IT6503-WEB PROGRAMMING
UNIT I SCRIPTING.

Web page Designing using HTML, Scripting basics- Client side and server side scripting. Java ScriptObject,

names, literals, operators and expressions- statements and features- events - windows -documents - frames - data types - built-in functions- Browser object model - Verifying forms.-HTML5-CSS3- HTML 5 canvas - Web site creation using tools.

UNIT II JAVA

Introduction to object oriented programming-Features of Java – Data types, variables and arrays –Operators – Control statements – Classes and Methods – Inheritance. Packages and Interfaces –Exception Handling – Multithreaded Programming – Input/Output – Files – Utility Classes – StringHandling.

UNIT III JDBC

JDBC Overview – JDBC implementation – Connection class – Statements - Catching DatabaseResults, handling database Queries. Networking– InetAddress class – URL class- TCP sockets - UDPsockets, Java Beans –RMI.

UNIT IV APPLETS

Java applets- Life cycle of an applet – Adding images to an applet – Adding sound to an applet.Passing parameters to an applet. Event Handling. Introducing AWT: Working with Windows Graphicsand Text. Using AWT Controls, Layout Managers and Menus. Servlet – life cycle of a servlet. TheServlet API, Handling HTTP Request and Response, using Cookies, Session Tracking. Introduction toJSP.
UNIT V XML AND WEB SERVICES
Xml – Introduction-Form Navigation-XML Documents- XSL – XSLT- Web services-UDDI-WSDL-Javaweb services – Web resources.
UNIT – 1

SCRIPTING

2 Marks Question and Answer

1.
What is JavaScript? (NOV/DEC 2015)
JavaScript is a lightweight, interpreted programming language with object-oriented capabilities that allows you to build interactivity into otherwise static HTML pages.

The general-purpose core of the language has been embedded in Netscape, Internet Explorer, and other web browsers.

2.
Name some of the JavaScript features.

Following are the features of JavaScript −

JavaScript is a lightweight, interpreted programming language. JavaScript is designed for creating network-centric applications. JavaScript is complementary to and integrated with Java.

JavaScript is complementary to and integrated with HTML. JavaScript is open and cross-platform.

3.
What are the advantages of using JavaScript?
Following are the advantages of using JavaScript −

Less server interaction − You can validate user input before sending the page off to the server. This saves server traffic, which means less load on your server.

Immediate feedback to the visitors − They don't have to wait for a page reload to see if they have forgotten to enter something.

Increased interactivity − You can create interfaces that react when the user hovers over them with a mouse or activates them via the keyboard.

Richer interfaces − You can use JavaScript to include such items as drag-and-drop components and sliders to give a Rich Interface to your site visitors.

4.
What are disadvantages of using JavaScript? (NOV/DEC 2015)
We cannot treat JavaScript as a full fledged programming language. It lacks the following important features −

Client-side JavaScript does not allow the reading or writing of files. This has been kept for security reason.

JavaScript cannot be used for Networking applications because there is no such support available.

JavaScript doesn't have any multithreading or multiprocess capabilities.

[image: image61.png]Student Registration Form
Name

Father
Name

Postal
Address

Personal
Address

Sex OMale OFemale
City select.
Course |select

District | select.

State select.
PinCode
Emailld

DOB

MobileNo

5.
Is JavaScript a case-sensitive language?

Yes! JavaScript is a case-sensitive language. This means that language keywords, variables, function names, and any other identifiers must always be typed with a consistent capitalization of letters.

6.
How can you create an Object in JavaScript?

JavaScript supports Object concept very well. You can create an object using the object literal as follows −

var emp = { name: "Zara", age: 10

};

7.
How can you read properties of an Object in JavaScript?

You can write and read properties of an object using the dot notation as follows −

· Getting object properties emp.name // ==> Zara emp.age // ==> 10

· Setting object properties emp.name = "Daisy" // <== Daisy

emp.age = 20
// <== 20

How can you create an Array in JavaScript?

You can define arrays using the array literal as follows −

var x = [];

var y = [1, 2, 3, 4, 5];

8.
How to read elements of an array in JavaScript?

An array has a length property that is useful for iteration. We can read elements of an array as follows −

var x = [1, 2, 3, 4, 5];

for (var i = 0; i < x.length; i++) { // Do something with x[i]

}

9.
What is a named function in JavaScript? How to define a named function?

A named function has a name when it is defined. A named function can be defined using function keyword as follows −

[image: image62.png]This isthe Cellpadding,
/\hsseﬂn 1

ezt

text

Thisisthe Cellspating,
Htissettn 5

[image: image63.jpg]start() sleepdone, 1/0
v complete,lockavailable,
—_— resume, notify
— /‘\ AT
(Blocked))
v y

e

Running

: _/ sleep, blockon1/0, wait

run() method forlock, suspend, wait

exits

v

Terminated

_—

function named(){

// do some stuff here

}

10. How many types of functions JavaScript supports? A function in JavaScript can be either named or anonymous.

11. How to define a anonymous function?

An anonymous function can be defined in similar way as a normal function but it would not have any name.

12. Can you assign a anonymous function to a variable? Yes! An anonymous function can be assigned to a variable.

13. Can you pass a anonymous function as an argument to another function? Yes! An anonymous function can be passed as an argument to another function.

14. What is arguments object in JavaScript?

JavaScript variable arguments represents the arguments passed to a function.

15. How can you get the type of arguments passed to a function?

Using typeof operator, we can get the type of arguments passed to a function. For example −

function func(x){

console.log(typeof x, arguments.length);

	}
	

	func();
	//==> "undefined", 0

	func(1);
	//==> "number", 1

func("1", "2", "3");
//==> "string", 3

16. How can you get the total number of arguments passed to a function?

Using arguments.length property, we can get the total number of arguments passed to a function.

For example −

function func(x){

console.log(typeof x, arguments.length);

	}
	

	func();
	//==> "undefined", 0

	func(1);
	//==> "number", 1

func("1", "2", "3");
//==> "string", 3

[image: image64.jpg]<<Interface>>

proxy object
-

Adder
Implementation

17. How can you get the reference of a caller function inside a function?

The arguments object has a callee property, which refers to the function you're inside of. For example −
function func() {

return arguments.callee;

}

func();
// ==> func

18. What is the purpose of 'this' operator in JavaScript?
JavaScript famous keyword this always refers to the current context.

19. What are the valid scopes of a variable in JavaScript?

The scope of a variable is the region of your program in which it is defined. JavaScript variable will have only two scopes.

Global Variables − A global variable has global scope which means it is visible everywhere in your JavaScript code.

Local Variables − A local variable will be visible only within a function where it is defined. Function parameters are always local to that function.

20. Which type of variable among global and local, takes precedence over other if names are same?

A local variable takes precedence over a global variable with the same name.

21. What is callback?

A callback is a plain JavaScript function passed to some method as an argument or option. Some callbacks are just events, called to give the user a chance to react when a certain state is triggered.

22. What is closure?

Closures are created whenever a variable that is defined outside the current scope is accessed from within some inner scope.

23. Give an example of closure?

Following example shows how the variable counter is visible within the create, increment, and print functions, but not outside of them −

function create() { var counter = 0;

[image: image65.jpg]Object

Button
¥
Label
Component
¥ Checkbox
Choice
List
Container

i

indow Panel

Applet

Frame

Dialog

return {

increment: function() { counter++;

},

print: function() { console.log(counter);

}

}

}

var c = create(); c.increment(); c.print(); // ==> 1

24. Which built-in method returns the character at the specified index?
charAt() method returns the character at the specified index.

25. Which built-in method combines the text of two strings and returns a new string? concat() method returns the character at the specified index.

26. Which built-in method calls a function for each element in the array?

forEach() method calls a function for each element in the array.

27. Which built-in method returns the index within the calling String object of the first occurrence of the specified value?

indexOf() method returns the index within the calling String object of the first occurrence of the specified value, or −1 if not found.

28. Which built-in method returns the length of the string?

 length() method returns the length of the string.

29. Which built-in method removes the last element from an array and returns that element? pop() method removes the last element from an array and returns that element.

30. Which built-in method adds one or more elements to the end of an array and returns the new length of the array?

push() method adds one or more elements to the end of an array and returns the new length of the array.

31. Which built-in method reverses the order of the elements of an array?

[image: image66.png]java.util EventObject

javaawtAwtevent

RemEvent Adusiment Compnent Actiofvent. TexiEvent
Erent

FocusEvent Confainer InputEvent PaintEvent Window

Event Event

Keyevent MouséEvent

reverse() method reverses the order of the elements of an array −− the first becomes the last, and the last becomes the first.

32. Which built-in method sorts the elements of an array?

sort() method sorts the elements of an array.

33. Which built-in method returns the characters in a string beginning at the specified location?

substr() method returns the characters in a string beginning at the specified location through the specified number of characters.

34. Which built-in method returns the calling string value converted to lower case? toLowerCase() method returns the calling string value converted to lower case.

35.Which built-in method returns the calling string value converted to upper case? toUpperCase() method returns the calling string value converted to upper case.

36.Which built-in method returns the string representation of the number's value? toString() method returns the string representation of the number's value.

37.What are the variable naming conventions in JavaScript?

While naming your variables in JavaScript keep following rules in mind.

You should not use any of the JavaScript reserved keyword as variable name. These keywords are mentioned in the next section. For example, break or boolean variable names are not valid.

JavaScript variable names should not start with a numeral (0-9). They must begin with a letter or the underscore character. For example, 123test is an invalid variable name but _123test is a valid one.

JavaScript variable names are case sensitive. For example, Name and name are two different variables.

38. How typeof operator works?

The typeof is a unary operator that is placed before its single operand, which can be of any type. Its value is a string indicating the data type of the operand.

The typeof operator evaluates to "number", "string", or "boolean" if its operand is a number, string, or boolean value and returns true or false based on the evaluation.

[image: image67.png]1. Load Serviet Class ‘

5. Callthe
destroy ()
method

2. Create Serviet Instance
3. Callthe init () method

4 Callthe service () method

39. What typeof returns for a null value?

It returns "object".

40. Can you access Cookie using javascript?

JavaScript can also manipulate cookies using the cookie property of the Document object. JavaScript can read, create, modify, and delete the cookie or cookies that apply to the current web page.

41. How to create a Cookie using JavaScript?

The simplest way to create a cookie is to assign a string value to the document.cookie object, which looks like this −

Syntax −

document.cookie = "key1 = value1; key2 = value2; expires = date";

Here expires attribute is option. If you provide this attribute with a valid date or time then cookie will expire at the given date or time and after that cookies' value will not be accessible.

42. How to read a Cookie using JavaScript?
Reading a cookie is just as simple as writing one, because the value of the document.cookie object is the cookie. So you can use this string whenever you want to access the cookie.

The document.cookie string will keep a list of name = value pairs separated by semicolons, where name is the name of a cookie and value is its string value.

You can use strings' split() function to break the string into key and values.

43. How to delete a Cookie using JavaScript?

Sometimes you will want to delete a cookie so that subsequent attempts to read the cookie return nothing. To do this, you just need to set the expiration date to a time in the past.

44. How to redirect a url using JavaScript?

This is very simple to do a page redirect using JavaScript at client side. To redirect your site visitors to a new page, you just need to add a line in your head section as follows −

<head>

<script type="text/javascript"> <!--

window.location="http://www.newlocation.com";

[image: image68.jpg]Web Server

Servlet Container

HTTP Request

HTTP Response

Client

//--> </script> </head>

45. How to print a web page using javascript?

JavaScript helps you to implement this functionality using print function of window object. The JavaScript print function window.print() will print the current web page when executed.

46. What is Date object in JavaScript?

The Date object is a datatype built into the JavaScript language. Date objects are created with the new Date().

