporting and business intelligence tools provide and maintain an internal repository of business-level metadata definitions used by these tools.

 Technical metadata is the most common form of metadata. This type of metadata is created and used by the tools and applications that create, manage, and use data. For example, some best-in-class ETL tools maintain internal metadata definitions used to create ETL directives or scripts. Technical metadata is a key metadata type used to build and maintain the enterprise data environment. Technical metadata typically includes database system names, table and column names and sizes, data types and allowed values, and structural information such as primary and foreign key attributes and indices. In the case of CDI architecture, technical metadata will contain subject areas defining attribute and record location reference information.

 Operational metadata contains information that is available in operational systems and run-time environments. It may contain data file size, date and time of last load, updates, and backups, names of the operational procedures and scripts that have to be used to create, update, restore, or otherwise access data, etc.

All these types of metadata have to be persistent and available in order to provide necessary and timely information to manage often heterogeneous and complex data environments such as those represented by various Data Hub architectures. A metadata management facility that enables collection, storage, maintenance, and dissemination of metadata information is called a metadata repository.
UNIT IV
 INFORMATION ARCHITECTURE
PART A-TWO MARK QUESTIONS
1.Define Information Architecture. (NOV/DEC 2017)
· The structural design of shared information environments.

· The combination of organization, labeling, search, and navigation systems within web sites and intranets.

· The art and science of shaping information products and experiences to support usability and findability.

· An emerging discipline and community of practice focused on bringing principles of design and architecture to the digital landscape.

2. Name the components of Information Architecture.
· Organization systems How we categorize information, e.g., by subject or chronology. Labeling systems How we represent information, e.g., scientific terminology (“Acer”) or lay terminology (“maple”).

· Navigation systems How we browse or move through information, e.g., clicking through a hierarchy.

· Searching systems How we search information, e.g., executing a search query against an index.
3. Name the “Invisible” Components of Information Architecture.

· Controlled vocabularies and thesauri
· Retrieval algorithms
· Best bets
4. State the challenges in organizing information.
· Ambiguity

· Heterogeneity

· Differences in Perspectives

· Internal Politics

5.Define Heterogeneity.

Heterogeneity refers to an object or collection of objects composed of unrelated or

unlike parts.
6. Define the terms organization scheme and organization structure.

An organization scheme defines the shared characteristics of content items and influences the logical grouping of those items. An organization structure defines the types of relationships between content items and groups.
7. What is meant by Exact Organization Schemes?

· Exact or “objective” organization schemes divide information into well-defined and mutually exclusive sections. The alphabetical organization of the phone book’s white pages is a perfect example. If you know the last name of the person you are looking for, navigating the scheme is easy. “
· This is called known-item searching.

· No ambiguity is involved.
· The problem with exact organization schemes is that they require users to know the specific name of the resource they are looking for.

· Exact organization schemes are relatively easy to design and maintain because there is little intellectual work involved in assigning items to categories.

· They are also easy to use.

8. Name few frequently used Exact Organizing schemes.

· Alphabetical-An alphabetical organization scheme is the primary organization scheme for encyclopedias and dictionaries

· Chronological-Certain types of information lend themselves to chronological organization

· Geographical-Place is often an important characteristic of information.

9. Define Ambiguous Organization Schemes.

· Ambiguous or “subjective” organization schemes divide information into categories that defy exact definition. They are mired in the ambiguity of language and organization, not to mention human subjectivity.
· They are difficult to design and maintain.
· They can be difficult to use
10. Name the types of Ambiguous Organization Schemes.

· Topic-Organizing information by subject or topic is one of the most useful and Challenging approaches.
· Task-Task-oriented schemes organize content and applications into a collection of processes, functions, or tasks.
· Metaphor-Metaphors are commonly used to help users understand the new by relating it to the familiar.
· Hybrids-The power of a pure organization scheme derives from its ability to suggest a simple mental model that users can quickly understand. Users easily recognize an audience specific or topical organization.
11. Define Taxonomy and give the rules to design taxonomy.

 The foundation of almost all good information architectures is a well-designed hierarchy or taxonomy.
 Rules:

· Hierarchical categories should be mutually exclusive
· It is important to consider the balance between breadth and depth in your taxonomy. Breadth refers to the number of options at each level of the hierarchy. Depth refers to the number of levels in the hierarchy

 12. Define poly hierarchical.

 Taxonomies that allow cross-listing are known as polyhierarchical.
 13. Define Hypertext.
 Hypertext is a relatively recent and highly nonlinear way of structuring information. A hypertext system involves two primary types of components: the items or chunks of information that will be linked, and the links between those chunks.
 14. Name the types of Navigation Systems.

 Embedded navigation systems
1. Global

2. Local

3. contextual
Supplemental navigation systems
1. Sitemaps

2. indexes

3. guides
15.Define Global Navigation systems.

 By definition, a global navigation system is intended to be present on every page throughout a site. It is often implemented in the form of a navigation bar at the top of each page. These site-wide navigation systems allow direct access to key areas and functions, no matter where the user travels in the site’s hierarchy. Because global navigation bars are often the single consistent navigation element in the site, they have a huge impact on usability.
16. Define local navigation systems

 Local navigation systems that enable users to explore the immediate area. These local navigation systems and the content to which they provide access are often so different that these local areas are referred to as subsites, or sites within sites. Subsites exist for two primary reasons. First, certain areas of content and functionality really do merit a unique navigation approach. Second, due to the decentralized nature of large organizations, different groups of people are often responsible for different content areas, and each group may decide to handle navigation differently.

17. Define contextual navigation systems

 Contextual navigation supports associative learning. Users learn by exploring the relationships you define between items. They might learn about useful products they didn’t know about, or become interested in a subject they’d never considered before. Contextual navigation allows you to create a web of connective tissue that benefits users and the organization.
18.Define Sitemap. (NOV/DEC 2017)
 Sitemap presents the top few levels of the information hierarchy. It provides a broad view of the content in the web site and facilitates random access to segmented portions of that content. A sitemap can employ graphical or text-based links to provide the user with direct access to pages of the site.
19. State the rules to be followed by a graphical designer while designing Sitemap.

· Reinforce the information hierarchy so the user becomes increasingly familiar with how the content is organized.

· Facilitate fast, direct access to the contents of the site for those users who know what they want.

· Avoid overwhelming the user with too much information. The goal is to help, not scare, the user.
20. What is the use of Site Indexes?

 Similar to the back-of-book index found in many print materials, a web-based index presents keywords or phrases alphabetically, without representing the hierarchy. Unlike a table of contents, indexes are relatively flat, presenting only one or two levels of depth. Therefore, indexes work well for users who already know the name of the item they are looking for. A quick scan of the alphabetical listing will get them where they want to go; there’s no need for them to understand where you’ve placed that item within your hierarchy.
21. Define Guides.

 Guides often serve as useful tools for introducing new users to the content and functionality of a web site. They can also be valuable marketing tools for restricted-access web sites (such as online publications that charge subscription fees), enabling you to show potential customers what they will get for their money. And, they can be valuable internally, providing an opportunity to showcase key features of a redesigned site to colleagues, managers, and venture capitalists.
22. Mention the Rules of Thumb for Designing Guides.

· The guide should be short.

· At any point, the user should be able to exit the guide.

· Navigation (Previous, Home, Next) should be located in the same spot on every page so that users can easily step back and forth through the guide.

· The guide should be designed to answer questions.

· Screenshots should be crisp, clear, and optimized, with enlarged details of key features.

· If the guide includes more than a few pages, it may need its own table of contents.

23. What labeling is and why it’s important.

 Labeling is a form of representation. Just as we use spoken words to represent concepts and thoughts, we use labels to represent larger chunks of information in our web sites. For example, “Contact Us” is a label that represents a chunk of content, often including a contact name, an address, and telephone, fax, and email information.
So the goal of a label is to communicate information efficiently; that is, to convey meaning without taking up too much of a page’s vertical space or a user’s cognitive space.
Labels should educate users about new concepts and help them quickly identify familiar ones.

24. Name the Varieties of Labels.

· Textual Labels

· Iconic Labels

25.Name the types of Textual Labels.

· Contextual links-Hyperlinks to chunks of information on other pages or to another location on the same page
· Headings-Labels that simply describe the content that follows them, just as print headings do
· Navigation system choices-Labels representing the options in navigation systems
· Index terms-Keywords, tags, and subject headings that represent content for searching or browsing.
26. What is meant by card sorting?

Card sort exercises are one of the best ways to learn how your users would use information.

There are two basic varieties of card sorts: open and closed. Open card sorts allow subjects to cluster labels for existing content into their own categories and then label those categories (and clearly, card sorting is useful when designing organization systems as well as labeling systems). Closed card sorts provide subjects with existing categories and ask them to sort content into those categories.

PART B

1. Mention few sources of Information Architect.

Graphic design and information design

Many of the people who have written about and practice information architecture are graphic designers by training. This is not surprising, as both graphic design and information design involve much more than creating pretty pictures. These professions are geared more toward creating relationships between visual elements and determining how those elements can be integrated as a whole to communicate more effectively.

Information and library science

Our backgrounds in information science and librarianship have proven very useful in dealing with the relationships between pages and other elements that make up a whole site. Librarians have a long history of organizing and providing access to information and are trained to work with searching, browsing, and indexing technologies. Forward-looking librarians understand that their expertise applies in new arenas far beyond the library walls.

Journalism

Journalists, like librarians, are trained at organizing information, but in a setting that places special emphasis on timeliness. If your web site is geared toward delivering dynamic information, such as a news service or online magazine, someone with a background in journalism might have a great sense of how this information could be best organized and delivered. Because of their writing experience, journalists are also good candidates for architecting sites that will have high levels of edited content.
Usability engineering

Usability engineers are experts at testing and evaluating how people work with systems. These human–computer interaction professionals measure such criteria as how long it takes users to learn how to use a system, how long it takes them to complete tasks and find answers, and how many errors they make along the way. Of all the disciplines we list, usability engineering is probably the most scientific in its view of users and the quality of their experiences.
Marketing

Marketing specialists are expert at understanding audiences and communicating messages effectively. They are particularly valuable in the design of customerfacing web sites, where product sales and brand are critical to success. Marketing audience. We’ve run into a number of “online merchandisers” who have become expert information architects.

Computer science

Programmers and software developers bring important skills and sensitivities to information architecture, especially to “bottom-up” processes. For example, developers are often excellent at modeling content and metadata for inclusion in a database or content management system. They’re also great at figuring out how all of the component systems and technologies of an information architecture fit together.

Technical writing

Professionals who have spent time writing technical documentation or developing online help systems are often well-sensitized to both the needs of users and the potential for structuring, labeling, and describing textual content.

Architecture

While the transition from bricks and mortar to bits and bytes is obviously a big move, we actually know quite a few building architects turned information architects. These folks tend to have a great deal of experience studying people’s needs and seeking behaviors, and an excellent foundation in the concepts and challenges surrounding strategy and design.

Product management

Many information architects play the role of “orchestra conductor.” They understand how to tap the motivations and talents of a diverse group of professionals, creating a whole that’s greater than the sum of its parts. People with a background in product, program, or project management can become very effective information architects, particularly in the areas of strategy formation and interdisciplinary team management.
2. Explain Information Ecology.

We use the concept of an “information ecology” composed of users, content, and context to address the complex dependencies that exist. And we draw upon our trusty Venn diagram to help people visualize and understand these relationships.
The three circles illustrate the interdependent nature of users, content, and context within a complex, adaptive information ecology.

In short, we need to understand the business goals behind the web site and the resources available for design and implementation. We need to be aware of the nature and volume of content that exists today and how that might change a year from now.

And we must learn about the needs and information-seeking behaviors of our major audiences. Good information architecture design is informed by all three areas.
[image: image82.emf]
 Three Circles of Information Ecology.