Once a Date object is created, a number of methods allow you to operate on it. Most methods simply allow you to get and set the year, month, day, hour, minute, second, and millisecond fields of the object, using either local time or UTC (universal, or GMT) time.

47. What is Number object in JavaScript?

The Number object represents numerical date, either integers or floating-point numbers. In general, you do not need to worry about Number objects because the browser automatically converts number literals to instances of the number class.

Syntax −

Creating a number object −

var val = new Number(number);

If the argument cannot be converted into a number, it returns NaN (Not-a-Number).

48. How to handle exceptions in JavaScript?

The latest versions of JavaScript added exception handling capabilities. JavaScript implements the try...catch...finally construct as well as the throw operator to handle exceptions.

You can catch programmer-generated and runtime exceptions, but you cannot catch JavaScript syntax errors.

49. What is purpose of onError event handler in JavaScript?

The onerror event handler was the first feature to facilitate error handling for JavaScript. The error event is fired on the window object whenever an exception occurs on the page.

The onerror event handler provides three pieces of information to identify the exact nature of the error −

[image: image69.jpg]Applet

hghghghghg kil gl

KeyRealesed

Error message − The same message that the browser would display for the given error. URL − The file in which the error occurred.

Line number − The line number in the given URL that caused the error.

50. What is HTML5? (NOV/DEC 2015)
HTML5 is the next major revision of the HTML standard superseding HTML 4.01, XHTML 1.0, and XHTML 1.1. HTML5 is a standard for structuring and presenting content on the World Wide Web.

51. Name some of the new features of HTML5.

HTML5 introduces a number of new elements and attributes that helps in building a modern websites. Following are great features introduced in HTML5 −

New Semantic Elements − These are like <header>, <footer>, and <section>.

Forms 2.0 − Improvements to HTML web forms where new attributes have been introduced for <input> tag.

Persistent Local Storage − To achieve without resorting to third-party plugins.

WebSocket − A a next-generation bidirectional communication technology for web applications.

Server-Sent Events − HTML5 introduces events which flow from web server to the web browsers and they are called Server-Sent Events (SSE).

Canvas − This supports a two-dimensional drawing surface that you can program with JavaScript.

Audio & Video − You can embed audio or video on your web pages without resorting to third-party plugins.

Geolocation − Now visitors can choose to share their physical location with your web application.

Microdata − This lets you create your own vocabularies beyond HTML5 and extend your web pages with custom semantics.

Drag and drop − Drag and drop the items from one location to another location on a the same webpage.

52. Which browsers support HTML5?

The latest versions of Apple Safari, Google Chrome, Mozilla Firefox, and Opera all support many HTML5 features and Internet Explorer 9.0 will also have support for some HTML5 functionality.

The mobile web browsers that come pre-installed on iPhones, iPads, and Android phones all have excellent support for HTML5.

53. Is HTML5 backward compatible with old browsers?

[image: image70.jpg]NORTH

WEST

[cenTeR

EAST

SOUTH

Yes! HTML5 is designed, as much as possible, to be backward compatible with existing web browsers. New features build on existing features and allow you to provide fallback content for older browsers.

It is suggested to detect support for individual HTML5 features using a few lines of JavaScript.

54. Are HTML tags case sensitive?

No!

55. What is the purpose of 'section' tag in HTML5?

This tag represents a generic document or application section. It can be used together with h1-h6 to indicate the document structure.

56. What is the purpose of 'article' tag in HTML5?

This tag represents an independent piece of content of a document, such as a blog entry or newspaper article.

57. What is the purpose of 'aside' tag in HTML5?

This tag represents a piece of content that is only slightly related to the rest of the page.

58. What is the purpose of 'header' tag in HTML5? This tag represents the header of a section.

59. What is the purpose of 'footer' tag in HTML5?

This tag represents a footer for a section and can contain information about the author, copyright information, et cetera.

60. What is the purpose of 'nav' tag in HTML5?

This tag represents a section of the document intended for navigation.

61. What is the purpose of 'dialog' tag in HTML5?
 This tag can be used to mark up a conversation.

62. What is the purpose of 'figure' tag in HTML5?

This tag can be used to associate a caption together with some embedded content, such as a graphic or video.

[image: image71.jpg]

63. What are custom attributes in HTML5?

A custom data attribute starts with data- and would be named based on your requirement.

Following is the simple example−

<div class="example" data-subject="physics" data-level="complex">

...

</div>

The above will be perfectly valid HTML5 with two custom attributes called data-subject and data-level. You would be able to get the values of these attributes using JavaScript APIs or CSS in similar way as you get for standard attributes.

64. What is the purpose of 'output' tag in HTML5?

HTML5 introduced a new element <output> which is used to represent the result of different types of output, such as output written by a script.

65. What is the purpose of 'placeholder' attribute in HTML5?

HTML5 introduced a new attribute called placeholder. This attribute on <input> and <textarea> elements provides a hint to the user of what can be entered in the field. The placeholder text must not contain carriage returns or line-feeds.

66. What is the purpose of 'autofocus' attribute in HTML5?

This is a simple one-step pattern, easily programmed in JavaScript at the time of document load, automatically focus one particular form field.

67. What is the purpose of 'required' attribute in HTML5?

HTML5 introduced a new attribute called required which would insist to have a value in an input control.

68. Can you use SVG tags directly in HTML5 without any plugin? Yes! HTML5 allows embeding SVG directly using <svg>...</svg> tag.

69. Can you use MathML tags directly in HTML5 without any plugin?

Yes! The HTML syntax of HTML5 allows for MathML elements to be used inside a document using $...$ tags.

70. What is the purpose of 'canvas' tag in HTML5?
(NOV/DEC 2015)(MAY/JUNE 2016)(NOV/DEC 2016)
[image: image72.jpg]=

il

HTML5 element <canvas> gives you an easy and powerful way to draw graphics using JavaScript. It can be used to draw graphs, make photo compositions or do simple (and not so simple) animations.

71. What is the purpose of 'audio' tag in HTML5?

HTML5 supports <audio> tag which is used to embed sound content in an HTML or XHTML document. The current HTML5 draft specification does not specify which audio formats browsers should support in the audio tag. But most commonly used audio formats are ogg, mp3 and wav.

You can use <source> tag to specify media along with media type and many other attributes. An audio element allows multiple source elements and browser will use the first recognized format.

72. What is the purpose of 'video' tag in HTML5?

HTML5 supports <video> tag which is used to embed a video file in an HTML or XHTML document.The current HTML5 draft specification does not specify which video formats browsers should support in the video tag. But most commonly used video formats are−

Ogg − Ogg files with Thedora video codec and Vorbis audio codec.

mpeg4 − MPEG4 files with H.264 video codec and AAC audio codec.

You can use <source> tag to specify media along with media type and many other attributes. An audio element allows multiple source elements and browser will use the first recognized format.

73. What is Geolocation API in HTML?

HTML5 Geolocation API lets you share your location with your favorite web sites. A Javascript can capture your latitude and longitude and can be sent to backend web server and do fancy location-aware things like finding local businesses or showing your location on a map.

Today most of the browsers and mobile devices support Geolocation API. The geolocation APIs work with a new property of the global navigator object ie. Geolocation object which can be created as follows:

var geolocation = navigator.geolocation;

The geolocation object is a service object that allows widgets to retrieve information about the geographic location of the device.

74. What is purpose of getCurrentPosition() method of geolocation object of HTML5?

 This method retrieves the current geographic location of the user.

75. What is purpose of watchPosition() method of geolocation object of HTML5?

[image: image73.jpg]

This method retrieves periodic updates about the current geographic location of the device.

76. What is purpose of clearPosition() method of geolocation object of HTML5? This method cancels an ongoing watchPosition call.

77. What is CSS?

Cascading Style Sheets, fondly referred to as CSS, is a simple design language intended to simplify the process of making web pages presentable.

78. What are advantages of using CSS?

Following are the advantages of using CSS −

CSS saves time − You can write CSS once and then reuse same sheet in multiple HTML pages. You can define a style for each HTML element and apply it to as many Web pages as you want.

Pages load faster − If you are using CSS, you do not need to write HTML tag attributes every time. Just write one CSS rule of a tag and apply it to all the occurrences of that tag. So less code means faster download times.

Easy maintenance − To make a global change, simply change the style, and all elements in all the web pages will be updated automatically.

Superior styles to HTML − CSS has a much wider array of attributes than HTML, so you can give a far better look to your HTML page in comparison to HTML attributes.

Multiple Device Compatibility − Style sheets allow content to be optimized for more than one type of device. By using the same HTML document, different versions of a website can be presented for handheld devices such as PDAs and cell phones or for printing.

Global web standards − Now HTML attributes are being deprecated and it is being recommended to use CSS. So its a good idea to start using CSS in all the HTML pages to make them compatible to future browsers.

Offline Browsing − CSS can store web applications locally with the help of an offline catche.Using of this, we can view offline websites.The cache also ensures faster loading and better overall performance of the website.

Platform Independence − The Script offer consistent platform independence and can support latest browsers as well.

79. What are the components of a CSS Style?

A style rule is made of three parts −

Selector − A selector is an HTML tag at which a style will be applied. This could be any tag like <h1> or <table> etc.

Property − A property is a type of attribute of HTML tag. Put simply, all the HTML attributes are converted into CSS properties. They could be color, border etc.

[image: image74.jpg]White Pages

Company information

Yellow Pages
Product/service information

Value − Values are assigned to properties. For example, color property can have value either red or #F1F1F1 etc.

80. What is type selector?

Type selector quite simply matches the name of an element type. To give a color to all level 1 headings −

h1 {

color: #36CFFF;

}

81. What is universal selector?

Rather than selecting elements of a specific type, the universal selector quite simply matches the name of any element type −

* {

color: #000000;

}

This rule renders the content of every element in our document in black.

82. What is Descendant Selector?

Suppose you want to apply a style rule to a particular element only when it lies inside a particular element. As given in the following example, style rule will apply to element only when it lies inside tag.

ul em {

color: #000000;

}

83. What is class selector?

You can define style rules based on the class attribute of the elements. All the elements having that class will be formatted according to the defined rule.

.black {

color: #000000;

}

This rule renders the content in black for every element with class attribute set to black in our document.

84. What is id selector?

You can define style rules based on the id attribute of the elements. All the elements having that id will be formatted according to the defined rule.

#black {

color: #000000;

}

This rule renders the content in black for every element with id attribute set to black in our document.

85. What is a child selector?

Consider the following example −

body > p {

color: #000000;

}

This rule will render all the paragraphs in black if they are direct child of <body> element. Other paragraphs put inside other elements like <div> or <td> would not have any effect of this rule.

86. What is an attribute selector?

You can also apply styles to HTML elements with particular attributes. The style rule below will match all the input elements having a type attribute with a value of text −

input[type = "text"]{ color: #000000;

}

The advantage to this method is that the <input type = "submit" /> element is unaffected, and the color applied only to the desired text fields.

87. What are the various ways of using CSS in an HTML page?

There are four ways to associate styles with your HTML document. Most commonly used methods are inline CSS and External CSS.

Embedded CSS − The <style> Element: You can put your CSS rules into an HTML document using the <style> element.

Inline CSS − The style Attribute: You can use style attribute of any HTML element to define style rules.

External CSS − The <link> Element: The <link> element can be used to include an external stylesheet file in your HTML document.

Imported CSS − @import Rule: @import is used to import an external stylesheet in a manner similar to the <link> element.

88. How CSS style overriding works?

Following is the rule to override any Style Sheet Rule −

Any inline style sheet takes highest priority. So, it will override any rule defined in <style>...</style> tags or rules defined in any external style sheet file.