Context

All web sites and intranets exist within a particular business or organizational context. Whether explicit or implicit, each organization has a mission, goals, strategy, staff, processes and procedures, physical and technology infrastructure, budget, and culture. This collective mix of capabilities, aspirations, and resources is unique to each organization.
Does it then follow that the information architecture of each organization must be unique? After all, companies buy generic office furniture. They invest in standard technology platforms. They even outsource important activities to vendors that service their competitors.
Still, the answer is a resounding yes. Information architectures must be uniquely matched to their contexts. The vocabulary and structure of your web site and your intranet is a major component of the evolving conversation between your business and your customers and employees. It influences how they think about your products and services. It tells them what to expect from you in the future.
 It invites or limits interaction between customers and employees. Your information architecture

Provides perhaps the most tangible snapshot of your organization’s mission, vision, values, strategy, and culture. Do you really want that snapshot to look like that of your competitor? As we’ll explain later in more detail, the key to success is understanding and alignment.
First, you need to understand the business context. What makes it unique? Where is the business today and where does it want to be tomorrow? In many cases, you’re dealing with tacit knowledge. It’s not written down anywhere; it’s in people’s heads and has never been put into words. We’ll discuss a variety of methods for extracting and organizing this understanding of context. Then, you need to find ways to align the information architecture with the goals, strategy, and culture of the business. We’ll discuss the approaches and tools that enable this custom configuration.

Content

We define “content” very broadly to include the documents, applications, services, schema, and metadata that people need to use or find on your site. To employ a technical term, it’s the stuff that makes up your site. Our library backgrounds will be evident here in our bias toward textual information, and that’s not such a bad thing, given the heavily textual nature of many web sites and intranets. Among other things, the Web is a wonderful communication tool, and communication is built upon words and sentences trying to convey meaning. Of course, we also recognize the Web as a tool for tasks and transactions, a flexible technology platform that supports buying and selling, calculating and configuring, sorting and simulating. But even the most task-oriented e-commerce web site has “content” that customers must be able to find.

As you survey content across a variety of sites, the following facets bubble to the surface as distinguishing factors of each information ecology.
Ownership

Who creates and owns the content? Is ownership centralized within a content authoring group or distributed among functional departments? How much content is licensed from external information vendors? The answers to these questions play a huge role in influencing the level of control you have over all the other dimensions.

Format

Web sites and intranets are becoming the unifying means of access to all digital formats within the organization. Oracle databases, product catalogs, Lotus Notes discussion archives, technical reports in MS Word, annual reports in PDF,office-supply purchasing applications, and video clips of the CEO are just a few of the types of documents, databases, and applications you’ll find on a given site.

Structure

All documents are not created equal. An important memo may be fewer than 100 words. A technical manual may be more than 1,000 pages. Some information systems are built around the document paradigm, with the fully integrated document as the smallest discrete unit. Other systems take a content component or digital asset approach, leveraging some form of structural markup (XMLor SGML, for example) to allow management and access at a finer level of granularity.
Metadata
To what extent has metadata that describes the content and objects within your site already been created? Have documents been tagged manually or automatically? What’s the level of quality and consistency? Is there a controlled vocabulary in place? Or have users been allowed to supply their own “folksonomic” tags to the content? These factors determine how much you’re starting from scratch with respect to both information retrieval and content management.
Volume

How much content are we talking about? A hundred applications? A thousand pages? A million documents? How big is your web site? Dynamism What is the rate of growth or turnover? How much new content will be added next year? And how quickly will it go stale? All of these dimensions make for a unique mix of content and applications, which in turn suggests the need for a customized information architecture.
Users

When we worked on the first corporate web site for Borders Books & Music, back in the mid-90s before Amazon became a household name, we learned a lot about how customer research and analysis was applied towards the design and architecture of physical bookstores.
Borders had a clear understanding of how the demographics, aesthetic preferences, and purchasing behaviors of their customers differed from those of Barnes & Noble. It is no mistake that the physical layout and the selection of books differ significantly between these two stores, even within the same town. They are different by design.
And that difference is built upon an understanding of their unique customer or market segments. Differences in customer preferences and behaviors within the physical world translate into different information needs and information-seeking behaviors in the context of web sites and intranets. For example, senior executives may need to find a few good documents on a particular topic very quickly.
 Research analysts may need to find all the relevant documents and may be willing to spend several hours on the hunt. Managers may have a high level of industry knowledge but low navigation and searching proficiency. Teenagers may be new to the subject area but really know how to handle a search engine.

Do you know who’s using your web site? Do you know how they’re using it? And perhaps most importantly, do you know what information they want from your site? These are not questions you can answer in brainstorming meetings or focus groups. As our friend and fellow information architect Chris Farnum likes to say, you need to get out there in the real world and study your “users in the mist.”
3.Name the different Information needs of users.

The perfect catch

Sometimes users really are looking for the right answer. Let’s think of that as fishing with a pole, hoping to hook that ideal fish. What is the population of San Marino? You go to the CIA Fact Book or some other useful site that’s jampacked with data, and you hook in that number (it’s 29,251, by the way). And you’re done, just as the too-simple model would have it.

Lobster trapping

What about the times you’re looking for more than just a single answer? Let’s say you’re hoping to find out about good bed-and-breakfast inns in Stratford, Ontario. Or you want to learn something about Lewis and Clark’s journey of exploration. Or you need to get a sense of what sort of financial plans can help you save for retirement. You don’t really know much about what you’re looking for, and aren’t ready to commit to retrieving anything more than just a few useful items, or suggestions of where to learn more. You’re not hoping to hook the perfect fish, because you wouldn’t know it if you caught it. Instead, you’re setting out the equivalent of a lobster trap—you hope that whatever ambles in will be useful, and if it is, that’s good enough. Perhaps it’s a few candidate restaurants that you’ll investigate further by calling and checking their availability and features. Or maybe it’s a motley assemblage of Lewis and Clark stuff, ranging from book reviews to a digital version of Clark’s diary to information about Lewis & Clark College in Oregon. You might be happy with a few of these items, and toss out the rest.

Indiscriminate driftnetting

Then there are times when you want to leave no stone unturned in your search for information on a topic. You may be doing research for a doctoral thesis, or performing competitive intelligence analysis, or learning about the medical condition affecting a close friend, or, heck, ego surfing. In these cases, you want to catch every fish in the sea, so you cast your driftnets and drag up everything you can.
I’ve seen you before, Moby Dick...

There’s some information that you’d prefer to never lose track of, so you’ll tag it so you can find it again. Thanks to social bookmarking services like del.icio.us— which were primarily intended to support refindability—it’s now possible to toss a fish back in the sea with the expectation of finding it again.

[image: image83.emf]
Four common information needs

4.Explain the Information seeking behaviors of users.

There are two other major aspects to seeking behaviors: integration and iteration. We often integrate searching, browsing, and asking in the same finding session. Figure 3-3 shows how you might search your corporate intranet for guidelines on traveling abroad. You might first browse your way through the intranet portal to the HR site, browse the policies area, and then search for the policy that includes the string “international travel.” If you still didn’t get your question answered, you might send an email to Biff, the person responsible for that policy, to ask exactly what your per diem will be while spending the week in Timbuktu. Let’s hope your intranet’s information architecture was designed to support such integration!

Figure 3-3 also illustrates the iteration you may go through during one finding session. After all, we don’t always get things right the first time. And our information needs may change along the way, causing us to try new approaches with each new iteration. So, while you may have begun with a broad quest for “guidelines on traveling abroad,” you might be satisfied to find something as specific as “recommended per diem in Timbuktu” by the time you’re done. Each iteration of searching, browsing, asking, and interacting with content can greatly impact what it is we’re seeking.[image: image84.emf]
These different components of information-seeking behaviors come together in complex models, such as the “berry-picking” model* developed by Dr. Marcia Bates of the University of Southern California. In this model (shown in Figure 3-4), users start with an information need, formulate an information request (a query), and then move iteratively through an information system along potentially complex paths, picking bits of information (“berries”) along the way. In the process, they modify their information requests as they learn more about what they need and what information is available from the system.
[image: image85.emf]
 The berry-picking diagram looks messy, much more so than the “too-simple” model. It should; tIf the berry-picking model is common to your site’s users, you’ll want to look for ways to support moving easily from search to browse and back again. Yahoo! Provides one such integrated approach to consider: you can search within the subcategories you find through browsing, as shown in Figure 3-5. And you can browse through categories that you find by searching, as shown in Figure 3-6. That’s the way our minds often work. After all, we’re not automatons.[image: image86.emf]
Another useful model is the “pearl-growing” approach. Users start with one or a few good documents that are exactly what they need. They want to get “more like this one.” To meet this need, Google and many other search engines allow users to do just that: Google provides a command called “Similar pages” next to each search result. A similar approach is to allow users to link from a “good” document to documents indexed with the same keywords. In sites that contain scientific papers and other documents that are heavy with citations, you can find other papers that share many of the same citations as yours or that have been co-cited with the one you like.Del.icio.us and Flickr are recent examples of sites that allow users to navigate to items that share something in common; in this case, the same user-supplied tag. All of these architectural approaches help us find “more like this one.” Corporate portals and intranets often utilize a “two-step” model. Confronted with a site consisting of links to perhaps hundreds of departmental subsites, users first need to know where to look for the information they need. They might search or browse through a directory until they find a good candidate or two, and then perform the second step: looking for information within those subsites. Their seeking behaviors may be radically different for each of these two steps; certainly, the information architectures typical of portals are usually nothing like those of departmental subsites.
4. Explain the different components of Information Architecture.

Organization systems

How we categorize information, e.g., by subject or chronology.
Labeling Systems
How we represent information, e.g., scientific terminology (“Acer”) or lay terminology (“maple”).
Navigation systems

How we browse or move through information, e.g., clicking through a hierarchy.

Searching systems

How we search information, e.g., executing a search query against an index. See

An alternative method of categorizing information architecture components. This method is comprised of browsing aids, search aids, content and tasks, and “invisible” components.
Browsing Aids

These components present users with a predetermined set of paths to help them navigate the site. Users don’t articulate their queries, but instead find their way through menus and links. Types of browsing aids include:
Organization systems

The main ways of categorizing or grouping a site’s content (e.g., by topic, by task, by audiences, or by chronology). Also known as taxonomies and hierarchies. Tag clouds (based on user-generated tags) are also a form of organization system.

Site-wide navigation systems

Primary navigation systems that help users understand where they are and where they can go within a site (e.g., breadcrumbs).

Local navigation systems

Primary navigation systems that help users understand where they are and where they can go within a portion of a site (i.e., a subsite).

Sitemaps/Tables of contents

Navigation systems that supplement primary navigation systems; provide a condensed overview of and links to major content areas and subsites within the site, usually in outline form.

Site indices

Supplementary navigation systems that provide an alphabetized list of links to the contents of the site.

Site guides

Supplementary navigation systems that provide specialized information on a specific topic, as well as links to a related subset of the site’s content.

Site wizards

Supplementary navigation systems that lead users through a sequential set of steps; may also link to a related subset of the site’s content.

Contextual navigation systems

Consistently presented links to related content. Often embedded in text, and generally used to connect highly specialized content within a site.
Search Aids These components allow the entry of a user-defined query (e.g., a search) and automatically present users with a customized set of results that match their queries.
Think of these as dynamic and mostly automated counterparts to browsing aids.

Types of search components include:

Search interface

The means of entering and revising a search query, typically with information on how to improve your query, as well as other ways to configure your search (e.g., selecting from specific search zones).

Query language

The grammar of a search query; query languages might include Boolean operators (e.g., AND, OR, NOT), proximity operators (e.g., ADJACENT, NEAR), or ways of specifying which field to search (e.g., AUTHOR=“Shakespeare”).

Query builders

Ways of enhancing a query’s performance; common examples include spell checkers, stemming, concept searching, and drawing in synonyms from a thesaurus.

Retrieval algorithms

The part of a search engine that determines which content matches a user’s query; Google’s PageRank is perhaps the best-known example.

Search zones

Subsets of site content that have been separately indexed to support narrower searching (e.g., searching the tech support area within a software vendor’s site).

Search results

Presentation of content that matches the user’s search query; involves decisions of what types of content should make up each individual result, how many results to display, and how sets of results should be ranked, sorted, and clustered.
Content and Tasks

These are the users’ ultimate destinations, as opposed to separate components that get users to their destinations. However, it’s difficult to separate content and tasks from an information architecture, as there are components embedded in content and tasks that help us find our way. Examples of information architecture components embedded in content and tasks include:

Headings

Labels for the content that follows them.

Embedded links

Links within text; these label (i.e., represent) the content they link to.
Embedded metadata

Information that can be used as metadata but must first be extracted (e.g., in a recipe, if an ingredient is mentioned, this information can be indexed to support nsearching by ingredient).

Chunks

Logical units of content; these can vary in granularity (e.g., sections and chapters are both chunks) and can be nested (e.g., a section is part of a book).Lists
Groups of chunks or links to chunks; these are important because they’ve been grouped together (e.g., they share some trait in common) and have been presented in a particular order (e.g., chronologically).

Sequential aids

Clues that suggest where the user is in a process or task, and how far he has to go before completing it (e.g., “step 3 of 8”).

Identifiers

Clues that suggest where the user is in an information system (e.g., a logo specifying what site she is using, or a breadcrumb explaining where in the site she is).
“Invisible” Components

Certain key architectural components are manifest completely in the background; users rarely (if ever) interact with them. These components often “feed” other components, such as a thesaurus that’s used to enhance a search query. Some examples of invisible information architecture components include:

Controlled vocabularies and thesauri

Predetermined vocabularies of preferred terms that describe a specific domain (e.g., auto racing or orthopedic surgery); typically include variant terms (e.g.,“brewskie” is a variant term for “beer”).Thesauri are controlled vocabularies that generally include links to broader and narrower terms, related terms, and descriptions of preferred terms (aka “scope notes”). Search systems can enhance queries by extracting a query’s synonyms from a controlled vocabulary.

Retrieval algorithms

Used to rank search results by relevance; retrieval algorithms reflect their programmers’ judgments on how to determine relevance.

Best bets

Preferred search results that are manually coupled with a search query; editors and subject matter experts determine which queries should retrieve best bets, and which documents merit best bet status. Whichever method you use for categorizing architectural components, it’s useful to drill down beyond the abstract concept of information architecture and become familiar with its more tangible and, when possible, visual aspects.
5. Explain the difficulties in organizing information. (NOV/DEC 2017)
Ambiguity
Classification systems are built upon the foundation of language, and language is ambiguous: words are capable of being understood more than one way. Think about
the word pitch. When I say pitch, what do you hear? There are more than 15 definitions,

including:

• A throw, fling, or toss

• A black, sticky substance used for waterproofing

• The rising and falling of the bow and stern of a ship in a rough sea

• A salesman’s persuasive line of talk

• An element of sound determined by the frequency of vibration

This ambiguity results in a shaky foundation for our classification systems. When we use words as labels for our categories, we run the risk that users will miss our meaning.This is a serious problem. (See Chapter 6 to learn more about labeling.)

It gets worse. Not only do we need to agree on the labels and their definitions, we also need to agree on which documents to place in which categories. Consider the common tomato. According to Webster’s dictionary, a tomato is “a red or yellowish fruit with a juicy pulp, used as a vegetable: botanically it is a berry.” Now I’m confused. Is it a fruit, a vegetable, or a berry?

If we have such problems classifying the common tomato, consider the challenges involved in classifying web site content. Classification is particularly difficult when you’re organizing abstract concepts such as subjects, topics, or functions. For example, what is meant by “alternative healing,” and should it be cataloged under “philosophy” or “religion” or “health and medicine” or all of the above? The organization of words and phrases, taking into account their inherent ambiguity, presents a very real and substantial challenge.

Heterogeneity
Heterogeneity refers to an object or collection of objects composed of unrelated or unlike parts. You might refer to grandma’s homemade broth with its assortment of vegetables, meats, and other mysterious leftovers as heterogeneous. At the other end of the scale, homogeneous refers to something composed of similar or identical elements.

For example, Ritz crackers are homogeneous. Every cracker looks and tastes the same. An old-fashioned library card catalog is relatively homogeneous. It organizes and provides access to books. It does not provide access to chapters in books or collections of books. It may not provide access to magazines or videos. This homogeneity allows for a structured classification system.
Each book has a record in the catalog. Each record contains the same fields: author, title, and subject. It is a high-level, single medium system, and works fairly well.
Most web sites, on the other hand, are highly heterogeneous in many respects. For example, web sites often provide access to documents and their components at varying levels of granularity. A web site might present articles and journals and journal databases side by side. Links might lead to pages, sections of pages, or other web sites. And, web sites typically provide access to documents in multiple formats. You might find financial news, product descriptions, employee home pages, image archives, and software files. Dynamic news content shares space with static human-resources information. Textual information shares space with video, audio, and interactive applications. The web site is a great multimedia melting pot, where you are challenged to reconcile the cataloging of the broad and the detailed across many mediums. The heterogeneous nature of web sites makes it difficult to impose any single structured organization system on the content. It usually doesn’t make sense to classify documents at varying levels of granularity side by side.
An article and a magazine should be treated differently. Similarly, it may not make sense to handle varying formats the same way. Each format will have uniquely important characteristics. For example, we need to know certain things about images, such as file format (GIF, TIFF, etc.) and resolution (640 × 480, 1024 × 768, etc.). It is difficult and often misguided to attempt a one-size-fits-all approach to the organization of heterogeneous web site content. This is a fundamental flaw of many enterprise taxonomy initiatives.

Differences in Perspectives
Have you ever tried to find a file on a coworker’s desktop computer? Perhaps you had permission. Perhaps you were engaged in low-grade corporate espionage. In either case, you needed that file. In some instances, you may have found the file immediately. In others, you may have searched for hours. The ways people organize and name files and directories on their computers can be maddeningly illogical. When questioned, they will often claim that their organization system makes perfect sense. “But it’s obvious! I put current proposals in the folder labeled /office/clients/ green and old proposals in /office/clients/red. I don’t understand why you couldn’t find them!”
The fact is that labeling and organization systems are intensely affected by their creators’ perspectives.† We see this at the corporate level with web sites organized according to internal divisions or org charts, with groupings such as marketing, sales, customer support, human resources, and information systems.
How does a customer visiting this web site know where to go for technical information about a product she just purchased? To design usable organization systems, we need to escape from our

own mental models of content labeling and organization.
We employ a mix of user research and analysis methods to gain real insight. How do users group the information? What types of labels do they use? How do they navigate? This challenge is complicated by the fact that web sites are designed for multiple users, and all users will have different ways of understanding the information. Their levels of familiarity with your company and your content will vary. For these reasons, even with a massive barrage of user tests, it is impossible to create a perfect organization system.
One site does not fit all! However, by recognizing the importance of perspective, by striving to understand the intended audiences through user research and testing, and by providing multiple navigation pathways, you can do a better job of organizing information for public consumption than your coworker does on his desktop computer.

6. Explain different organizing schemes used in organizing websites and intranets.

Exact Organization Schemes

Exact or “objective” organization schemes divide information into well-defined and mutually exclusive sections. The alphabetical organization of the phone book’s white pages is a perfect example. If you know the last name of the person you are looking for, navigating the scheme is easy. “Porter” is in the Ps, which are after the Os but before the Qs. This is called known-item searching.
You know what you’re looking for, and it’s obvious where to find it. No ambiguity is involved. The problem with exact organization schemes is that they require users to know the specific name of the resource they are looking for.
The white pages don’t work very well if you’re looking for a plumber. Exact organization schemes are relatively easy to design and maintain because there is little intellectual work involved in assigning items to categories. They are also easy to use. The following sections explore three frequently used exact organization schemes.

Alphabetical

An alphabetical organization scheme is the primary organization scheme for encyclopedias and dictionaries. Almost all nonfiction books, including this one, provide an alphabetical index. Phone books, department-store directories, bookstores, and libraries all make use of our 26-letter alphabet for organizing their contents.
Alphabetical organization often serves as an umbrella for other organization schemes. We see information organized alphabetically by last name, by product or service, by department, and by format. Figure 5-2 provides an example of a departmental directory organized alphabetically by last name.
[image: image87.png]

Chronological

Certain types of information lend themselves to chronological organization. For example, an archive of press releases might be organized by the date of release. Press release archives are obvious candidates for chronological organization schemes (see Figure 5-3). The date of announcement provides important context for the release.

However, keep in mind that users may also want to browse the releases by title, product category, or geography, or to search by keyword. A complementary combination of organization schemes is often necessary. History books, magazine archives, diaries, and television guides tend to be organized chronologically. As long as there is agreement on when a particular event occurred, chronological schemes are easy to design and use.
[image: image88.emf]
Geographical

Place is often an important characteristic of information. We travel from one place to another. We care about the news and weather that affects us in our location. Political, social, and economic issues are frequently location-dependent. And, in a world where mobile devices such as Blackberries and Treos are becoming location-aware, while companies like Google and Yahoo! are investing heavily in local search and directory services, the map as interface is enjoying a resurgence of interest.
With the exception of border disputes, geographical organization schemes are fairly straightforward to design and use. Figure 5-4 shows an example of a geographical organization scheme. Users can select a location from the map using their mouse.
[image: image89.emf]
Ambiguous Organization Schemes

Now for the tough ones. Ambiguous or “subjective” organization schemes divide information into categories that defy exact definition. They are mired in the ambiguity of language and organization, not to mention human subjectivity. They are difficult to design and maintain. They can be difficult to use. Remember the tomato? Do we classify it under fruit, berry, or vegetable?

However, they are often more important and useful than exact organization schemes. Consider the typical library catalog. There are three primary organization schemes: you can search for books by author, by title, or by subject. The author and title organization schemes are exact and thereby easier to create, maintain, and use. However, extensive research shows that library patrons use ambiguous subject-based schemes such as the Dewey Decimal and Library of Congress classification systems much more frequently.

There’s a simple reason why people find ambiguous organization schemes so useful: we don’t always know what we’re looking for. In some cases, you simply don’t know the correct label. In others, you may have only a vague information need that you can’t quite articulate. For these reasons, information seeking is often iterative and interactive. What you find at the beginning of your search may influence what you look for and find later in your search. This information-seeking process can involve a wonderful element of associative learning.
Let’s review a few of the most common and valuable ambiguous organization schemes.
Topic

Organizing information by subject or topic is one of the most useful and challenging approaches. Phone book yellow pages are organized topically, so that’s the place to look when you need a plumber. Academic courses and departments, newspapers, and the chapters of most nonfiction books are all organized along topical lines. While few web sites are organized solely by topic, most should provide some sort of topical access to content. In designing a topical organization scheme, it is important to define the breadth of coverage. Some schemes, such as those found in an encyclopedia, cover the entire breadth of human knowledge. Research-oriented web sites such as Consumer Reports (shown in Figure 5-5) rely heavily on their topical organization scheme. Others, such as corporate web sites, are limited in breadth, covering only those topics directly related to that company’s products and services. In designing a topical organization scheme, keep in mind that you are defining the universe of content (both present and future) that users will expect to find within that area of the web site.
[image: image90.emf]
Figure 5-5. This topical taxonomy shows categories and subcategories
Task

Task-oriented schemes organize content and applications into a collection of processes, functions, or tasks. These schemes are appropriate when it’s possible to anticipate a limited number of high-priority tasks that users will want to perform. Desktop software applications such as word processors and spreadsheets provide familiar examples. Collections of individual actions are organized under task-oriented menus such as Edit, Insert, and Format.