Any rule defined in <style>...</style> tags will override rules defined in any external style sheet file.

Any rule defined in external style sheet file takes lowest priority, and rules defined in this file will be applied only when above two rules are not applicable.

89. What is the purpose of % measurement unit?

· - Defines a measurement as a percentage relative to another value, typically an enclosing element.

p {font-size: 16pt; line-height: 125%;}

90. What is the purpose of cm measurement unit?

cm − Defines a measurement in centimeters.

div {margin-bottom: 2cm;}

91. What is the purpose of em measurement unit?

em − A relative measurement for the height of a font in em spaces. Because an em unit is equivalent to the size of a given font, if you assign a font to 12pt, each "em" unit would be 12pt; thus, 2em would be 24pt.

p {letter-spacing: 7em;}

92. What is the purpose of ex measurement unit?

ex − This value defines a measurement relative to a font's x-height. The x-height is determined by the height of the font's lowercase letter.

p {font-size: 24pt; line-height: 3ex;}

93. What is the purpose of in measurement unit?

in − Defines a measurement in inches.

p {word-spacing: .15in;}

94. What is the purpose of mm measurement unit? mm − Defines a measurement in millimeters.

p {word-spacing: 15mm;}

95. What is the purpose of pc measurement unit?

pc − Defines a measurement in picas. A pica is equivalent to 12 points; thus, there are 6 picas per inch.

p {font-size: 20pc;}

96. What is the purpose of pt measurement unit?

pt − Defines a measurement in points. A point is defined as 1/72nd of an inch.

body {font-size: 18pt;}

97. What is the purpose of px measurement unit?

px − Defines a measurement in screen pixels.

p {padding: 25px;}

98. What is the purpose of vh measurement unit?

vh − 1% of viewport height.

h2 { font-size: 3.0vh; }

99. What is the purpose of vw measurement unit?

vw − 1% of viewport width.

h1 { font-size: 5.9vw; }

100.
What is the purpose of vmin measurement unit?

vmin 1vw or 1vh, whichever is smaller.

p { font-size: 2vmin;}

101. In how many formats can you specify a CSS color?

You can specify your color values in various formats. Following table lists all the possible formats −

Format
Syntax
Example

Hex Code
#RRGGBB
p{color:#FF0000;}

Short Hex Code #RGB
p{color:#6A7;}

RGB %
rgb(rrr%,ggg%,bbb%) p{color:rgb(50%,50%,50%);}

RGB Absolute
rgb (rrr, ggg, bbb)
p{color:rgb(0,0,255);}

Keyword
aqua, black, etc.
p{color:teal;}

102. What are browser safe colors?

There is the list of 216 colors which are supposed to be most safe and computer independent colors. These colors vary from hexa code 000000 to FFFFFF. These colors are safe to use because they ensure that all computers would display the colors correctly when running a 256 color palette.

103. Difference between HTML and HTML5.

	Html
	Html5

	Doctype declaration in Html is too longer
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
	DOCTYPE declaration in Html5 is very simple "<!DOCTYPE html>

	Audio and Video are not part of HTML
	Audio and Videos are integral part of HTML5 e.g. <audio> and <video> tags.

	Vector Graphics is possible with the help of technologies such as VML, Silverlight, Flash etc
	Vector graphics is integral part of HTML5 e.g. SVG and canvas

	It is almost impossible to get true GeoLocation of user browsing any website especially if it comes to mobile devices.
	JS GeoLocation API in HTML5 helps identify location of user browsing any website (provided user allows it)

	Html5 use cookies.
	It provides local storage in place of cookies.

	Not possible to draw shapes like circle, rectangle, triangle.
	Using Html5 you can draw shapes like circle, rectangle, triangle.

	Does not allow JavaScript to run in browser. JS runs in same thread as browser interface.
	Allows JavaScript to run in background. This is possible due to JS Web worker API in HTML5

104. How will you create a password field in a HTML form?

<form>
 User password:

 <input type="password" name="psw">
</form>

105. Write the HTML code to create following table.

	106. W
	107. X

	108. Y
	109. Z

<table>
<tr><td>W</td><td>X</td></tr>
<tr><td>Y</td><td>Z</td></tr>
</table>

106. Mention the need for cascading style sheets.
Maintenance:

It is much easier to maintain the appearance of a Web site. If you use a single CSS file updating this file allows the Web site look-and-feel to be altered easily; in contrast use of HTML formatting elements would require every file to be updated to change the appearance.

Functionality:

CSS provides rich functionality, including defining the appearance of HTML pages when they are printed.

Accessibility:

Use of CSS provides much greater accessibility, allowing users with special needs to alter the appearance of a Web page to suit their requirements. CSS also allows Web pages to be more easily rendered by special devices, such as speaking browsers, PDAs, etc.

107. Write and HTML code to display an Image.

a. <html>
<body></body>

b. </html>
108. Difference between HTML and DHTML.

	c. HTML
	d. DHTML

	e. HTML is Hypertext Markup Language.
	f. DHTML is Dynamic Hypertext Markup Language.

	g. HTML stands for only static pages.
	h. DHTML is Dynamic HTML means HTML+JavaScript.

	i. It is referred as a static HTML and static in nature.
	j. It is referred as a dynamic HTML and dynamic in nature.

	k. A plain page without any styles and Scripts called as HTML.
	l. A page with HTML, CSS, DOM and Scripts called as DHTML.

	m. HTML sites will be slow upon client-side technologies.
	n. DHTML sites will be fast enough upon client-side technologies.

109. What is Cell Padding and Cell Spacing?

110. List and explain three flavours of XHTML(May13)
Strict- The Strict type is the most standardized. It doesn't allow the use of deprecated or presentational elements. Frames are also not allowed.

Transitional-The Transitional type allows the use of deprecated or presentational elements but frames are not allowed.

Frameset-The Frameset type is same as transitional but allows the use of Frames.

111. What are the features of JavaScript?

JavaScript is a lightweight, interpreted programming language.

JavaScript is designed for creating network-centric applications.

JavaScript is complementary to and integrated with Java.

JavaScript is complementary to and integrated with HTML.

JavaScript is open and cross-platform.

112. What is a Java Script statement? Give an example. (APR/MAY 2017)
All the JavaScript code that you will write will, for the most part, be comprised of many separate statements. A statement can set a variable equal to a value. A statement can also be a function call.

Eg)document.write(). Statements define what the script will do and how it will be done.

113. Write a Java Script program to print the even or odd numbers?

<script type="text/javascript">

var i;

if ((i % 2) == 0)

document.writeln(Even Number); //alert("Even");

else

document.writeln(Odd Number); //alert("ODD");

</script>

114. List and Explain any two Java script built in object. (NOV/DEC 2016)
Booleans - object represents two values, either "true" or "false".
Numbers - object represents numeric, either integers or floating-points.
Strings - object lets you work with a series of characters
Dates - allow you to get and set the year, month, day, hour, minute, second, and millisecond fields of the object, using either local time or UTC (universal, or GMT) time.
Maths - object provides you properties and methods for mathematical constants and functions.
Regular expressions - to perform powerful pattern-matching and search-and-replace functions on text.
Arrays - object lets you store multiple values in a single variable. It stores a fixed-size sequential collection of elements of the same type.

115. Explain array creation in Java script with example.

var fruits = new Array("apple", "orange", "mango");

new operator used to allocate the memory dynamically for the arrays. var fruits denotes the array name.

116. List the different method defined in the document and window object of java script

	Methods in Document Object
	Description

	document.getElementById(id)
	Find an element by element id

	document.getElementsByTagName(name)
	Find elements by tag name

	document.getElementsByClassName(name)
	Find elements by class name

	document.createElement(element)
	Create an HTML element

	document.removeChild(element)
	Remove an HTML element

	document.appendChild(element)
	Add an HTML element

	document.replaceChild(element)
	Replace an HTML element

	document.write(text)
	Write into the HTML output stream

	Method in Window Object
	Description

	alert()
	Displays an alert box with a message and an OK button

	blur()
	Removes focus from the current window

	clearInterval()
	Clears a timer set with setInterval()

	clearTimeout()
	Clears a timer set with setTimeout()

	close()
	Closes the current window

	confirm()
	Displays a dialog box with a message and an OK &Cancel button

	focus()
	Sets focus to the current window

	open()
	Opens a new browser window

	prompt()
	Displays a dialog box that prompts the visitor for input

	stop()
	Stops the window from loading

117. Write a Java Script to print "Good Day"?
<html>

<body onload="mess()">

<script>

function mess()

{

var today=new Date();

var hour=today.getHours();

if(hour<12)

document.write("Good Day");

else
document.write("Good Bye");

}

</script>

</body>

</html>

118. Differentiate Client-side and Server-side Scripting. (NOV/DEC 2016)(NOV/DEC 2015)(MAY/JUNE 2016)
The client-side environment used to run scripts is usually a browser. The processing takes place on the end users computer. The source code is transferred from the web server to the users computer over the internet and run directly in the browser.

PART-B
1. i) Briefly discuss HTML frames and Table tags (8Marks)

HTML frames are used to divide your browser window into multiple sections where each section can load a separate HTML document. A collection of frames in the browser window is known as a frameset. The window is divided into frames in a similar way the tables are organized: into rows and columns.

Disadvantages of Frames

There are few drawbacks with using frames, so it's never recommended to use frames in your webpages:

· Some smaller devices cannot cope with frames often because their screen is not big enough to be divided up.

· Sometimes your page will be displayed differently on different computers due to different screen resolution.

· The browser's back button might not work as the user hopes.

· There are still few browsers that do not support frame technology.

Creating Frames

To use frames on a page we use <frameset> tag instead of <body> tag. The <frameset> tag defines how to divide the window into frames. The rowsattribute of <frameset> tag defines horizontal frames and cols attribute defines vertical frames. Each frame is indicated by <frame> tag and it defines which HTML document shall open into the frame.

Example

Following is the example to create three horizontal frames:

<!DOCTYPE html>
<html>
<head>
<title>HTML Frames</title>
</head>
<framesetrows="10%,80%,10%">
<framename="top"src="/html/top_frame.htm"/>
<framename="main"src="/html/main_frame.htm"/>
<framename="bottom"src="/html/bottom_frame.htm"/>
<noframes>
<body>
 Your browser does not support frames.

</body>
</noframes>
</frameset>
</html>
This will produce following result:

[image: image1.jpg]Main Frame

Example

Let's put above example as follows, here we replaced rows attribute by cols and changed their width. This will create all the three frames vertically:

<!DOCTYPE html>
<html>
<head>
<title>HTML Frames</title>
</head>
<framesetcols="25%,50%,25%">
<framename="left"src="/html/top_frame.htm"/>
<framename="center"src="/html/main_frame.htm"/>
<framename="right"src="/html/bottom_frame.htm"/>
<noframes>
<body>
 Your browser does not support frames.

</body>
</noframes>
</frameset>
</html>
This will produce following result:

[image: image2.jpg]Main Frame

HTML Table Tags

The HTML tables allow web authors to arrange data like text, images, links, other tables, etc. into rows and columns of cells.

The HTML tables are created using the <table> tag in which the <tr> tag is used to create table rows and <td> tag is used to create data cells.

Table Heading

Table heading can be defined using <th> tag. This tag will be put to replace <td> tag, which is used to represent actual data cell.

Cellpadding and Cellspacing Attributes

There are two attribiutes called cellpadding and cellspacing which you will use to adjust the white space in your table cells. The cellspacing attribute defines the width of the border, while cellpadding represents the distance between cell borders and the content within a cell.

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML Tables</title>

</head>

<body>

<table border="1" cellpadding="5" cellspacing="5">

<tr>

<th>Output:</th>

<th></th>

</tr>

<tr>

	Output:
	

	Row 1, Column 1
	Row 1, Column 2

	Row 2, Column 1
	Row 2, Column 2

<td>Row 1, Column 1</td>

<td>Row 1, Column 2</td>

</tr>

<tr>

<td>Row 2, Column 1</td>

<td>Row 2, Column 2</td>

</tr>

</table>

</body>

</html>

Colspan and Rowspan Attributes

You will use colspan attribute if you want to merge two or more columns into a single column. Similar way you will use rowspan if you want to merge two or more rows.

Example

<!DOCTYPE html>

<html>

	Column 1
	Column 2
	Column 3

	Row 1 Cell 1
	Row 1 Cell 2
	Row 1 Cell 3

	
	Row 2 Cell 2
	Row 2 Cell 3

	Row 3 Cell 1

<head>

<title>HTML Table Colspan/Rowspan</title>

</head>

Output
<body>

<table border="1">

<tr>

<th>Column 1</th>

<th>Column 2</th>

<th>Column 3</th>

</tr>

<tr><td rowspan="2">Row 1 Cell 1</td><td>Row 1 Cell 2</td><td>Row 1 Cell 3</td></tr>

<tr><td>Row 2 Cell 2</td><td>Row 2 Cell 3</td></tr>

<tr><td colspan="3">Row 3 Cell 1</td></tr>

</table>

</body>

</html>

2. Create a registration form for an educational web site with E-learning resources using frames. All form controls should have appropriate name attributes. Use the CSS for Styles and javascript for validation when the button action is performed. (8Marks) (NOV/DEC 2015)(NOV/DEC 2016)
StudentRegistration.html
<html>

<head>

<script type="text/javascript" src="validate.js"></script>

</head>

<body>

<form action="#" name="StudentRegistration" onsubmit="return(validate());">

<table cellpadding="2" width="20%" bgcolor="99FFFF" align="center"

cellspacing="2">

<tr>

<td colspan=2>

<center>Student Registration Form</center>

</td>

</tr>

<tr>

<td>Name</td>

<td><input type=text name=textnames id="textname" size="30"></td>

</tr>

<tr>

<td>Father Name</td>

<td><input type="text" name="fathername" id="fathername"size="30"></td>

</tr>

<tr>

<td>Postal Address</td>

<td><input type="text" name="paddress" id="paddress" size="30"></td>

</tr>

<tr>

<td>Personal Address</td>

<td><input type="text" name="personaladdress"id="personaladdress" size="30"></td>

</tr>

<tr>

<td>Sex</td>

<td><input type="radio" name="sex" value="male" size="10">Male

<input type="radio" name="sex" value="Female" size="10">Female</td>

</tr>

<tr>

<td>City</td>

<td><select name="City">

<option value="-1" selected>select..</option>

<option value="New Delhi">NEW DELHI</option>

<option value="Mumbai">MUMBAI</option>

<option value="Goa">GOA</option>

<option value="Patna">PATNA</option>

</select></td>

</tr>

<tr>

<td>Course</td>

<td><select name="Course">

<option value="-1" selected>select..</option>

<option value="B.Tech">B.TECH</option>

<option value="MCA">MCA</option>

<option value="MBA">MBA</option>

<option value="BCA">BCA</option>

</select></td>

</tr>

<tr>

<td>District</td>

<td><select name="District">

<option value="-1" selected>select..</option>

<option value="Nalanda">NALANDA</option>

<option value="UP">UP</option>

<option value="Goa">GOA</option>

<option value="Patna">PATNA</option>

</select></td>

</tr>

<tr>

<td>State</td>

<td><select Name="State">

<option value="-1" selected>select..</option>

<option value="New Delhi">NEW DELHI</option>

<option value="Mumbai">MUMBAI</option>

<option value="Goa">GOA</option>

<option value="Bihar">BIHAR</option>

</select></td>

</tr>

<tr>

<td>PinCode</td>

<td><input type="text" name="pincode" id="pincode" size="30"></td>

</tr>

<tr>

<td>EmailId</td>

<td><input type="text" name="emailid" id="emailid" size="30"></td>

</tr>

<tr>

<td>DOB</td>

<td><input type="text" name="dob" id="dob" size="30"></td>

</tr>

<tr>

<td>MobileNo</td>

<td><input type="text" name="mobileno" id="mobileno" size="30"></td>

</tr>

<tr>

<td><input type="reset"></td>

<td colspan="2"><input type="submit" value="Submit Form" /></td>

</tr>

</table>

</form>

</body>

</html>

Form Validation
function validate()

{

if(document.StudentRegistration.textnames.value == "")

 {

alert("Please provide your Name!");

document.StudentRegistration.textnames.focus() ;

return false;

 }

if(document.StudentRegistration.fathername.value == "")

 {

alert("Please provide your Father Name!");

document.StudentRegistration.fathername.focus() ;

return false;

 }

if(document.StudentRegistration.paddress.value == "")

 {

alert("Please provide your Postal Address!");

document.StudentRegistration.paddress.focus() ;

return false;

 }

if(document.StudentRegistration.personaladdress.value == "")

 {

alert("Please provide your Personal Address!");

document.StudentRegistration.personaladdress.focus() ;

return false;

 }

if ((StudentRegistration.sex[0].checked == false) && (StudentRegistration.sex[1].checked == false))

 {

alert ("Please choose your Gender: Male or Female");

return false;

 }

if(document.StudentRegistration.City.value == "-1")

 {

alert("Please provide your City!");

document.StudentRegistration.City.focus() ;

return false;

 }

if(document.StudentRegistration.Course.value == "-1")

 {

alert("Please provide your Course!");

return false;

 }

if(document.StudentRegistration.District.value == "-1")

 {

alert("Please provide your Select District!");

return false;

 }

if(document.StudentRegistration.State.value == "-1")

 {

alert("Please provide your Select State!");

return false;

 }

if(document.StudentRegistration.pincode.value == "" ||

isNaN(document.StudentRegistration.pincode.value) ||

document.StudentRegistration.pincode.value.length != 6)

 {

alert("Please provide a pincode in the format ######.");

document.StudentRegistration.pincode.focus() ;

return false;

 }

var email = document.StudentRegistration.emailid.value;

atpos = email.indexOf("@");

dotpos = email.lastIndexOf(".");

if (email == "" || atpos < 1 || (dotpos - atpos < 2))

 {

alert("Please enter correct email ID")

document.StudentRegistration.emailid.focus() ;

return false;

 }

if(document.StudentRegistration.dob.value == "")

 {

alert("Please provide your DOB!");

document.StudentRegistration.dob.focus() ;

return false;

 }

if(document.StudentRegistration.mobileno.value == "" || isNaN(document.StudentRegistration.mobileno.value)||document.StudentRegistration.mobileno.value.length != 10)

 {

alert("Please provide a Mobile No in the format 123.");

document.StudentRegistration.mobileno.focus() ;

return false;

 }

return(true);

}

3. Develop javascript program to display digital clock(8Marks)

<html>

<head>

<script>

function startTime() {

var today = new Date();

var h = today.getHours();

var m = today.getMinutes();

var s = today.getSeconds();

 m = checkTime(m);

 s = checkTime(s);

document.getElementById('txt').innerHTML =

 h + ":" + m + ":" + s;

var t = setTimeout(startTime, 500);

}

function checkTime(i) {

if (i < 10) {i = "0" + i}; // add zero in front of numbers < 10

return i;

}

</script>

</head>

<body onload="startTime()">

</body>

</html>

4. Develop a DHTML page to Change the background color using mouseover event on three squares containing different colors. (8Marks)

<html>

<head>

<script type="text/javascript">

function red()

{

document.body.style.backgroundColor="red"

}

function blue()

{

document.body.style.backgroundColor="blue"

}

function yellow()

{

document.body.style.backgroundColor="yellow"

}

function white()

{

document.body.style.backgroundColor="white"

}

</script></head>

<body>

<table border="0" cellpadding="5"cellspacing="0">

<tr>

<td style="background-color:red"> red </td>

<td style="background-color:blue"> red </td>

<td style="background-color:yellow"> red </td>

</tr>

</table>

</body></html>

5. Explain the Significance of Forms on the web pages and Enlist the various form components used in the form (8Marks) (APR/MAY 2017)
An HTML form is a section of a document containing normal content, markup, special elements called controls (checkboxes, radio buttons, menus, etc.), and labels on those controls. Users generally "complete" a form by modifying its controls (entering text, selecting menu items, etc.), before submitting the form to an agent for processing (e.g., to a Web server, to a mail server, etc.)

Form Controls
Users interact with forms through named controls.

Control types

HTML defines the following control types:

buttons

Authors may create three types of buttons:

· submit buttons: When activated, a submit button submits a form. A form may contain more than one submit button.

· reset buttons: When activated, a reset button resets all controls to their initial values.
· push buttons: Push buttons have no default behavior. Each push button may have client-side scripts associated with the element's event attributes. When an event occurs (e.g., the user presses the button, releases it, etc.), the associated script is triggered.

Authors should specify the scripting language of a push button script through a default script declaration (with the META element).

Authors create buttons with the BUTTON element or the INPUT element. Please consult the definitions of these elements for details about specifying different button types.

Note. Authors should note that the BUTTON element offers richer rendering capabilities than the INPUT element.
checkboxes

Checkboxes (and radio buttons) are on/off switches that may be toggled by the user. A switch is "on" when the control element's checked attribute is set. When a form is submitted, only "on" checkbox controls can become successful.

Several checkboxes in a form may share the same control name. Thus, for example, checkboxes allow users to select several values for the same property. The INPUTelement is used to create a checkbox control.

radio buttons

Radio buttons are like checkboxes except that when several share the same control name, they are mutually exclusive: when one is switched "on", all others with the same name are switched "off". The INPUT element is used to create a radio button control.

If no radio button in a set sharing the same control name is initially "on", user agent behavior for choosing which control is initially "on" is undefined. Note. Since existing implementations handle this case differently, the current specification differs from RFC 1866 ([RFC1866] section 8.1.2.4), which states:

At all times, exactly one of the radio buttons in a set is checked. If none of the <INPUT> elements of a set of radio buttons specifies `CHECKED', then the user agent must check the first radio button of the set initially.

Since user agent behavior differs, authors should ensure that in each set of radio buttons that one is initially "on".

menus

Menus offer users options from which to choose. The SELECT element creates a menu, in combination with the OPTGROUP and OPTION elements.

text input

Authors may create two types of controls that allow users to input text. The INPUT element creates a single-line input control and the TEXTAREA element creates a multi-line input control. In both cases, the input text becomes the control's current value.

file select

This control type allows the user to select files so that their contents may be submitted with a form. The INPUT element is used to create a file select control.

hidden controls

Authors may create controls that are not rendered but whose values are submitted with a form. Authors generally use this control type to store information between client/server exchanges that would otherwise be lost due to the stateless nature of HTTP (see [RFC2616]). The INPUT element is used to create a hidden control.

object controls

Authors may insert generic objects in forms such that associated values are submitted along with other controls. Authors create object controls with the OBJECT element.

The elements used to create controls generally appear inside a FORM element, but may also appear outside of a FORM element declaration when they are used to build user interfaces. This is discussed in the section on intrinsic events. Note that controls outside a form cannot be successful controls.