On the Web, task-oriented organization schemes are most common in the context of e-commerce web sites where customer interaction takes center stage. Intranets and extranets also lend themselves well to a task orientation, since they tend to integrate powerful applications or “e-services” as well as content. You will rarely find a web site organized solely by task. Instead, task-oriented schemes are usually embedded within specific subsites or integrated into hybrid task/topic navigation systems, as we see in Figure 5-6.

[image: image91.emf]
Figure 5-6. Task and topic coexist on the eBay home page
Audience

In cases where there are two or more clearly definable audiences for a web site or intranet, an audience-specific organization scheme may make sense. This type of scheme works best when the site is frequented by repeat visitors who can bookmark their particular section of the site. It also works well if there is value in customizing the content for each audience. Audience-oriented schemes break a site into smaller, audience-specific mini-sites, thereby allowing for clutter-free pages that present only the options of interest to that particular audience. The main page of dell.com, shown in Figure 5-7, presents an audience-oriented organization scheme (on the right) that invites customers to self-identify
[image: image92.emf]
Figure 5-7. Dell invites users to self-identify

Organizing by audience brings all the promise and peril associated with any form of personalization. For example, Dell understands a great deal about its audience segments and brings this knowledge to bear on its web site. If I visit the site and identify myself as a member of the “Home & Home Office” audience, Dell will present me with a set of options and sample system configurations designed to meet my needs.
In this instance, Dell might make the educated guess that I probably need a modem to connect to the Internet from my home. However, this guess would be wrong, since I now have affordable broadband access in my community. I need an Ethernet card instead. All ambiguous schemes require the information architect to make these educated guesses and revisit them over time.
Audience-specific schemes can be open or closed. An open scheme will allow members of one audience to access the content intended for other audiences. A closed scheme will prevent members from moving between audience-specific sections. This may be appropriate if subscription fees or security issues are involved.
Metaphor

Metaphors are commonly used to help users understand the new by relating it to the familiar. You need not look further than your desktop computer with its folders, files, and trash can or recycle bin for an example. Applied to an interface in this way, metaphors can help users understand content and function intuitively. In addition, the process of exploring possible metaphor-driven organization schemes can generate new and exciting ideas about the design, organization, and function of the web site.
While metaphor exploration can be useful while brainstorming, you should use caution when considering a metaphor-driven global organization scheme. First, metaphors, if they are to succeed, must be familiar to users. Organizing the web site of a computer-hardware vendor according to the internal architecture of a computer will not help users who don’t understand the layout of a motherboard.

Second, metaphors can introduce unwanted baggage or be limiting. For example, users might expect a digital library to be staffed by a librarian that will answer reference questions. Most digital libraries do not provide this service. Additionally, you may wish to provide services in your digital library that have no clear corollary in the= real world. Creating your own customized version of the library is one such example. This will force you to break out of the metaphor, introducing inconsistency into your organization scheme.
In the Teletubbies example in Figure 5-8, the games area is organized according to the metaphor of a physical place, populated by creatures and objects. This colorful approach invites exploration, and children quickly learn that they must go “inside Home Hill” to play with the machine called “Nu Nu.” Since most of the target audience can’t read, an overarching visual metaphor is a great solution. But unless your web site is aimed at young children, metaphor should probably play only a niche role.
Figure 5-8. The Teletubbies’ metaphor-driven games area
[image: image93.emf]
Hybrids

The power of a pure organization scheme derives from its ability to suggest a simple mental model that users can quickly understand. Users easily recognize an audience specific or topical organization. And fairly small, pure organization schemes can be applied to large amounts of content without sacrificing their integrity or diminishing their usability.
However, when you start blending elements of multiple schemes, confusion often follows, and solutions are rarely scalable. Consider the example in Figure 5-9. This hybrid scheme includes elements of audience-specific, topical, metaphor-based, task oriented, and alphabetical organization schemes. Because they are all mixed together, we can’t form a mental model. Instead, we need to skim through each menu item to find the option we’re looking for.
Figure 5-9. A hybrid organization scheme
[image: image94.emf]
The exception to these cautions against hybrid schemes exists within the surface layer of navigation. As illustrated by eBay (see Figure 5-6), many web sites successfully combine topics and tasks on their main page and within their global navigation. This reflects the reality that both the organization and its users typically identify finding content and completing key tasks at the top of their priority lists. Because this includes only the highest-priority tasks, the solution does not need to be scalable. It’s only when such schemes are used to organize a large volume of content and tasks that the problems arise. In other words, shallow hybrid schemes are fine, but

deep hybrid schemes are not.
Unfortunately, deep hybrid schemes are still fairly common. This is because it is often difficult to agree upon any one scheme, so people throw the elements of multiple schemes together in a confusing mix. There is a better alternative. In cases where multiple schemes must be presented on one page, you should communicate to designers the importance of preserving the integrity of each scheme. As long as the schemes are presented separately on the page, they will retain the powerful ability to suggest a mental model for users. For example, a look at the Stanford University home page in Figure 5-10 reveals a topical scheme, an audience-oriented scheme, an

alphabetical index, and a search function. By presenting them separately, Stanford provides flexibility without causing confusion.

Figure 5-10. Stanford provides multiple organization schemes
[image: image95.emf]
7. Explain Different organization structures used in design of Website. (NOV/DEC 2017)
The Hierarchy: A Top-Down Approach

The foundation of almost all good information architectures is a well-designed hierarchy or taxonomy. In this hypertextual world of nets and webs, such a statement may seem blasphemous, but it’s true. The mutually exclusive subdivisions and parent– child relationships of hierarchies are simple and familiar. We have organized information into hierarchies since the beginning of time. Family trees are hierarchical.

Our division of life on earth into kingdoms, classes, and species is hierarchical. Organization charts are usually hierarchical. We divide books into chapters into sections into paragraphs into sentences into words into letters. Hierarchy is ubiquitous in our lives and informs our understanding of the world in a profound and meaningful way.
Because of this pervasiveness of hierarchy, users can easily and quickly understand web sites that use hierarchical organization models. They are able to develop a mental model of the site’s structure and their location within that structure.

This provides context that helps users feel comfortable. Figure 5-11 shows an example of a simple hierarchical model.
[image: image96.emf]
Because hierarchies provide a simple and familiar way to organize information, they are usually a good place to start the information architecture process. The top-down approach allows you to quickly get a handle on the scope of the web site without going through an extensive content-inventory process. You can begin identifying the major content areas and exploring possible organization schemes that will provide access to that content.
Designing taxonomies

When designing taxonomies on the Web, you should remember a few rules of thumb. First, you should be aware of, but not bound by, the idea that hierarchical categories should be mutually exclusive. Within a single organization scheme, you will need to balance the tension between exclusivity and inclusivity. Taxonomies that allow cross-listing are known as polyhierarchical. Ambiguous organization schemes in particular make it challenging to divide content into mutually exclusive categories. Do tomatoes belong in the fruit, vegetable, or berry category? In many cases, you might place the more ambiguous items into two or more categories so that users are sure to find them. However, if too many items are cross-listed, the hierarchy loses its value. This tension between exclusivity and inclusivity does not exist across different organization schemes. You would expect a listing of products organized by format to include the same items as a companion listing of products organized by topic.
Topic and format are simply two different ways of looking at the same information. Or to use a technical term, they’re two independent facets. Second, it is important to consider the balance between breadth and depth in your taxonomy. Breadth refers to the number of options at each level of the hierarchy.

Depth refers to the number of levels in the hierarchy. If a hierarchy is too narrow and deep, users have to click through an inordinate number of levels to find what they are looking for. The top of Figure 5-12 illustrates a narrow-and-deep hierarchy in which users are faced with six clicks to reach the deepest content. In the (relatively) broad-and-shallow hierarchy, users must choose from 10 categories to reach 10 content items. If a hierarchy is too broad and shallow, as shown in the bottom part of Figure 5-12, users are faced with too many options on the main menu and are unpleasantly surprised by the lack of content once they select an option.
[image: image97.emf]
When considering breadth, you should be sensitive to people’s visual scanning abilities and to the cognitive limits of the human mind. Now, we’re not going to tell you to follow the infamous seven plus-or-minus two rule. There is general consensus that the number of links you can safely include is constrained by users’ abilities to visually scan the page rather than by their short-term memories.

Instead, we suggest that you:

• Recognize the danger of overloading users with too many options.

• Group and structure information at the page level.

• Subject your designs to rigorous user testing.

Consider the National Cancer Institute’s award-winning main page, shown in Figure 5-13. It’s one of the government’s most visited (and tested) pages on the Web, and the portal into a large information system. Presenting information hierarchically at the page level, as NCI has done, can make a major positive impact on usability.
[image: image98.emf]
Figure 5-13. The National Cancer Institute groups items within the page
There are roughly 75 links on NCI’s main page, and they’re organized into several key groupings:
[image: image99.emf]
The Database Model: A Bottom-Up Approach
 A database is defined as “a collection of data arranged for ease and speed of search and retrieval.” A Rolodex provides a simple example of a flat-file database (see Figure 5-14). Each card represents an individual contact and constitutes a record. Each record contains several fields, such as name, address, and telephone number. Each field may contain data specific to that contact. The collection of records is a database.
[image: image100.emf]
In an old-fashioned Rolodex, users are limited to searching for a particular individual by last name. In a more contemporary, computer-based contact-management system, we can also search and sort using other fields. For example, we can ask for a list of all contacts who live in Connecticut, sorted alphabetically by city.

Most of the heavy-duty databases we use are built upon the relational database model. In relational database structures, data is stored within a set of relations or tables. Rows in the tables represent records, and columns represent fields. Data in different tables may be linked through a series of keys. For example, in Figure 5-15, the au_id and title_id fields within the Author_Title table act as keys linking the data stored separately in the Author and Title tables.
[image: image101.emf]
Figure 5-15. A relational database schema (this example is drawn from an overview of the relational database model at the University of Texas at Austin)

So why are database structures important to information architects? After all, we made a fuss earlier in the book about our focus on information access rather than data retrieval. Where is this discussion heading? In a word, metadata. Metadata is the primary key that links information architecture to the design of database schema. It allows us to apply the structure and power of relational databases to the heterogeneous, unstructured environments of web sites and intranets.
By tagging documents and other information objects with controlled vocabulary metadata, we enable powerful searching, browsing, filtering, and dynamic linking. The relationships between metadata elements can become quite complex. Defining and mapping these formal relationships requires significant skill and technical understanding.

For example, the entity relationship diagram (ERD) in Figure 5-16 illustrates a structured approach to defining a metadata schema. Each entity (e.g., Resource) has attributes (e.g., Name, URL). These entities and attributes become records and fields. The ERD is used to visualize and refine the data model before design and population of the database.
[image: image102.emf]
Figure 5-16. An entity relationship diagram showing a structured approach to defining a metadata schema (courtesy of InterConnect of Ann Arbor)

We’re not suggesting that all information architects must become experts in SQL, XMLschema definition, the creation of entity relationship diagrams, and the design of relational databases—though these are all extremely valuable skills. In many cases, you’ll be better off working with a professional programmer or database designer who really knows how to do this stuff. And for large web sites, you will hopefully be able to rely on Content Management System (CMS) software to manage your metadata and controlled vocabularies.

Instead, information architects need to understand how metadata, controlled vocabularies, and database structures can be used to enable:

• Automatic generation of alphabetical indexes (e.g., product index)

• Dynamic presentation of associative “see also” links

• Fielded searching

• Advanced filtering and sorting of search results
The database model is particularly useful when applied within relatively homogeneous subsites such as product catalogs and staff directories. However, enterprise controlled vocabularies can often provide a thin horizontal layer of structure across the full breadth of a site. Deeper vertical vocabularies can then be created for particular departments, subjects, or audiences.
Hypertext

Hypertext is a relatively recent and highly nonlinear way of structuring information. A hypertext system involves two primary types of components: the items or chunks of information that will be linked, and the links between those chunks.
These components can form hypermedia systems that connect text, data, image, video, and audio chunks. Hypertext chunks can be connected hierarchically, non hierarchically, or both, as shown in Figure 5-17. In hypertext systems, content chunks are connected via links in a loose web of relationships.