Example

Here's a simple form that includes labels, radio buttons, and push buttons (reset the form or submit it)

<FORM action="http://somesite.com/prog/adduser" method="post">

<P>

<LABEL for="firstname">First name: </LABEL>

<INPUT type="text" id="firstname">

<LABEL for="lastname">Last name: </LABEL>

<INPUT type="text" id="lastname">

<LABEL for="email">email: </LABEL>

<INPUT type="text" id="email">

<INPUT type="radio" name="sex" value="Male"> Male

<INPUT type="radio" name="sex" value="Female"> Female

<INPUT type="submit" value="Send"><INPUT type="reset">

</P>

</FORM>

6. Explain how you could use HTML Frames to provide a website that includes an advertisement for your company along with the content from any other web page. Show that HTML you would need to do this, assume that for your example the "other web page" is the www.yahoo.com. Make sure that you explain how this works (8 Marks)(MAY/JUNE 2016)(APR/MAY 2017)
<html>

<head>

<title>Advertisement</title>

</head>

<frameset rows="150,*" frameborder="1" framespacing="1">

<frame src="advt.html">

<frame src="yahoo.com">

</frameset>

</html>

advt.html

<html>

<body bgcolor="pink">

<center>

<h1> My Company Advertisement </h1>

</center>

<marquee><h3>Aadi offer 50% sale discount</h3></marquee>

</body>

</html>
7. Explain various style rules available in CSS with suitable example. (8 Marks)(MAY/JUNE 2016)
A CSS selector is the part of a CSS rule set that actually selects the content you want to style. Let’s look at all the different kinds of selectors available, with a brief description of each.

Universal Selector

The universal selector works like a wild card character, selecting all elements on a page. Every HTML page is built on content placed within HTML tags. Each set of tags represents an element on the page. Look at the following CSS example, which uses the universal selector:

* {

color: green;

font-size: 20px;

line-height: 25px;

}

The three lines of code inside the curly braces (color, font-size, and line-height) will apply to all elements on the HTML page. As seen here, the universal selector is declared using an asterisk. You can also use the universal selector in combination with other selectors.

Element Type Selector

Also referred to simply as a “type selector,” this selector must match one or more HTML elements of the same name. Thus, a selector of nav would match all HTML nav elements, and a selector of would match all HTML unordered lists, or elements.

The following example uses an element type selector to match all elements:

ul {

list-style: none;

border: solid 1px #ccc;

}

To put this in some context, here’s a section of HTML to which we’ll apply the above CSS:

Fish

Apples

Cheese

<div class="example">

<p>Example paragraph text.</p>

</div>

Water

Juice

Maple Syrup

There are three main elements making up this part of the page: Two elements and a <div>. The CSS will apply only to the two elements, and not to the <div>. Were we to change the element type selector to use <div> instead of , then the styles would apply to the <div> and not to the two elements.

Also note that the styles will not apply to the elements inside the or <div> elements. That being said, some of the styles may be inherited by those inner elements.

ID Selector

An ID selector is declared using a hash, or pound symbol (#) preceding a string of characters. The string of characters is defined by the developer. This selector matches any HTML element that has an ID attribute with the same value as that of the selector, but minus the hash symbol.

Here’s an example:

#container {

width: 960px;

margin: 0 auto;

}

This CSS uses an ID selector to match an HTML element such as:

<div id="container"></div>

In this case, the fact that this is a <div> element doesn’t matter—it could be any kind of HTML element. As long as it has an ID attribute with a value of container, the styles will apply.

An ID element on a web page should be unique. That is, there should only be a single element on any given page with an ID of container. This makes the ID selector quite inflexible, because the styles used in the ID selector rule set can be used only once per page.

If there happens to be more than one element on the page with the same ID, the styles will still apply, but the HTML on such a page would be invalid from a technical standpoint, so you’ll want to avoid doing this.

In addition to the problems of inflexibility, ID selectors also have the problem of very high specificity.

Class Selector

The class selector is the most useful of all CSS selectors. It’s declared with a dot preceding a string of one or more characters. Just as is the case with an ID selector, this string of characters is defined by the developer. The class selector also matches all elements on the page that have their class attribute set to the same value as the class, minus the dot.

Take the following rule set:

.box {

padding: 20px;

margin: 10px;

width: 240px;

}

These styles will apply to the following HTML element:

<div class="box"></div>

The same styles will also apply to any other HTML elements that have a class attribute with a value of box. Having multiple elements on a single page with the same class attribute is beneficial, because it allows you to reuse styles, and avoid needless repetition. In addition to this, class selectors have very low specificity—again, more on this later.

Another reason the class selector is a valuable ally is that HTML allows multiple classes to be added to a single element. This is done by separating the classes in the HTML class attribute using spaces. Here’s an example:

<div class=”box box-more box-extended”></div>

8.Write a JavaScript to find the largest and smallest values among 10 elements of an array.

public class FindLargestSmallestNumber

{

public static void main(String[] args)

{

 //array of 10 numbers

 int numbers[] = new int[]{32,43,53,54,32,65,63,98,43,23};

 //assign first element of an array to largest and smallest

int smallest = numbers[0];

int largetst = numbers[0];

for(int i=1; i< numbers.length; i++)

 {

if(numbers[i] > largetst)

largetst = numbers[i];

else if (numbers[i] < smallest)

smallest = numbers[i];

 }

System.out.println("Largest Number is : " + largetst);

System.out.println("Smallest Number is : " + smallest);

 }

}

8. Write a JavaScript program to delete the rollno property from the following object. Also print the object before or after deleting the property. (NOV/DEC 2015)
Sample object:
var student = {
name : "David Rayy",
sclass : "VI",
rollno : 12 };

<!DOCTYPE html>
<html>
<head>
<meta charset=utf-8 />
<title>Delete a property from an object</title>
</head>
<body>
</body>
</html>
Copy

JavaScript Code:
var student = {

 name : "David Rayy",

 sclass : "VI",

 rollno : 12 };
console.log(student);
delete student.rollno;
console.log(student);
</SCRIPT>

9. Write a JavaScript program to search a date within a string. (NOV/DEC 2015)
Sample string:

"Albert Einstein was born in Ulm, on 14/03/1879."
Sample Solution:-
HTML Code:
<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>JavaScript function to check whether a given value is date string or not.</title>

</head>

<body>

</body>

</html>

Copy

JavaScript Code:
function is_dateString(str)

{

 regexp = /^(1[0-2]|0?[1-9])\/(3[01]|[12][0-9]|0?[1-9])\/(?:[0-9]{2})?[0-9]{2}$/;

 if (regexp.test(str))

 {

 return true;

 }

 else

 {

 return false;

 }

}

console.log(is_dateString("01/01/2015"));

console.log(is_dateString("01/22/2015"));

console.log(is_dateString("32/01/2015"));

10. Compare the features of Client-side and Server-side Scripting languages. (APR/MAY 2017)
Client-side Environment
The client-side environment used to run scripts is usually a browser. The processing takes place on the end users computer. The source code is transferred from the web server to the users computer over the internet and run directly in the browser.

The scripting language needs to be enabled on the client computer. Sometimes if a user is conscious of security risks they may switch the scripting facility off. When this is the case a message usually pops up to alert the user when script is attempting to run.

Server-side Environment
The server-side environment that runs a scripting language is a web server. A user's request is fulfilled by running a script directly on the web server to generate dynamic HTML pages. This HTML is then sent to the client browser. It is usually used to provide interactive web sites that interface to databases or other data stores on the server.
This is different from client-side scripting where scripts are run by the viewing web browser, usually in JavaScript. The primary advantage to server-side scripting is the ability to highly customize the response based on the user's requirements, access rights, or queries into data stores.

11. Write a JavaScript program to count the number of unique alphabets present in a given string.(MAY/JUNE 2016)

/* returns the size/length of an object */

Object.size = function(obj) {

var size = 0;

for(key in obj) {

if(obj.hasOwnProperty(key)) size++;

}

return size;

}

//initial vars

var str = 'hellodavidthisisatestofobjectusage';

var letters = new Object;

//loop, figure it out

for(x = 0, length = str.length; x < length; x++) {

var l = str.charAt(x)

letters[l] = (isNaN(letters[l]) ? 1 : letters[l] + 1);

}

//output count!

for(key in letters) {

console.log(key + ' :: ' + letters[key]);

}

console.log(Object.size(letters));

The Result

h :: 2

e :: 4

l :: 2

o :: 3

d :: 2

a :: 3

v :: 1

i :: 3

t :: 4

s :: 4

f :: 1

b :: 1

j :: 1

c :: 1

u :: 1

g :: 1

16

Unit-2

JAVA
Part-A

1. Write a short note on oops?

Oops stands for object oriented programming structure. Object oriented programming develops a program around its data and sets well defined interfaces to that data.

2. What is mean by encapsulation?

Encapsulation is the mechanism that binds together code and the data it manipulates, and keeps both safe from outside interference and misuse.

3. What is mean by inheritance? (APR/MAY 2017)
Inheritance is the process by which one object acquires the properties of another object.

4. What is polymorphism?(AU NOV DEC 2012)

Polymorphism is a feature that allows one interface to be used for a general class of actions

5. What are the different ways to generate and Exception?

There are two different ways to generate an Exception.

· Exceptions can be generated by the Java run-time system.

Exceptions thrown by Java relate to fundamental errors that violate the rules of the Java language or the constraints of the Java execution environment.

· Exceptions can be manually generated by your code.

Manually generated exceptions are typically used to report some error condition to the caller of a method.

6. What is StackOverflowError?

The StackOverFlowError is an Error Object thorwn by the Runtime System when it Encounters that your application/code has ran out of the memory. It may occur in case of recursive methods or a large amount of data is fetched from the server and stored in some object. This error is generated by JVM.

e.g. void swap(){

swap();

}

7. What are the kinds of variables in Java?(AU NOV/DEC 2011)

Java has three kinds of variables namely,

Instance variables

Local variables

Class variables

8. What are the various kinds of literals?

There are different types of literals. They are:

a.Number literals

b.Character literals

c.Boolean literals

d.String literals

9. What are wrapper classes?(AU NOV/DEC 2011)

Wrapper classes are provided for the primitive data types in order to use these types as objects. The wrapper classes for the primitive data types have the same name as the primitive type, but with the

first letter capitalized.
10. What is a method?

Methods are functions that operate on instances of classes in which they are defined. Objects can communicate with each other using methods and can call methods in other classes. Just as there are class and instance variables, there are class and instance methods. Instance methods apply and operate on an instance of the class which class methods operate on the class.
11. Describe output streams and input streams in Java.(AU NOV DEC 2012)

I/O in Java is built on streams. Input streams read data. Output streams write data. Different fundamental stream classes such as java.io.FileInputStream and sun.net.TelnetOutputStream read and write particular sources of data.

12. What is an Object and how do you allocate memory to it?

Object is an instance of a class and it is a software unit that combines a structured set of data with a set of operations for inspecting and manipulating that data. When an object is created using new operator, memory is allocated to it.
13. Explain the usage of Java packages.
This is a way to organize files when a project consists of multiple modules. It also helps resolve naming conflicts when different packages have classes with the same names. Packages access level also allows you to protect data from being used by the non-authorized classes.

14. What is method overloading and method overriding?

Method overloading: When a method in a class having the same method name with different arguments is said to be method overloading. Method overriding : When a method in a class having the same method name with same arguments is said to be method overriding.

15. What gives java it’s “write once and run anywhere” nature?

All Java programs are compiled into class files that contain bytecodes. These byte codes can be run in any platform and hence java is said to be platform independent.

16.Differentiate between a Class and an Object?
The Object class is the highest-level class in the Java class hierarchy. The Class class is used to represent the classes and interfaces that are loaded by a Java program. The Class class is used to obtain information about an object's design. A Class is only a definition or prototype of real life object. Whereas an object is an instance or living representation of real life object. Every object belongs to a class and every class contains one or more related objects.

17.What is an Abstract Class? (MAY/JUNE 2016)
 Abstract class is a class that has no instances. An abstract class is written with the expectation that its concrete subclasses will add to its structure and behaviour, typically by implementing its abstract operations.

18.What are inner class and anonymous class?

Inner class: classes defined in other classes, including those defined in methods are called inner classes. An inner class can have any accessibility including private. Anonymous class: Anonymous class is a class defined inside a method without a name and is instantiated and declared in the same place and cannot have explicit constructors

19.What is an Interface? (NOV/DEC 2016)
 Interface is an outside view of a class or object which emphaizes its abstraction while hiding its structure and secrets of its behaviour.
20.What is the difference between abstract class and interface?
(NOV/DEC 2016)

All the methods declared inside an interface are abstract whereas abstract class must have at least one abstract method and others may be concrete or abstract.

In abstract class, key word abstract must be used for the methods whereas interface we need not use that keyword for the methods.

Abstract class must have subclasses whereas interface can’t have subclasses.

21. What is an exception?
(APR/MAY 2017)

An exception is an event, which occurs during the execution of a program that disrupts the normal flow of the program's instructions.

22. What are the advantages of using exception handling?

Exception handling provides the following advantages over "traditional" error management techniques:

Separating Error Handling Code from "Regular" Code.

Propagating Errors Up the Call Stack.

Grouping Error Types and Error Differentiation.

23.What are the types of Exceptions in Java?

There are two types of exceptions in Java, unchecked exceptions and checked exceptions.

Checked exceptions: A checked exception is some subclass of Exception (or Exception itself), excluding class RuntimeException and its subclasses. Each method must either handle all checked exceptions by supplying a catch clause or list each unhandled checked exception as a thrown exception.

Unchecked exceptions: All Exceptions that extend the RuntimeException class are unchecked exceptions. Class Error and its subclasses also are unchecked.

24.What is the difference between exception and error?

The exception class defines mild error conditions that your program encounters. Exceptions can occur when trying to open the file, which does not exist, the network connection is disrupted, operands being manipulated are out of prescribed ranges, the class file you are interested in loading is missing. The error class defines serious error conditions that you should not attempt to recover from. In most cases it is advisable to let the program terminate when such an error is encountered.
25.What are the different ways to handle exceptions?
There are two ways to handle exceptions:

Wrapping the desired code in a try block followed by a catch block to catch the exceptions.

List the desired exceptions in the throws clause of the method and let the caller of the method handle those exceptions.

26.What is multithreading and what are the methods for inter-thread communication and what is the class in which these methods are defined?

Multithreading is the mechanism in which more than one thread run independent of each other within the process. wait (), notify () and notifyAll() methods can be used for inter-thread communication and these methods are in Object class. wait() : When a thread executes a call to wait() method, it surrenders the object lock and enters into a waiting state. notify() or notifyAll() : To remove a thread from the waiting state, some other thread must make a call to notify() or notifyAll() method on the same object.
27.Why are there separate wait and sleep methods?

The static Thread.sleep(long) method maintains control of thread execution but delays the next action until the sleep time expires. The wait method gives up control over thread execution indefinitely so that other threads can run.

28.What is serialization?

Serialization is the process of writing complete state of java object into output stream, that stream can be file or byte array or stream associated with TCP/IP socket.
29.Explain different way of using thread?

The thread could be implemented by using runnable interface or by inheriting from the Thread class. The former is more advantageous, 'cause when you are going for multiple inheritances the only interface can help.

30.Define Scriplets.

Scriplets enable you to create small, reusable web applications that can be used in any web page. Scriplets are created using HTML, scripting and Dynamic HTML. To include them in an HTML document use the <OBJECT> tag.

31.Write a Java program that checks whether the given string is palindrome or not. (NOV/DEC 2015)
class palindrome
{
public static void main(String[] args)
{
StringBuffer s1=new StringBuffer(args[0]);
StringBuffer s2=new StringBuffer(s1);
s1.reverse();
System.out.println(“Given String is:”+s2);
System.out.println(“Reverse String is”+s1);
if(String.valueOf(s1).compareTo(String.valueOf(s2))==0)
System.out.println(“Palindrome”);
else
System.out.println(“Not Palindrome”);
}
}

Output:
Java palindrome madam
Given String is:madam
Reverse String is madam
Palindrome

Java palindrome harish
Given String is:harish
Reverse String is hsirah
Not Palindrome

32.Write a java code to find the Fibonacci series of a given number. (NOV/DEC 2016).

class FibonacciExample1{
public static void main(String args[])
{
int n1=0,n2=1,n3,i,count=10;
System.out.print(n1+" "+n2);//printing 0 and 1
for(i=2;i<count;++i)//loop starts from 2 because 0 and 1 are already printed
{
n3=n1+n2;
System.out.print(" "+n3);
n1=n2;
n2=n3;
}
}}
Output:

0 1 1 2 3 5 8 13 21 34

33.Write the syntax for declaring a two dimensional array in java. (NOV/DEC 2016).

class TwoDimensionalArray

{ public static void main(String[] args)

{
String[][] salutation = { {"Mr. ", "Mrs. ", "Ms. "}, {"Kumar"} }; // Mr. Kumar

System.out.println(salutation[0][0] + salutation[1][0]); // Mrs. Kumar

System.out.println(salutation[0][1] + salutation[1][0]); } }

The output from this program is:

Mr. Kumar

Mrs.Kumar

Part B

1. i) What is thread? Explain the state and methods (8 marks)(MAY/JUNE 2016)
Threads in JAVA

A thread can be in one of the five states. According to sun, there is only 4 states in thread life cycle in java new, runnable, non-runnable and terminated. There is no running state.

But for better understanding the threads, we are explaining it in the 5 states.

The life cycle of the thread in java is controlled by JVM. The java thread states are as follows:

Fig. 1.1 Thread Lifecycle

1) New

The thread is in new state if you create an instance of Thread class but before the invocation of start() method.

2) Runnable

The thread is in runnable state after invocation of start() method, but the thread scheduler has not selected it to be the running thread.

3) Running

The thread is in running state if the thread scheduler has selected it.

4) Non-Runnable (Blocked)

This is the state when the thread is still alive, but is currently not eligible to run.

5) Terminated

A thread is in terminated or dead state when its run() method exits.

How to create thread

There are two ways to create a thread:

1. By extending Thread class

2. By implementing Runnable interface.

Thread class:

Thread class provide constructors and methods to create and perform operations on a thread.Thread class extends Object class and implements Runnable interface.
Commonly used Constructors of Thread class:

· Thread()

· Thread(String name)

· Thread(Runnable r)

· Thread(Runnable r,String name)

Commonly used methods of Thread class:

· public void run(): is used to perform action for a thread.

· public void start(): starts the execution of the thread.JVM calls the run() method on the thread.

· public void sleep(long miliseconds): Causes the currently executing thread to sleep (temporarily cease execution) for the specified number of milliseconds.

· public void join(): waits for a thread to die.

· public int getPriority(): returns the priority of the thread.

· public int setPriority(int priority): changes the priority of the thread.

· public String getName(): returns the name of the thread.

· public void setName(String name): changes the name of the thread.

· public Thread currentThread(): returns the reference of currently executing thread.

· public int getId(): returns the id of the thread.

· public Thread.State getState(): returns the state of the thread.

· public boolean isAlive(): tests if the thread is alive.

· public void suspend(): is used to suspend the thread(depricated).

· public void resume(): is used to resume the suspended thread(depricated).

· public void stop(): is used to stop the thread(depricated).

· public boolean isDaemon(): tests if the thread is a daemon thread.

· public void setDaemon(boolean b): marks the thread as daemon or user thread.

· public void interrupt(): interrupts the thread.

· public boolean isInterrupted(): tests if the thread has been interrupted.

· public static boolean interrupted(): tests if the current thread has been interrupted.
Starting a thread:

start() method of Thread class is used to start a newly created thread. It performs following tasks:

· A new thread starts(with new callstack).

· The thread moves from New state to the Runnable state.

· When the thread gets a chance to execute, its target run() method will run.

2. Explain about inheritance in java with example

Inheritance in Java

Inheritance in java is a mechanism in which one object acquires all the properties and behaviors of parent object.

The idea behind inheritance in java is that you can create new classes that are built upon existing classes. When you inherit from an existing class, you can reuse methods and fields of parent class, and you can add new methods and fields also.

Inheritance represents the IS-A relationship, also known as parent-child relationship.

Why use inheritance in java

· For Method Overriding (so runtime polymorphism can be achieved).

· For Code Reusability.

Syntax of Java Inheritance

class Subclass-name extends Superclass-name
{
 //methods and fields
}
The extends keyword indicates that you are making a new class that derives from an existing class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called parent or super class and the new class is called child or subclass.

Java Inheritance Example

[image: image3.jpg]Employee

salary: float

ﬁr/

e s)

Programmer

bonus: int

Fig. 1.2. Inheritance Example

As displayed in the above figure, Programmer is the subclass and Employee is the superclass. Relationship between two classes is Programmer IS-A Employee.It means that Programmer is a type of Employee.

class Employee{
 float salary=40000;
}
class Programmer extends Employee{
 int bonus=10000;
 public static void main(String args[]){
 Programmer p=new Programmer();
 System.out.println("Programmer salary is:"+p.salary);
 System.out.println("Bonus of Programmer is:"+p.bonus);
}
}
Output
 Programmer salary is:40000.0

 Bonus of programmer is:10000

In the above example, Programmer object can access the field of own class as well as of Employee class i.e. code reusability.

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single, multilevel and hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface only. We will learn about interfaces later.

[image: image4.png]ClassA

A

ClassB

ClassC

ClassA ClassA
%
ClassB ClassB
Y
1) Single
ClassC

2) Multilevel

3) Hierarchical

Fig 1.3. Types of Inheritance

When a class extends multiple classes i.e. known as multiple inheritance. For Example:

[image: image5.jpg]ClassA

ClassB

ClassC

4) Multiple

Single Inheritance Example

File: TestInheritance.java

class Animal{
void eat(){System.out.println("eating...");}
}
class Dog extends Animal{
void bark(){System.out.println("barking...");}
}
class TestInheritance{
public static void main(String args[]){
Dog d=new Dog();
d.bark();
d.eat();
}}
Output:

barking...

eating...

Multilevel Inheritance Example

File: TestInheritance2.java

class Animal{
void eat(){System.out.println("eating...");}
}
class Dog extends Animal{
void bark(){System.out.println("barking...");}
}
class BabyDog extends Dog{
void weep(){System.out.println("weeping...");}
}
class TestInheritance2{
public static void main(String args[]){
BabyDog d=new BabyDog();
d.weep();
d.bark();
d.eat();
}}
Output:

weeping...

barking...

eating...

Hierarchical Inheritance Example

File: TestInheritance3.java

class Animal{
void eat(){System.out.println("eating...");}
}
class Dog extends Animal{
void bark(){System.out.println("barking...");}
}
class Cat extends Animal{
void meow(){System.out.println("meowing...");}
}
class TestInheritance3{
public static void main(String args[]){
Cat c=new Cat();
c.meow();
c.eat();
//c.bark();//C.T.Error
}}
Output:

meowing...

eating...

3. Why multiple inheritance is not supported in java?
To reduce the complexity and simplify the language, multiple inheritance is not supported in java.

Consider a scenario where A, B and C are three classes. The C class inherits A and B classes. If A and B classes have same method and you call it from child class object, there will be ambiguity to call method of A or B class.