[image: image103.emf]
Although this organization structure provides you with great flexibility, it presents substantial potential for complexity and user confusion. Why? Because hypertext links reflect highly personal associations. As users navigate through highly hyper textual web sites, it is easy for them to get lost. It’s as if they are thrown into a forest and are bouncing from tree to tree, trying to understand the lay of the land. They simply can’t create a mental model of the site organization. Without context, users can quickly become overwhelmed and frustrated. In addition, hyper textual links are often personal in nature. The relationships that one person sees between content items may not be apparent to others.

For these reasons, hypertext is rarely a good candidate for the primary organization structure. Rather, it can be used to complement structures based upon the hierarchical or database models.

Hypertext allows for useful and creative relationships between items and areas in the hierarchy. It usually makes sense to first design the information hierarchy and then identify ways in which hypertext can complement the hierarchy.

8. Explain different types of Labels. (NOV/DEC 2017)
On the Web, we regularly encounter labels in two formats: textual and iconic.
Textual Labels:

Contextual links

Hyperlinks to chunks of information on other pages or to another location on the same page

Headings

Labels that simply describe the content that follows them, just as print headings do

Navigation system choices

Labels representing the options in navigation systems

Index terms

Keywords, tags, and subject headings that represent content for searching or browsing.
Labels As Contextual Links
Labels describe the hypertext links within the body of a document or chunk of information, and naturally occur within the descriptive context of their surrounding text.Contextual links are easy to create and are the basis for the exciting interconnectedness that drives much of the Web’s success.

However, just because contextual links are relatively easy to create doesn’t mean they necessarily work well. In fact, ease of creation introduces problems. Contextual links are generally not developed systematically; instead, they are developed in an ad hoc manner when the author makes a connection between his text and something else, and encodes that association in his document.
 These hypertext connections are therefore more heterogeneous and personal than, say, the connections between items in a hierarchy, where links are understood to be connecting parent items and child items. The result is that contextual link labels mean different things to different people.

You see the link “Shakespeare” and, upon clicking it, expect to be taken to the Bard’s biography. I, on the other hand, expect to be taken to his Wikipedia entry. In fact, the link actually takes us to a page for the village of Shakespeare, New Mexico, USA. Go figure....
To be more representational of the content they connect to, contextual links rely instead upon, naturally, context. If the content’s author succeeds at establishing that context in his writing, then the label draws meaning from its surrounding text. If he doesn’t, the label loses its representational value, and users are more likely to experience occasionally rude surprises.
Because Fidelity (Figure 6-2) is a site dedicated to providing information to investors, contextual links need to be straightforward and meaningful. Fidelity’s contextual link labels, such as “stocks,” “mutual funds,” and “Learn how to invest,” are representational, and draw on surrounding text and headings to make it clear what type of help you’ll receive if you click through. These highly representational labels are made even clearer by their context: explanatory text, clear headings, and a site that itself has a few straightforward uses.
[image: image104.emf]
Figure 6-2. The contextual links on this page from Fidelity are straightforward and meaningful
On the other hand, contextual links on a personal web log (“blog”) aren’t necessarily so clear. The author is among friends and can assume that his regular readers possess a certain level of background, or really, contextual knowledge
Labels As Headings

Labels are often used as headings that describe the chunk of information that follows. Headings, as shown in Figure 6-4, are often used to establish a hierarchy within a text. Just as in a book, where headings help us distinguish chapters from sections, they also help us determine a site’s subsites, or differentiate categories from subcategories.

[image: image105.emf]
Figure 6-4. Numbering, bullets, bolding, and vertical whitespace help the reader distinguish heading labels

The hierarchical relationships between headings—whether parent, child, or sibling— are usually established visually through consistent use of numbering, font sizes, colors and styles, whitespace and indentation, or combinations thereof. A visually clear hierarchy, often the work of information or graphic designers, can take some pressure off information architects by reducing the need to create labels that convey that hierarchy. So a set of labels that don’t mean much can suddenly take on meaning when presented in a hierarchy. For example, this set of inconsistent headings may be quite confusing:

Our Furniture Selection

Office Chairs

Our buyer’s picks
Chairs from Steelcase

Hon products

Herman Miller

Aerons

Lateral Files

However, they are much more meaningful when presented in a hierarchy:

Our Furniture Selection

Office Chairs

 Our buyer's picks

 Chairs from Steelcase

 Hon products

 Herman Miller

 Aerons

Lateral Files

It’s also important not to be too rigidly bound to showcasing hierarchical relationships. In Figure 6-5, heading labels such as “Background” and “Scouting report” represent the text that follows them. Yet the statistics closer to the top of the page don’t merit the same treatment because most readers could visually distinguish these without actually reading them. In other words, inserting the heading “Statistics” before the numbers and applying to it the same typographic style as “Background” and “Scouting report” wouldn’t greatly benefit users, who, as baseball fans, would likely recognize them already
[image: image106.emf]
Figure 6-5. This hierarchy of heading labels is inconsistent, but that’s OK
Labels Within Navigation Systems

Because navigation systems typically have a small number of options, their labels demand consistent application more than any other type of label. A single inconsistent option can introduce an “apples and oranges” effect more quickly to a navigation system, which usually has fewer than ten choices, than to a set of index terms, which might have thousands. Additionally, a navigation system typically occurs again and again throughout a site, so navigation labeling problems are magnified through repeated exposure.

Users rely on a navigation system to behave “rationally” through consistent page location and look; labels should be no different. Effectively applied labels are integral to building a sense of familiarity, so they’d better not change from page to page.

That’s why using the label “Main” on one page, “Main Page” on another, and “Home” elsewhere could destroy the familiarity that the user needs when navigating a site. In Figure 6-7, the horizontal navigation system’s four labels—“Getting Started,” “Our Funds,” “Planning,” and “My Account”—are applied consistently throughout the site, and would be even more effective if colors and locations were also consistent.
[image: image107.emf][image: image108.emf]
Figure 6-7. Janus’ navigation system labels remain consistent throughout the site

There are no standards, but some common variants exist for many navigation system labels. You should consider selecting one from each of these categories and applying it consistently, as these labels are already familiar to most web users.
Here is a nonexhaustive list:

• Main, Main Page, Home

• Search, Find, Browse, Search/Browse

• Site Map, Contents, Table of Contents, Index

• Contact, Contact Us

• Help, FAQ, Frequently Asked Questions

• News, News & Events, News & Announcements, Announcements

• About, About Us, About <company name>, Who We Are

Of course, the same label can often represent different kinds of information. For example, in one site, “News” may link to an area that includes announcements of new additions to the site. In another site, “News” may link to an area of news stories describing national and world events. Obviously, if you use the same labels in different ways within your own site, your users will be very confused.

To address both problems, navigational labels can be augmented by brief descriptions (also known as scope notes) when initially introduced on the main page. In Figure 6-8, the navigation system labels appear in brief on the lefthand side, and are described with scope notes in the body of the main page.

[image: image109.emf]
Figure 6-8. Scope notes are provided for each of the navigation system labels
In this case, if more representational navigation system labels had been used in the first place, they may have diminished the need to devote so much valuable main page real estate to scope notes. There are alternatives to scope notes that don’t monopolize real estate, such as using JavaScript rollovers and other scripted mouseover effects to display the scope note, but these aren’t an established convention. If you feel that your site will be regularly used by a loyal set of users who are willing to learn your site’s conventions, then it’s worth considering these alternatives; otherwise, we suggest keeping things simple by making your navigation labels representational.
Labels As Index Terms

Often referred to as keywords, tags, descriptive metadata, taxonomies, controlled vocabularies, and thesauri, sets of index term labels can be used to describe any type of content: sites, subsites, pages, content chunks, and so on. By representing the meaning of a piece of content, index terms support more precise searching than simply searching the full text of content—someone has assessed the content’s meaning and described it using index terms, and searching those terms ought to be more effective than having a search engine match a query against the content’s full text.

Index terms are also used to make browsing easier: the metadata from a collection of documents can serve as the source of browsable lists or menus. This can be highly beneficial to users, as index terms provide an alternative to a site’s primary organization system, such as an information architecture organized by business unit. Index terms in the form of site indexes and other lists provide a valuable alternative view by “cutting across the grain” of organizational silos.

In Figure 6-9, this index of the BBC’s site is generated from index term labels, which, in turn, are used to identify content from many different Sun business units. Much of the content already accessible through the BBC site’s primary organization system is also accessible by browsing these index terms (e.g., keywords).
[image: image110.emf]
Figure 6-9. The BBC’s site index
Frequently, index terms are completely invisible to users. The records we use to represent documents in content management systems and other databases typically include fields for index terms, which are often heard but not seen: they come into play only when you search. Similarly, index terms may be hidden as embedded metadata in an HTMLdocument’s <META...> or <TITLE> tags. For example, a furniture manufacturer’s site might list the following index terms in the <META...> tags of records for its upholstered items:
 <META NAME="keywords" CONTENT="upholstery, upholstered, sofa, couch,

loveseat, love seat, sectional, armchair, arm chair, easy chair, chaise lounge">

So a search on “sofa” would retrieve the page with these index terms even if the term “sofa” doesn’t appear anywhere in the page’s text. Figure 6-10 shows a similar, more delectable example from Epicurious.com. A search for “snack” retrieves this recipe, though there is no mention of the term in the recipe itself. “Snack” is likely stored separately as an index term in a database record for this recipe.
[image: image111.emf]
Figure 6-10. A search for “snack” retrieves this recipe, even though the term doesn’t appear within the text

Iconic Labels

It’s true that a picture is worth a thousand words. But which thousand? Icons can represent information in much the same way as text can. We see them most frequently used as navigation system labels. Additionally, icons occasionally serve as heading labels and have even been known to show up as link labels, although this is rare.
The problem with iconic labels is that they constitute a much more limited language than text. That’s why they’re more typically used for navigation system or small organization system labels, where the list of options is small, than for larger sets of labels such as index terms, where iconic “vocabularies” are quickly outstripped. Even so, iconic labels are still a risky proposition in terms of whether or not they can represent meaning. Figure 6-11 is a navigation aid from jetBlue’s web site. But what do the icons mean to you?

[image: image112.emf]
Figure 6-11. Icons from jetBlue’s navigation system

Even given the fairly specific context of an airline’s site, most users probably won’t understand this language immediately, although they might correctly guess the meaning of one or two of these labels.

Since the iconic labels are presented with textual labels, our test wasn’t really fair. But it is interesting to note that even the site’s designers acknowledge that the iconic labels don’t stand well on their own and hence need textual explanations.

 Iconic labels like these add aesthetic quality to a site, and as long as they don’t compromise the site’s usability, there’s no reason not to use them. In fact, if your site’s users visit regularly, the iconic “language” might get established in their minds through repeated exposure. In such situations, icons are especially useful shorthand, both representational and easy to visually recognize—a double bonus. But it’s interesting to note that jetBlue’s subsidiary pages don’t use iconic labels alone; they’ve chosen to maintain the icon/text pairing throughout their site. Unless your site has a patient, loyal audience of users who are willing to learn your visual language, we suggest using iconic labels only for systems with a limited set of options, being careful not to place form ahead of function.
9. State the guidelines for label design.
Narrow scope whenever possible

If we focus our sites on a more defined audience, we reduce the number of possible perspectives on what a label means. Sticking to fewer subject domains achieves more obvious and effective representation. A narrower business context means clearer goals for the site, its architecture, and therefore its labels.

To put it another way, labeling is easier if your site’s content, users, and context are kept simple and focused. Too many sites have tried to take on too much, achieving broad mediocrity rather than nailing a few choice tasks. Accordingly, labeling systems often cover too much ground to truly be effective. If you are planning any aspect of your site’s scope—who will use it, what content it will contain, and how, when, and why it should be used—erring toward simplicity will make your labels more effective.