Since compile time errors are better than runtime errors, java renders compile time error if you inherit 2 classes. So whether you have same method or different, there will be compile time error now.

class A{
void msg(){System.out.println("Hello");}
}
class B{
void msg(){System.out.println("Welcome");}
}
class C extends A,B{//suppose if it were

 Public Static void main(String args[]){
 C obj=new C();
 obj.msg();//Now which msg() method would be invoked?
}
}
Test it Now
 Compile Time Error

4. Explain about packages in java with example. (NOV/DEC 2016)(MAY/JUNE 2016)
Java Package

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

[image: image6.jpg]lang

java

util

awt

AN

system.class

string.class

ArrayList.class

Map dlass

Button.class ‘

javapackage

subpackage
of java

dlasses

Fig 1.4. Java package hierarchy

Simple example of java package

The package keyword is used to create a package in java.

//save as Simple.java
package mypack;
public class Simple{
 public static void main(String args[]){
 System.out.println("Welcome to package");
 }
}
How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

1. javac -d directory javafilename
For example
1. javac -d . Simple.java
The -d switch specifies the destination where to put the generated class file. You can use any directory name like /home (in case of Linux), d:/abc (in case of windows) etc. If you want to keep the package within the same directory, you can use . (dot).

How to run java package program

You need to use fully qualified name e.g. mypack.Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output:Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents destination. The . represents the current folder.

Access package from another package

There are three ways to access the package from outside the package.

· import package.*;

· import package.classname;

· fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be accessible but not subpackages.

The import keyword is used to make the classes and interface of another package accessible to the current package.

Example of package that import the packagename.*

//save by A.java
package pack;
public class A{
 public void msg(){System.out.println("Hello");}
}
//save by B.java
package mypack;
import pack.*;

class B{
 public static void main(String args[]){
 A obj = new A();
 obj.msg();
 }
}
Output:Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package will be accessible.

Example of package by import package.classname

//save by A.java

package pack;
public class A{
 public void msg(){System.out.println("Hello");}
}
//save by B.java
package mypack;
import pack.A;

class B{
 public static void main(String args[]){
 A obj = new A();
 obj.msg();
 }
}
Output:Hello

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be accessible. Now there is no need to import. But you need to use fully qualified name every time when you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util and java.sql packages contain Date class.

Example of package by import fully qualified name

//save by A.java
package pack;
public class A{
 public void msg(){System.out.println("Hello");}
}
//save by B.java
package mypack;
class B{
 public static void main(String args[]){
 pack.A obj = new pack.A();//using fully qualified name
 obj.msg();
 }
}
Output:Hello

5. Explain about inner classes in java with example

Java inner class or nested class is a class i.e. declared inside the class or interface.

We use inner classes to logically group classes and interfaces in one place so that it can be more readable and maintainable.

Additionally, it can access all the members of outer class including private data members and methods.

Syntax of Inner class

class Java_Outer_class{
 //code
 class Java_Inner_class{
 //code
 }
}
Advantage of java inner classes

There are basically three advantages of inner classes in java. They are as follows:

1) Nested classes represent a special type of relationship that is it can access all the members (data members and methods) of outer class including private.

2) Nested classes are used to develop more readable and maintainable code because it logically group classes and interfaces in one place only.

3) Code Optimization: It requires less code to write.

Types of Nested classes

There are two types of nested classes non-static and static nested classes.The non-static nested classes are also known as inner classes.
1. Non-static nested class(inner class)

· a)Member inner class

· b)Annomynous inner class

· c)Local inner class

2. Static nested class

Java Member inner class

A non-static class that is created inside a class but outside a method is called member inner class.

Syntax:

class Outer{
 //code
 class Inner{
 //code
 }
}
Java Member inner class example

In this example, we are creating msg() method in member inner class that is accessing the private data member of outer class.

class TestMemberOuter1{
 private int data=30;
 class Inner{
 void msg(){System.out.println("data is "+data);}
 }
 public static void main(String args[]){
 TestMemberOuter1 obj=new TestMemberOuter1();
 TestMemberOuter1.Inner in=obj.new Inner();
 in.msg();
 }
}
Java Anonymous inner class

A class that have no name is known as anonymous inner class in java. It should be used if you have to override method of class or interface. Java Anonymous inner class can be created by two ways:

1. Class (may be abstract or concrete).

2. Interface

Java anonymous inner class example using class

abstract class Person{
 abstract void eat();
}
class TestAnonymousInner{
 public static void main(String args[]){
 Person p=new Person(){
 void eat(){System.out.println("nice fruits");}
 };
 p.eat();
 }
}
Java Local inner class

A class i.e. created inside a method is called local inner class in java. If you want to invoke the methods of local inner class, you must instantiate this class inside the method.

Java local inner class example

public class localInner1{
 private int data=30;//instance variable
 void display(){
 class Local{
 void msg(){System.out.println(data);}
 }
 Local l=new Local();
 l.msg();
 }
 public static void main(String args[]){
 localInner1 obj=new localInner1();
 obj.display();
 }
}
java static nested class

A static class i.e. created inside a class is called static nested class in java. It cannot access non-static data members and methods. It can be accessed by outer class name.

· It can access static data members of outer class including private.

· Static nested class cannot access non-static (instance) data member or method.

Java static nested class example with instance method

class TestOuter1{
 static int data=30;
 static class Inner{
 void msg(){System.out.println("data is "+data);}
 }
 public static void main(String args[]){
 TestOuter1.Inner obj=new TestOuter1.Inner();
 obj.msg();
 }
}
6. Explain about String class and its methods in java with example. (APR/MAY 2017)
Strings
which are widely used in Java programming, are a sequence of characters. In the Java programming language, strings are objects.The Java platform provides the String class to create and manipulate strings.

Generally string is a sequence of characters. But in java, string is an object. String class is used to create string object.

There are two ways to create String object:

1. By string literal
2. By new keyword

 1) String literal
String literal is created by double quote.For Example:

1. String s=”Hello”;

2) By new keyword
String s=new String(“Java”);//creates two objects and one reference variable

String important methods

1. Finding the length of the string

The length() method can be used to find the length of the string.

String str = "Car insurance"

System.out.println(str.length());

2. Comparing strings

The equals() method is used to comapre two strings.

String str = "car finance";

if (str.equals("car loan"))

{

 System.out.println("Strings are equal");

}

else

{

 System.out.println("Strings are not equal");

}

3. Comparing strings by ignoring case

The equalsIgnoreCase() method is used to compare two strings by ignoring the case.

String str = "insurance";

if (str.equalsIgnoreCase("INSURANCE"))

{

 System.out.println("insurance strings are equal");

}

else

{

 System.out.println("insurance Strings are not equal");

}

4. Finding which string is greater

The CompareTo() method compares two strings to find which string is alphabetically greater.

String str = "car finance";

if (str.CompareTo("auto finance") > 0)

{

 System.out.println("car finance string is alphabetically greater");

}

else

{

 System.out.println("car finance string is alphabetically lesser");

}

5. Finding which string is greater while ignoring the case.

The compareToIgnoreCase() method is same as the CompareTo() method except that it ignores case while comparing.

String str = "car finance";

if (str.compareToIgnoreCase("CAR finance") = 0)

{

 System.out.println("strings are alphabetically same");

}

else

{

 System.out.println("strings are alphabetically not same");

}

6. Position of a string in another string.

The indexOf() method is used to find the position of a string in another string.

String str= "car insurance";

System.out.println(str.indexOf("car"));

7. Extract single character from a string.

The CharAt() method is used to extract a single character by specifying the position of the character.

String str = "Auto Finance";

System.out.println(str.charAt(5));

8. Extracting part of a string.

The substring() is used to method part of a string by specifying the start position and end position.

String str = "Car Finance";

System.out.println(str.substring(1,3));

9. Hash code of a string.

The hashCode() method is used to get the hash code of a string.

String str = "Auto Insurance";

System.out.println(str.hashCode());

10. replacing characters in a string.

The replace() method is used to replace a character in a string with new character.

string str = "Auto Loan";

System.out.println(str.replace("A", "L"));

11. Converting a string to upper case.

The toUpperCase() method is used to convert a string to upper case letters.

String str = "Cheap Car Insurance";

System.out.println(str.toUpperCase());

12. Converting a string to lower case.

The toLowerCase() method is used to covert a string to lower case letters.

String str = "Insurance Quote";

System.out.println(str.toLowerCase());

7. Explain about java exception handling with example. (NOV/DEC 2016)(APR/MAY 2017)
Exception Handling in Java

The exception handling in java is one of the powerful mechanism to handle the runtime errors so that normal flow of the application can be maintained.

In java, exception is an event that disrupts the normal flow of the program. It is an object which is thrown at runtime.

What is exception handling?

Exception Handling is a mechanism to handle runtime errors such as ClassNotFound, IO, SQL, Remote etc.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the application. Exception normally disrupts the normal flow of the application that is why we use exception handling.

Hierarchy of Java Exception classes

[image: image7.png]

Fig 1.5. Exception handling hierarchy

Types of Exception

There are mainly two types of exceptions: checked and unchecked where error is considered as unchecked exception. The sun microsystem says there are three types of exceptions:

1. Checked Exception

2. Unchecked Exception

3. Error

Difference between checked and unchecked exceptions

1) Checked Exception

The classes that extend Throwable class except RuntimeException and Error are known as checked exceptions e.g.IOException, SQLException etc. Checked exceptions are checked at compile-time.

2) Unchecked Exception

The classes that extend RuntimeException are known as unchecked exceptions e.g. ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc. Unchecked exceptions are not checked at compile-time rather they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Common scenarios where exceptions may occur

There are given some scenarios where unchecked exceptions can occur. They are as follows:

1) Scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

int a=50/0;//ArithmeticException
2) Scenario where NullPointerException occurs

If we have null value in any variable, performing any operation by the variable occurs an NullPointerException.

String s=null;
System.out.println(s.length());//NullPointerException
3) Scenario where NumberFormatException occurs

The wrong formatting of any value, may occur NumberFormatException. Suppose I have a string variable that have characters, converting this variable into digit will occur NumberFormatException.

String s="abc";
int i=Integer.parseInt(s);//NumberFormatException
4) Scenario where ArrayIndexOutOfBoundsException occurs

If you are inserting any value in the wrong index, it would result ArrayIndexOutOfBoundsException as shown below:

int a[]=new int[5];
a[10]=50; //ArrayIndexOutOfBoundsException
Java Exception Handling Keywords

There are 5 keywords used in java exception handling.

1. try

2. catch

3. finally

4. throw

5. throws

java try block

Java try block is used to enclose the code that might throw an exception. It must be used within the method.

Java try block must be followed by either catch or finally block.

Syntax of java try-catch

try{
//code that may throw exception
}catch(Exception_class_Name ref){}
Syntax of try-finally block

try{
//code that may throw exception
}finally{}
Java catch block

Java catch block is used to handle the Exception. It must be used after the try block only.

You can use multiple catch block with a single try.

java finally block

Java finally block is a block that is used to execute important code such as closing connection, stream etc.

Java finally block is always executed whether exception is handled or not.

Java finally block follows try or catch block.

Java throw keyword

The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or uncheked exception in java by throw keyword. The throw keyword is mainly used to throw custom exception.

Java throws keyword

The Java throws keyword is used to declare an exception. It gives an information to the programmer that there may occur an exception so it is better for the programmer to provide the exception handling code so that normal flow can be maintained.

Exception Handling is mainly used to handle the checked exceptions. If there occurs any unchecked exception such as NullPointerException, it is programmers fault that he is not performing check up before the code being used.

Syntax of java throws

return_type method_name() throws exception_class_name{
//method code
}
8. Explain about abstract class in java with example.
Abstract class in Java

· A class that is declared with abstract keyword, is known as abstract class in java. It can have abstract and non-abstract methods (method with body).

· A class that is declared as abstract is known as abstract class. It needs to be extended and its method implemented. It cannot be instantiated.

Example abstract class

abstract class A{}
Abstract method

	A method that is declared as abstract and does not have implementation is known as abstract method.