If your site must be a jack of all trades, avoid using labels that address the entire site’s content. (The obvious exception are the labels for site-wide navigation systems, which do cover the entire site.) But in the other areas of labeling, modularizing and simplifying content into subsites that meet the needs of specific audiences will enable you to design more modular, simpler collections of labels to address those specific areas.

This modular approach may result in separate labeling systems for different areas of your site. For example, records in your staff directory might benefit from a specialized labeling system that wouldn’t make sense for other parts of the site, while your sitewide navigation system’s labels wouldn’t really apply to entries in the staff directory.

Develop consistent labeling systems, not labels

It’s also important to remember that labels, like organization and navigation systems, are systems in their own right. Some are planned systems, some aren’t. A successful system is designed with one or more characteristics that unify its members. In successful labeling systems, one characteristic is typically consistency. Why is consistency important? Because consistency means predictability, and systems that are predictable are simply easier to learn. You see one or two labels, and then you know what to expect from the rest—if the system is consistent. This is especially important for first-time visitors to a site, but consistency benefits all users by making labeling easy to learn, easy to use, and therefore invisible.
Consistency is affected by many issues:

Style

Haphazard usage of punctuation and case is a common problem within labeling systems, and can be addressed, if not eliminated, by using style guides. Consider hiring a proofreader and purchasing a copy of Strunk & White.

Presentation

Similarly, consistent application of fonts, font sizes, colors, whitespace, and grouping can help visually reinforce the systematic nature of a group of labels.
Syntax

It’s not uncommon to find verb-based labels (e.g., “Grooming Your Dog”), nounbased labels (e.g., “Diets for Dogs”), and question-based labels (e.g., “How Do You Paper-Train Your Dog?”) all mixed together. Within a specific labeling system, consider choosing a single syntactical approach and sticking with it.

Granularity

Within a labeling system, it can be helpful to present labels that are roughly equal in their specificity. Exceptions (such as site indexes) aside, it’s confusing to encounter a set of labels that cover differing levels of granularity. For example: “Chinese restaurants,” “Restaurants,” “Taquerias,” “Fast Food Franchises,” “Burger Kings.”
Comprehensiveness
Users can be tripped up by noticeable gaps in a labeling system. For example, if a clothing retailer’s site lists “pants,” “ties,” and “shoes,” while somehow omitting “shirts,” we may feel like something’s wrong. Do they really not carry shirts? Or did they make a mistake? Aside from improving consistency, a comprehensive scope also helps users do a better job of quickly scanning and inferring the content a site will provide.

Audience

Mixing terms like “lymphoma” and “tummy ache” in a single labeling system can also throw off users, even if only temporarily. Consider the languages of your site’s major audiences. If each audience uses a very different terminology, you may have to develop a separate labeling system for each audience, even if these systems are describing exactly the same content.

There are other potential roadblocks to consistency. None is particularly difficult to address, but you can certainly save a lot of labor and heartache if you consider these issues before you dive into creating labeling systems.
10. Explain the sources of labeling system.
Your site

Your web site probably already has labeling systems by default. At least some reasonable decisions had to have been made during the course of the site’s creation, so you probably won’t want to throw all those labels out completely. Instead, use them as a starting point for developing a complete labeling system, taking into consideration the decisions made while creating the original system.

A useful approach is to capture the existing labels in a single document. To do so, walk through the entire site, either manually or automatically, and gather the labels. You might consider assembling them in a simple table containing a list or outline of each label and the documents it represents. Creating a labeling table is often a natural extension of the content inventory process. It’s a valuable exercise, though we don’t recommend it for indexing term vocabularies, which are simply too large to table-ize unless you focus on small, focused segments of those vocabularies.

Following is a table for the navigation system labels on jetBlue’s main page.

[image: image113.emf]
Comparable and competitive sites

If you don’t have a site in place or are looking for new ideas, look elsewhere for labeling systems. The open nature of the Web allows us to learn from one another and encourages an atmosphere of benevolent plagiarism. So, just as you might view the source of a wonderfully designed page, you can “borrow” from another site’s great labeling system.
 Determine beforehand what your audiences’ needs are most likely to be, and then surf your competitors’ sites, borrowing what works and noting what doesn’t (you might consider creating a label table for this specific purpose). If you don’t have competitors, visit comparable sites or sites that seem to be best in class.

If you surf multiple competitive or comparative sites, you may find that labeling patterns emerge. These patterns may not yet be industry standards, but they at least can inform your choice of labels. For example, in a recent competitive analysis of eight financial services sites, “personal finance” was found to be more or less a de facto label compared to its synonyms. Such data may discourage you from using a different label.

Figure 6-12 shows labeling systems from Compaq, Gateway, Dell, and IBM, all competing

in the PC business. Do you notice a trend here?
[image: image114.emf]
Controlled vocabularies and thesauri

Another great source is existing controlled vocabularies and thesauri . These especially useful resources are created by professionals with library or subject-specific backgrounds, who have already done much of the work of ensuring accurate representation and consistency. These vocabularies are often publicly available and have been designed for broad usage. You’ll find these to be most useful for populating labeling systems used for indexing content.

But here’s a piece of advice: seek out narrowly focused vocabularies that help specific audiences to access specific types of content. For example, if your site’s users are computer scientists, a computer science thesaurus “thinks” and represents concepts in a way your users are likely to understand, more so than a general scheme like the Library of Congress subject headings would.

A good example of a specific controlled vocabulary is the Educational Resources Information Center (ERIC) Thesaurus. This thesaurus was designed, as you’d guess, to describe the domain of education. An entry in the ERIC Thesaurus for “scholarships” is shown in Figure 6-13.
[image: image115.emf]

Unfortunately, there aren’t controlled vocabularies and thesauri for every domain. Sometimes you may find a matching vocabulary that emphasizes the needs of a different audience. Still, it’s always worth seeing if a potentially useful controlled vocabulary or thesaurus exists before creating labeling systems from scratch.
10. Explain the steps to create new customized labels.

Content analysis

Labels can come directly from your site’s content. You might read a representative sample of your site’s content and jot down a few descriptive keywords for each document along the way. It’s a slow and painful process, and it obviously won’t work with a huge set of documents. If you go this route, look for ways to speed up the process by focusing on any existing content representations like titles, summaries, and abstracts. Analyzing content for candidate labels is certainly another area where art dominates science.

There are software tools now available that can perform auto-extraction of meaningful terms from content. These tools can save you quite a bit of time if you face a huge body of content; like many software-based solutions, auto-extraction tools may get you 80 percent of the way to the finish line. You’ll be able to take the terms that are output by the software and use them as candidates for a controlled vocabulary, but you’ll still need to do a bit of manual labor to make sure the output actually makes sense.

Content authors

Another manual approach is to ask content authors to suggest labels for their own content. This might be useful if you have access to authors; for example, you could talk to your company’s researchers who create technical reports and white papers, or to the PR people who write press releases.

However, even when authors select terms from a controlled vocabulary to label their content, they don’t necessarily do it with the realization that their document is only one of many in a broader collection. So they might not use a sufficiently specific label. And few authors happen to be professional indexers.

So take their labels with a grain of salt, and don’t rely upon them for accuracy. As with other sources, labels from authors should be considered useful candidates for labels, not final versions.

User advocates and subject matter experts

Another approach is to find advanced users or user advocates who can speak on the users’ behalf. Such people may include librarians, switchboard operators, or subject matter experts (SMEs) who are familiar with the users’ information needs in a larger context. Some of these people—reference librarians, for example—keep logs of what users want; all will have a good innate sense of users’ needs by dint of constant interaction.

We found that talking to user advocates was quite helpful when working with a major healthcare system. Working with their library’s staff and SMEs, we set out to create two labeling systems, one with medical terms to help medical professionals browse the services offered by the healthcare system, the other for the lay audience to access the same content. It wasn’t difficult to come up with the medical terms because there are many thesauri and controlled vocabularies geared toward labeling medical content. It was much more difficult to come up with a scheme for the layperson’s list of terms. There didn’t seem to be an ideal controlled vocabulary, and we couldn’t draw labels from the site’s content because it hadn’t been created yet. So we were truly starting from scratch.

We solved this dilemma by using a top-down approach: we worked with the librarians to determine what they thought users wanted out of the site. We considered their general needs, and came up with a few major ones:

1. They need information about a problem, illness, or condition.

2. The problem is with a particular organ or part of the body.

3. They want to know about the diagnostics or tests that the healthcare professionals will perform to learn more about the problem.
4. They need information on the treatment, drug, or solution that will be provided by the healthcare system.

5. They want to know how they can pay for the service.

6. They want to know how they can maintain their health.

We then came up with basic terms to cover the majority of these six categories, taking care to use terms appropriate to this audience of laypersons. Here are some examples:
Directly from users

The users of a site may be telling you, directly or indirectly, what the labels should be. This isn’t the easiest information to get your hands on, but if you can, it’s the best source of labeling there is.

Card sorting. Card sort exercises are one of the best ways to learn how your users would use information.

There are two basic varieties of card sorts: open and closed. Open card sorts allow subjects to cluster labels for existing content into their own categories and then label those categories (and clearly, card sorting is useful when designing organization systems as well as labeling systems). Closed card sorts provide subjects with existing categories and ask them to sort content into those categories. At the start of a closed card sort, you can ask users to explain what they think each category label represents and compare these definitions to your own. Both approaches are useful ways to determine labels, although they’re more appropriate for smaller sets of labels such as those used for navigation systems.In the example below, we asked subjects to categorize cards from the owner’s section of a site for a large automotive company (let’s call it “Tucker”). After we combined the data from this open card sort, we found that subjects labeled the combined categories in different ways. “Maintenance,” “maintain,” and “owner’s” were often used in labels for the first cluster, indicating that these were good candidates for labels (see Table 6-1).
[image: image116.emf]
[image: image117.emf]
In a corresponding closed card sort, we asked subjects to describe each category label before they grouped content under each category. In effect, we were asking subjects to define each of these labels, and we compared their answers to see if they were similar or not. The more similar the answers, the stronger the label. Some labels, such as “Service & Maintenance,” were commonly understood, and were in line with the content that you’d actually find listed under this category (see Table 6-3).

[image: image118.emf]
Other category labels were more problematic. Some subjects understood “Tucker Features & Events” in the way that was intended, representing announcements about automobile shows, discounts, and so on. Others interpreted this label to mean a vehicle’s actual features, such as whether or not it had a CD player (see Table 6-4).

[image: image119.emf]
Free-listing. While card sorting isn’t necessarily an expensive and time-consuming method, free-listing is an even lower-cost way to get users to suggest labels.* Freelisting is quite simple: select an item and have subjects brainstorm terms to describe it. You can do this in person (capturing data with pencil and paper will be fine) or remotely, using a free or low-cost online-survey tool like SurveyMonkey orZoomerang.

Indirectly from users

Most organizations—especially those whose sites include search engines—are sitting on top of reams of user data that describe their needs. Analyzing those search queries can be a hugely valuable way to tune labeling systems, not to mention diagnose a variety of other problems with your site. Additionally, the recent advent of folksonomic tagging has also created a valuable, if indirect, source of data on users’ needs that can help information architects develop labeling systems.
Search-log analysis. Search-log analysis (also known as search analytics) is one of the least intrusive sources of data on the labels your site’s audiences actually use. Analyzing search queries* is a great way to understand the types of labels your site’s visitors typically use (see Table 6-5).
 After all, these are the labels that users use to describe their own information needs in their own language. You may notice the use (or lack thereof) of acronyms, product names, and other jargon, which could impact your own willingness to use jargony labels. You might notice that users’ queries use single or multiple terms, which could affect your own choice of short or long labels.
 And you might find that users simply aren’t using the terms you thought they would for certain concepts. You may decide to change your labels accordingly, or use a thesaurus- style lookup to connect a user-supplied term (e.g., “pooch”) to the preferred term (e.g., “dog”).

[image: image120.emf]
Tag analysis. The recent explosion in sites that employ folksonomic tagging (i.e., tags supplied by end users) means another useful indirect source of labels for you to learn from.In many of these sites, users’ tags are publicly viewable. When you display them in aggregate, you’ll find a collection of candidate labels that approximates the results of a free-listing exercise. Additionally, the data that comes from tag analysis can be used in much the same way as search-log analysis. Look for common terms, but also look for jargon, acronyms, and tone; even misspellings are useful if you’re building a controlled vocabulary.
UNIT V

INFORMATION LIFECYCLE MANAGEMENT
Part A-Two Mark Questions

1. What is big data?

Big data is a collection of large datasets that cannot be processed using traditional computing techniques. Testing of these datasets involves various tools, techniques and frameworks to process. Big data relates to data creation, storage, retrieval and analysis that is remarkable in terms of volume, variety, and velocity.

2. What are data retention policies?

Data retention defines the policies of persistent data and records management for meeting legal and business data archival requirements; although sometimes interchangeable, not to be confused with the Data Protection Act 1998.

3. Define Information Life cycle Management. (NOV /DEC 2017)

Information life cycle management (ILM) is a comprehensive approach to managing the flow of an information system's data and associated metadata from creation and initial storage to the time when it becomes obsolete and is deleted.

4. How to archive data using Hadoop?

Hadoop Archives (HAR) can be used to address the namespace limitations associated with storing many small files. A Hadoop Archive packs small files into HDFS blocks more efficiently, thereby reducing NameNode memory usage while still allowing transparent access to files. Hadoop Archives are also compatible with MapReduce, allowing transparent access to the original files by MapReduce jobs.

5. write down HAR command.

hadoop archive -archiveName myhar.har /input/location /output/location
Once a .har file is created, you can do a listing on the .har file and you will see it is made up of index files and part files. Part files are nothing but the original files concatenated together in to a big file. Index files are look up files which is used to look up the individual small files inside the big part files.

hadoop fs -ls /output/location/myhar.har
/output/location/myhar.har/_index
/output/location/myhar.har/_masterindex
/output/location/myhar.har/part-0
6. List down the components of Hadoop Archive

Hadoop Archive has three components: a data model that defines the archive format, a FileSystem interface that allows transparent access, and a tool for creating archives with MapReduce jobs.
7. What is Big Data Testing Strategy? (NOV/DEC 2017)
Testing Big Data application is more a verification of its data processing rather than testing the individual features of the software product. When it comes to Big data testing, performance and functional testing are the key.
8. What is Architecture Testing?

Hadoop processes very large volumes of data and is highly resource intensive. Hence, architectural testing is crucial to ensure success of your Big Data project. Poorly or improper designed system may lead to performance degradation, and the system could fail to meet the requirement. Atleast, Performance and Failover test services should be done in a Hadoop environment.

9. List down Performance testing challenges.
· Diverse set of technologies: Each sub-component belongs to different technology and requires testing in isolation

· Unavailability of specific tools: No single tool can perform the end-to-end testing. For example, NoSQL might not fit for message queues

· Test Scripting: A high degree of scripting is needed to design test scenarios and test cases

· Test environment: It needs special test environment due to large data size

· Monitoring Solution: Limited solutions exists that can monitor the entire environment

· Diagnostic Solution: Custom solution is required to develop to drill down the performance bottleneck areas
10. What are the challenges in Database Administration?

· The Shift to an Application-centric Approach

· The Introduction of Multiple Database Platforms

· Managing Data On-Premises and in the Cloud
Part B

1. Explain in detail about Archiving Data Using Hadoop?

The Hadoop Distributed File System (HDFS) is designed to store and process large data sets, but HDFS can be less efficient when storing a large number of small files. When there are many small files stored in HDFS, these small files occupy a large portion of the namespace. As a result, disk space is under-utilized because of the namespace limitation.

As we know, Namenode holds the metadata information in memory for all the files stored in HDFS. Let’s say we have a file in HDFS which is 1 GB in size and the Namenode will store metadata information of the file – like file name, creator, created time stamp, blocks, permissions etc.

Now assume we decide to split this 1 GB file in to 1000 pieces and store all 100o “small” files in HDFS. Now Namenode has to store metadata information of 1000 small files in memory. This is not very efficient – first it takes up a lot of memory and second soon Namenode will become a bottleneck as it is trying to manage a lot of data.

Hadoop Archives (HAR) can be used to address the namespace limitations associated with storing many small files. A Hadoop Archive packs small files into HDFS blocks more efficiently, thereby reducing NameNode memory usage while still allowing transparent access to files. Hadoop Archives are also compatible with MapReduce, allowing transparent access to the original files by MapReduce jobs.

HAR is created from a collection of files and the archiving tool (a simple command) will run a MapReduce job to process the input files in parallel and create an archive file.

HAR increases the scalability of the system by reducing the namespace usage and decreasing the operation load in the NameNode. This improvement is orthogonal to memory optimization in NameNode and distributing namespace management across multiple NameNodes.

Hadoop Archive is also MapReduce-friendly — it allows parallel access to the original files by MapReduce jobs.

HAR command

hadoop archive -archiveName myhar.har /input/location /output/location
Once a .har file is created, you can do a listing on the .har file and you will see it is made up of index files and part files. Part files are nothing but the original files concatenated together in to a big file. Index files are look up files which is used to look up the individual small files inside the big part files.

hadoop fs -ls /output/location/myhar.har
/output/location/myhar.har/_index
/output/location/myhar.har/_masterindex
/output/location/myhar.har/part-0
2. Explain in detail about Hadoop archeive components?

Hadoop Archive-Components:

Hadoop Archive has three components: a data model that defines the archive format, a FileSystem interface that allows transparent access, and a tool for creating archives with MapReduce jobs.

1.The Data Model: har format

[image: image121.png]= oy

Figure 1: Archiving small files

The Hadoop Archive's data format is called har, with the following layout:

foo.har/_masterindex //stores hashes and offsets
foo.har/_index //stores file statuses
foo.har/part-[1..n] //stores actual file data
The file data is stored in multiple part files, which are indexed for keeping the original separation of data intact. Moreover, the part files can be accessed by MapReduce programs in parallel. The index files also record the original directory tree structures and the file statuses. In Figure 1, a directory containing many small files is archived into a directory with large files and indexes.

2.HarFileSystem – A first-class FileSystem providing transparent access

Most archival systems, such as tar, are tools for archiving and de-archiving. Generally, they do not fit into the actual file system layer and hence are not transparent to the application writer in that the user had to de-archive the archive before use.

Hadoop Archive is integrated in the Hadoop’s FileSystem interface. The HarFileSystemimplements the FileSystem interface and provides access via the har:// scheme. This exposes the archived files and directory tree structures transparently to the users. Files in a har can be accessed directly without expanding it. For example, we have the following command to copy a HDFS file to a local directory:

hadoop fs –get hdfs://namenode/foo/file-1 localdir
Suppose an archive bar.har is created from the foo directory. Then, the command to copy the original file becomes

hadoop fs –get har://namenode/bar.har#foo/file-1 localdir
Users only have to change the URI paths. Alternatively, users may choose to create a symbolic link (from hdfs://namenode/foo to har://namenode/bar.har#foo in the example above), then even the URIs do not need to be changed. In either case,HarFileSystem will be invoked automatically for providing access to the files in the har. Because of this transparent layer, har is compatible with the Hadoop APIs, MapReduce, the shell command -ine interface, and higher-level applications like Pig, Zebra, Streaming, Pipes, and DistCp.

3. The Archiving Tool: A MapReduce program for creating har

To create har efficiently in parallel, we implemented an archiving tool using MapReduce. The tool can be invoked by the command

hadoop archive -archiveName <name> <src>* <dest>
A list of files is generated by traversing the source directories recursively, and then the list is split into map task inputs. Each map task creates a part file (about 2 GB, configurable) from a subset of the source files and outputs the metadata. Finally, a reduce task collects metadata and generates the index files.
4. Looking Up Files in Hadoop Archives

The hdfs dfs -ls command can be used to look up files in Hadoop archives. Using the example /user/zoo/foo.har archive created in the previous section, use the following command to list the files in the archive:

hdfs dfs -ls har:///user/zoo/foo.har/

This command returns:

har:///user/zoo/foo.har/dir1

har:///user/zoo/foo.har/dir2

These archives were created with the following command:

hadoop archive -archiveName foo.har -p /user/hadoop dir1 dir2 /user/zoo

If you change the command to:

hadoop archive -archiveName foo.har -p /user/ hadoop/dir1 hadoop/dir2 /user/zoo

And then run the following command:

hdfs dfs -ls -R har:///user/zoo/foo.har

The following output is returned:

har:///user/zoo/foo.har/hadoop

har:///user/zoo/foo.har/hadoop/dir1

har:///user/zoo/foo.har/hadoop/dir2

Note that the modified parent argument causes the files to be archived relative to /user/ rather than /user/hadoop.

How to Unarchive an Archive

Since all the fs shell commands in the archives work transparently, unarchiving is just a matter of copying.

To unarchive sequentially:

hdfs dfs -cp har:///user/zoo/foo.har/dir1 hdfs:/user/zoo/newdir
To unarchive in parallel, use DistCp:

hadoop distcp har:///user/zoo/foo.har/dir1 hdfs:/user/zoo/newdir
Limitations of HAR files

1. Once an archive file is created, you can not update the file to add or remove files. In other words, har files are immutable.

2. Archive file will have a copy of all the original files so once a .har is created it will take as much space as the original files. Don’t mistake .har files for compressed files.

3. When a .har file is given as an input to MapReduce job, the small files inside the .har file will be processed individually by separate mappers which is inefficient.

4. Once HFDS supports variable length blocks, har could possibly be created by moving the blocks metadata without copying the actual data. Then, har creation would be nearly instantaneous.
2. Explain in detail about Big Data Testing: Functional & Performance. (NOV/DEC 2017)
 Big Data

Big data is a collection of large datasets that cannot be processed using traditional computing techniques. Testing of these datasets involves various tools, techniques and frameworks to process. Big data relates to data creation, storage, retrieval and analysis that is remarkable in terms of volume, variety, and velocity.

Big Data Testing Strategy

Testing Big Data application is more a verification of its data processing rather than testing the individual features of the software product. When it comes to Big data testing, performance and functional testing are the key.

In Big data testing QA engineers verify the successful processing of terabytes of data using commodity cluster and other supportive components. It demands a high level of testing skills as the processing is very fast. Processing may be of three types

· Batch

· Real Time

· Interactive
Batch Processing

Batch data processing is an efficient way of processing high volumes of data is where a group of transactions is collected over a period of time. Data is collected, entered, processed and then the batch results are produced (Hadoop is focused on batch data processing). Batch processing requires separate programs for input, process and output. An example is payroll and billing systems.

[image: image122.jpg]Big Data Batch Processing

Operational Business Social Hz?l:i's: Services
Data Intelligence Data Sk Data

Extractii—> iransformi— i Load aili—> pEiaiRataiAnalytics

Traditional Systems use Proprietary Databases (Oracle, etc)
Big Data Systems use Open-source highly parallel systems (Hadoop, etc)

>Initial Indexing only by time
>Both techniques highly batch orientated
>Real-time or near real-time virtually impossible

Real Time Processing

Real time data processing involves a continual input, process and output of data. Data must be processed in a small time period (or near real time). Radar systems, customer services and bank ATMs are examples. Real time data processing and analytics allows an organization the ability to take immediate action for those times when acting within seconds or minutes is significant. The goal is to obtain the insight required to act prudently at the right time - which increasingly means immediately.

[image: image123.png]Transactions Universal
Simulator Messaging

In-Memory
Data Gets

TERRACOTTA In-memory Data Management Platform SOAP, REST,
Web Sockets

Hadoop Connector

External
7 Hadoop Output \, Systems . '
| Data Puts (Consumers) A 4

JMS source -

S

HDFS Sink

\ : ETL + Analytical processing /

Interactive Processing:

Processing can be done by Live user-driven interactions with data (through query tools or enterprise applications) that produce instantaneous results

Along with this, data quality is also an important factor in big data testing. Before testing the application, it is necessary to check the quality of data and should be considered as a part of database testing. It involves checking various characteristics like conformity, accuracy, duplication, consistency, validity, data completeness, etc.

Testing Steps in verifying Big Data Applications

The following figure gives a high level overview of phases in Testing Big Data Applications

[image: image124.png]- VAap reduce process Works corvecty

- Chack proper data is puled info
systom
- Data. aggregation and seqregation
- Compare swrce data. with the data Yuis are implemanted on the dafa
- Key Vabe pairs are generared

anded on adoop
- Vaidating the data. after post ap

- Ohack vight daa s extvasted and
oaded info the corvest HDFS beation
Reduee process

Test Entry
Polm.s

Data
Source | — | Source ETL
(roeNS, Hadoop Process
web logs,

social

media etc.) I

ng 819 Dot ©Gunsscom

Big Data Testing can be broadly divided into three steps

Step 1: Data Staging Validation

The first step of big data testing, also referred as pre-Hadoop stage involves process validation.

· Data from various source like RDBMS, weblogs, social media, etc. should be validated to make sure that correct data is pulled into system

· Comparing source data with the data pushed into the Hadoop system to make sure they match

· Verify the right data is extracted and loaded into the correct HDFS location

Tools like Talend, Datameer, can be used for data staging validation

Step 2: "MapReduce" Validation

The second step is a validation of "MapReduce". In this stage, the tester verifies the business logic validation on every node and then validating them after running against multiple nodes, ensuring that the

· Map Reduce process works correctly

· Data aggregation or segregation rules are implemented on the data

· Key value pairs are generated

· Validating the data after Map Reduce process

Step 3: Output Validation Phase

The final or third stage of Big Data testing is the output validation process. The output data files are generated and ready to be moved to an EDW (Enterprise Data Warehouse) or any other system based on the requirement.

Activities in third stage includes

· To check the transformation rules are correctly applied

· To check the data integrity and successful data load into the target system

· To check that there is no data corruption by comparing the target data with the HDFS file system data

Architecture Testing

Hadoop processes very large volumes of data and is highly resource intensive. Hence, architectural testing is crucial to ensure success of your Big Data project. Poorly or improper designed system may lead to performance degradation, and the system could fail to meet the requirement. Atleast, Performance and Failover test services should be done in a Hadoop environment.

Performance testing includes testing of job completion time, memory utilization, data throughput and similar system metrics. While the motive of Failover test service is to verify that data processing occurs seamlessly in case of failure of data nodes

Performance Testing

Performance Testing for Big Data includes two main action

· Data ingestion and Throughout: In this stage, the tester verifies how the fast system can consume data from various data source. Testing involves identifying different message that the queue can process in a given time frame. It also includes how quickly data can be inserted into underlying data store for example insertion rate into a Mongo and Cassandra database.

· Data Processing: It involves verifying the speed with which the queries or map reduce jobs are executed. It also includes testing the data processing in isolation when the underlying data store is populated within the data sets. For example running Map Reduce jobs on the underlying HDFS

· Sub-Component Performance: These systems are made up of multiple components, and it is essential to test each of these components in isolation. For example, how quickly message is indexed and consumed, mapreduce jobs, query performance, search, etc.

Performance Testing Approach

Performance testing for big data application involves testing of huge volumes of structured and unstructured data, and it requires a specific testing approach to test such massive data.
[image: image125.png]B - m - 5 - s - =S
o m

Perfor Testil h

Performance Testing is executed in this order

1. Process begins with the setting of the Big data cluster which is to be tested for performance

2. Identify and design corresponding workloads

3. Prepare individual clients (Custom Scripts are created)

4. Execute the test and analyzes the result (If objectives are not met then tune the component and re-execute)

5. Optimum Configuration

Parameters for Performance Testing

Various parameters to be verified for performance testing are

· Data Storage: How data is stored in different nodes

· Commit logs: How large the commit log is allowed to grow

· Concurrency: How many threads can perform write and read operation

· Caching: Tune the cache setting "row cache" and "key cache."

· Timeouts: Values for connection timeout, query timeout, etc.

· JVM Parameters: Heap size, GC collection algorithms, etc.

· Map reduce performance: Sorts, merge, etc.

· Message queue: Message rate, size, etc.

Test Environment Needs

Test Environment needs depend on the type of application you are testing. For Big data testing, test environment should encompass

· It should have enough space for storage and process large amount of data

· It should have cluster with distributed nodes and data

· It should have minimum CPU and memory utilization to keep performance high

Big data Testing Vs. Traditional database Testing

	Properties
	Traditional database testing
	Big data testing

	Data
	· Tester work with structured data
	· Tester works with both structured as well as unstructured data

	
	· Testing approach is well defined and time-tested
	· Testing approach requires focused R&D efforts

	
	· Tester has the option of "Sampling" strategy doing manually or "Exhaustive Verification" strategy by automation tool
	· "Sampling" strategy in Big data is a challenge

	Infrastructure
	· It does not require special test environment as the file size is limited
	· It requires special test environment due to large data size and files (HDFS)

	Validation Tools
	Tester uses either the Excel basedmacros or UI based automation tools
	No defined tools, the range is vast from programming tools like MapReduce to HIVEQL

	
	Testing Tools can be used with basic operating knowledge and less training.
	It requires a specific set of skills and training to operate testing tool. Also, the tools are in their nascent stage and overtime it may come up with new features.

Tools used in Big Data Scenarios

	Big Data Cluster
	Big Data Tools

	NoSQL:
	· CouchDB, DatabasesMongoDB, Cassandra, Redis, ZooKeeper, Hbase

	MapReduce:
	· Hadoop, Hive, Pig, Cascading, Oozie, Kafka, S4, MapR, Flume

	Storage:
	· S3, HDFS (Hadoop Distributed File System)

	Servers:
	· Elastic, Heroku, Elastic, Google App Engine, EC2

	Processing
	· R, Yahoo! Pipes, Mechanical Turk, BigSheets, Datameer

Challenges in Big Data Testing

· Automation
Automation testing for Big data requires someone with a technical expertise. Also, automated tools are not equipped to handle unexpected problems that arise during testing

· Virtualization
It is one of the integral phases of testing. Virtual machine latency creates timing problems in real time big data testing. Also managing images in Big data is a hassle.

· Large Dataset
· Need to verify more data and need to do it faster

· Need to automate the testing effort

· Need to be able to test across different platform

Performance testing challenges
· Diverse set of technologies: Each sub-component belongs to different technology and requires testing in isolation

· Unavailability of specific tools: No single tool can perform the end-to-end testing. For example, NoSQL might not fit for message queues

· Test Scripting: A high degree of scripting is needed to design test scenarios and test cases

· Test environment: It needs special test environment due to large data size

· Monitoring Solution: Limited solutions exists that can monitor the entire environment

· Diagnostic Solution: Custom solution is required to develop to drill down the performance bottleneck areas
3. Explain in detail about Database Administration?

Databases are the heart of applications and a vital component for business operations. And database administrators (DBAs) are under intense pressure and responsibility to ensure high performance and minimal downtime while facing myriad challenges.

Increasing workloads and database complexity are among the challenges that DBAs deal with on a daily basis, as evidenced by IT’s shifting to an application-centric approach, the introduction of multiple database platforms, and the need to manage data not only on-premises, but also in the cloud. But as the IT landscape evolves, these challenges must, and can, be overcome.

The Shift to an Application-centric Approach
At the core of nearly every application is a database. This means that when an application performance or availability problem arises, there’s a good chance it’s associated with the underlying database’s performance. Database performance impacts customers and end users, who have little patience for application issues (a recent SolarWindssurvey found that 67 percent of end users say they expect IT to resolve such issues within an hour or less). In addition, in recent research by Gleanster, 88 percent of IT professionals reported the database as the most common challenge or issue with application performance. Furthermore, the cloud, DevOps, and other shifts in technology are making the entire IT department more application-focused. In the end, applications are what matters to the business and to end users. This means DBAs are being held accountable for application performance, not only database performance.

To deliver better application performance, DBAs should consider the following tips:

· Be proactive and align behind end-user experience as a shared objective across the entire IT organization by looking at application performance and the impact that the database has on it continuously, not only when it becomes a major problem.

· Measure performance based not on an infrastructure resources perspective, but on end-user wait times. Wait-time analysis gives DBAs a view into what end-users are waiting for and what the database is waiting for, providing clear visibility into bottlenecks.

· Implement monitoring tools that provide visibility across the entire application stack, including all the infrastructure that supports the database – virtualization layers, database servers, hosts, storage systems, networks, etc.

· Establish historic baselines of application and database performance that look at how applications performed at the same time on the same day last week, and the week before that, to detect any anomalies before they become larger problems.

The Introduction of Multiple Database Platforms
According to a 2015 report, most DBAs are responsible for multiple database technologies from several vendors, most commonly Oracle, SQL Server, and MySQL. In fact, over a quarter (28 percent, to be precise) of DBAs manage 26 to 100 databases at any given time. This push toward database diversity and DBA efficiency leads to an increasingly complex role for the DBA, who must learn to adapt to unfamiliar database platforms as more responsibility for business success is added to their shoulders.

The following best practices can help DBAs better manage multiple database platforms within a single IT environment:

Have a common set of goals, metrics and SLAs across all databases, ideally based on application response times, not only uptime.

· Use tools that provide a single dashboard of performance and the ability to drill down across database technologies and deployment methods, including cloud.

· Document a consistent set of processes for ensuring integrity and security: backup and restore processes, encryption at rest and on transit, detection of anomalies and potential security events in logs, to name a few.

· Establish a strategy, roadmap, and guidelines for moving to the cloud (or not) and for reducing workload costs by moving databases to lower-license-cost versions or open-source alternatives.

· Make sure team members can escape firefighting mode and spend enough time proactively optimizing performance of the databases and taking care of important maintenance tasks, which can result in significant cost savings and prevent problems in the future.

Managing Data On-Premises and in the Cloud
With the allure of cost savings, greater flexibility, and more agility, many organizations are eyeing the cloud as an alternative for deploying new applications, including those with high database performance requirements. In fact, technology research firm TechNavio predicts a 62 percent annual growth rate of cloud-based databases through 2018. However, this transition creates new complexities and challenges for DBAs, especially because DBAs are ultimately responsible for both database performance and data security regardless of if the data lives on-premise or in the cloud.

Here are several pieces of advice for managing data in the cloud that DBAs should keep in mind:

· When considering which databases to move to the cloud, take into account data transfer process and latency, and how to maintain databases in sync if required, especially if applications need to integrate with others that are not in the same cloud deployment.

· Poor on-premise database performance will be poor in the cloud too. Moving the problem does not solve it. Scaling in the cloud to compensate for bad performance is the wrong approach and gets expensive quickly.

· Understand the service provider’s services and capabilities, know its SLAs, review its recommended architecture, and be very aware of scheduled maintenance.

· Think through, plan, and manage backup and recovery to ensure important data is not lost in the event of a vendor failure or outage.

· Stay on top of security, realizing that encryption is only the tip of the iceberg. Consider who will monitor database access for malicious or unauthorized access and plan for the worst. Have a documented course of action in case of a security breach or data loss.

· If it is important to monitor and optimize on-premise deployments, it’s even more important in the cloud, given its dynamic nature. A consistent set of tools to do so across both sides of hybrid IT environments is ideal.

Shifting to an application-centric approach to database management, managing multiple databases, and managing data on-premise and in the cloud are all challenges that DBAs face in today’s evolving database landscape. But these challenges are not insurmountable. By heeding best practices, DBAs can overcome these challenges and ensure success.