Example abstract method

abstract void printStatus();//no body and abstract
Example of abstract class that has abstract method

In this example, Bike the abstract class that contains only one abstract method run. It implementation is provided by the Honda class.

abstract class Bike{
 abstract void run();
}
class Honda4 extends Bike{
void run(){System.out.println("running safely..");}
public static void main(String args[]){
 Bike obj = new Honda4();
 obj.run();
}
}
Understanding the real scenario of abstract class

In this example, Shape is the abstract class, its implementation is provided by the Rectangle and Circle classes. Mostly, we don't know about the implementation class (i.e. hidden to the end user) and object of the implementation class is provided by the factory method.

A factory method is the method that returns the instance of the class. We will learn about the factory method later.

In this example, if you create the instance of Rectangle class, draw() method of Rectangle class will be invoked.

abstract class Shape{
abstract void draw();
}
//In real scenario, implementation is provided by others i.e. unknown by end user
class Rectangle extends Shape{
void draw(){System.out.println("drawing rectangle");}
}
class Circle1 extends Shape{
void draw(){System.out.println("drawing circle");}
}
//In real scenario, method is called by programmer or user
class TestAbstraction1{
public static void main(String args[]){
Shape s=new Circle1();//In real scenario, object is provided through method e.g. getShape() method
s.draw();
}
}
9.Explain about different types of constructor in java?

Constructor in java is a special type of method that is used to initialize the object. Java constructor is invoked at the time of object creation. It constructs the values i.e. provides data for the object that is why it is known as constructor.
 Rules for creating java constructor

 There are basically two rules defined for the constructor.

 1. Constructor name must be same as its class name

2. Constructor must have no explicit return type

Types of java constructors

There are two types of constructors:

 1. Default constructor (no-arg constructor)

 2. Parameterized constructor

Java Default Constructor

A constructor that have no parameter is known as default constructor. Syntax of default constructor:

<class_name>()

{

}

Example of default constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at the time of object creation.

 class Bike1

{

Bike1()

{

System.out.println("Bike is created");

}

 public static void main(String args[]){ Bike1 b=new Bike1();

}

}

Output: Bike is created

Java parameterized constructor

 A constructor that have parameters is known as parameterized constructor. Parameterized constructor is used to provide different values to the distinct objects. In this example, we have created the constructor of Student class that have two parameters. We can have any number of parameters in the constructor.

class Student4

{

int id; String name;

Student4(int i,String n)

{

 id = i; name = n;

 }

void display()

{

System.out.println(id+" "+name);

}

public static void main(String args[])

{

 Student4 s1 = new Student4(111,"Karan");

 Student4 s2 = new Student4(222,"Aryan");

s1.display(); s2.display();

}

}

Output: 111 Karan 222 Aryan

 Constructor Overloading in Java

Constructor overloading is a technique in Java in which a class can have any number of constructors that differ in parameter lists.The compiler differentiates these constructors by taking into account the number of parameters in the list and their type.

class Student5

{

 int id; String name; int age; Student5(int i,String n)

{

id = i;

name = n;

}

Student5(int i,String n,int a)

{

id = i;

name = n;

 age=a;

}

void display()

{

System.out.println(id+" "+name+" "+age);

}

 public static void main(String args[])

{

 Student5 s1 = new Student5(111,"Karan");

Student5 s2 = new Student5(222,"Aryan",25);

s1.display(); s2.display();

 }

 }

Output: 111 Karan 0 222 Aryan 25

Java Copy Constructor

There is no copy constructor in java. But, we can copy the values of one object to another like copy constructor in C++. There are many ways to copy the values of one object into another in java.

 They are: By constructor By assigning the values of one object into another By clone() method of Object class In this example, we are going to copy the values of one object into another using java constructor.

class Student6

{

 int id; String name;

Student6(int i,String n)

{

id = i;

 name = n;

 }

Student6(Student6 s)

{

 id = s.id;

 name =s.name;

}

void display()

{

System.out.println(id+" "+name);

}

public static void main(String args[])

{

 Student6 s1 = new Student6(111,"Karan");

 Student6 s2 = new Student6(s1);

 s1.display();

s2.display();

 }

 }

Output: 111 Karan 111 Karan

10.Write a program, which creates a three thread. One thread display the numbers from 1 to 5, second thread display the square root of that number and third Thread display the cube of that number. Set the priority of each Thread so the number thread run first, square Thread run second and cube thread run last. Create only one class for a Thread. (NOV/DEC 2015)
Code for Program, which creates a three thread. One thread display the numbers from 1 to 5, second thread display the square root of that number etc in Java
class numbers implements Runnable

{

 Thread t;

 boolean running=true;

 public numbers(String name, int p)

 {

 t=new Thread(this,name);

 t.setPriority(p);

 t.start();

 }

 publicvoid run()

 {

 System.out.println("\n"+t+ " start");

 for(int i=1;i<=5;i++)

 {

 System.out.println(i);

 }

 System.out.println(t+ " exiting");

 }

}

class squareRoot implements Runnable

{

 Thread t;

 boolean running=true;

 public squareRoot(String name,int p)

 {

 t=new Thread(this,name);

 t.setPriority(p);

 t.start();

 }

 publicvoid run()

 {

 System.out.println("\n"+t+ " start");

 for(int i=1;i<=5;i++)

 {

 System.out.println(i*i);

 }

 System.out.println(t+ " exiting");

 }

}

class ThreadPri

{

 publicstaticvoid main(String args[])

 {

 new numbers("Numbers HIGH PRIORITY",Thread.MAX_PRIORITY);

 new squareRoot("Square MIDDLE PRIORITY",Thread.NORM_PRIORITY);

 Thread t=Thread.currentThread();

 t.setPriority(Thread.MIN_PRIORITY);

 t.setName("Cube LOW PRIORITY");

 System.out.println("\n"+t+ " start");

 for(int i=1;i<=5;i++)

 {

 System.out.println(i*i*i);

 }

 System.out.println(t+ " exiting");

 }

}

/*
 Output

Thread[Numbers HIGH PRIORITY,10,main] start
1
2
3
4
5
Thread[Numbers HIGH PRIORITY,10,main] exiting

Thread[Square MIDDLE PRIORITY,7,main] start
1
4
9
16
25
Thread[Square MIDDLE PRIORITY,7,main] exiting

Thread[Cube LOW PRIORITY,3,main] start
1
8
27
64
125
Thread[Cube LOW PRIORITY,3,main] exiting

11. Write a Java Program to Sort the Array in an Ascending Order.(APR/MAY 2017)
import java.util.Scanner;
public class Ascending _Order

{
 public static void main(String[] args)

 {
 int n, temp;
 Scanner s = new Scanner(System.in);
 System.out.print("Enter no. of elements you want in array:");
 n = s.nextInt();
 int a[] = new int[n];
 System.out.println("Enter all the elements:");
 for (int i = 0; i < n; i++)

 {
 a[i] = s.nextInt();
 }
 for (int i = 0; i < n; i++)

 {
 for (int j = i + 1; j < n; j++)

 {
 if (a[i] > a[j])

 {
 temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
 }
 }
 System.out.print("Ascending Order:");
 for (int i = 0; i < n - 1; i++)

 {
 System.out.print(a[i] + ",");
 }
 System.out.print(a[n - 1]);
 }
}
Output:

$ javac Ascending _Order.java

$ java Ascending _Order

Enter no. of elements you want in array:5

Enter all the elements:

4

3

2

6

1

Ascending Order:1,2,3,4,6

12. Write multithreaded java program to generate even, odd and prime numbers. (APR/MAY 2017)
public class PrintEvenOddTester {

 public static void main(String ... args){

 Printer print = new Printer(false);

 Thread t1 = new Thread(new TaskEvenOdd(print));

 Thread t2 = new Thread(new TaskEvenOdd(print));

 t1.start();

 t2.start();

 }

}

class TaskEvenOdd implements Runnable {

 int number=1;

 Printer print;

 TaskEvenOdd(Printer print){

 this.print = print;

 }

 @Override

 public void run() {

 System.out.println("Run method");

 while(number<10){

 if(number%2 == 0){

 System.out.println("Number is :"+ number);

 print.printEven(number);

 number+=2;

 }

 else {

 System.out.println("Number is :"+ number);

 print.printOdd(number);

 number+=2;

 }

 }

 }

 }

class Printer {

 boolean isOdd;

 Printer(boolean isOdd){

 this.isOdd = isOdd;

 }

 synchronized void printEven(int number) {

 while(isOdd){

 try {

 wait();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 System.out.println("Even:"+number);

 isOdd = true;

 notifyAll();

 }

 synchronized void printOdd(int number) {

 while(!isOdd){

 try {

 wait();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 System.out.println("Odd:"+number);

 isOdd = false;

 notifyAll();

 }

}

UNIT III - JDBC
Two Marks
1.What is JDBC?
JDBC stands for Java Database Connectivity, which is a standard Java API for database-independent connectivity between the Java programming language and a wide range of databases.

2.Describe a general JDBC Architecture.
General JDBC Architecture consists of two layers JDBC API (This provides the application-to-JDBC Manager connection) and JDBC Driver API (This supports the JDBC Manager-to-Driver Connection).

3.What are the common JDBC API components?
JDBC API consists of following interfaces and classes DriverManager, Driver, Connection, Statement, ResultSet, SQLException.

4.What is a JDBC DriverManager?
JDBC DriverManager is a class that manages a list of database drivers. It matches connection requests from the java application with the proper database driver using communication subprotocol.

5.What is a JDBC Driver?
JDBC driver is an interface enabling a Java application to interact with a database. To connect with individual databases, JDBC requires drivers for each database. The JDBC driver gives out the connection to the database and implements the protocol for transferring the query and result between client and database.

6.What is a connection?
Connection interface consists of methods for contacting a database. The connection object represents communication context.

7.What is a statement?
Statement encapsulates an SQL statement which is passed to the database to be parsed, compiled, planned and executed.

8.What is a ResultSet?
These objects hold data retrieved from a database after you execute an SQL query using Statement objects. It acts as an iterator to allow you to move through its data. The java.sql.ResultSet interface represents the result set of a database query.

9.What are types of ResultSet?
There are three constants which when defined in result set can move cursor in resultset backward, forward and also in a particular row.

ResultSet.TYPE_FORWARD_ONLY − The cursor can only move forward in the result set.

ResultSet.TYPE_SCROLL_INSENSITIVE − The cursor can scroll forwards and backwards, and the result set is not sensitive to changes made by others to the database that occur after the result set was created.

ResultSet.TYPE_SCROLL_SENSITIVE − The cursor can scroll forwards and backwards, and the result set is sensitive to changes made by others to the database that occur after the result set was created.

10.What are the basic steps to create a JDBC application?
Following are the basic steps to create a JDBC application

Import packages containing the JDBC classes needed for database programming.

Register the JDBC driver, so that you can open a communications channel with the database.

Open a connection using the DriverManager.getConnection () method. Execute a query using an object of type Statement.

Extract data from result set using the appropriate ResultSet.getXXX () method.

Clean up the environment by closing all database resources relying on the JVM's garbage collection.

11.What are JDBC driver types?
There are four types of JDBC drivers

JDBC-ODBC Bridge plus ODBC driver − also called Type 1 calls native code of the locally available ODBC driver.

Native-API, partly Java driver − also called Type 2 calls database vendor native library on a client side. This code then talks to database over network.

JDBC-Net, pure Java driver − also called Type 3 the pure-java driver that talks with the server-side middleware that then talks to database.

Native-protocol, pure Java driver − also called Type 4 the pure-java driver that uses database native protocol.

12.When should each of the JDBC driver type be used?
Following is a list as to when the four types of drivers can be used

If you are accessing one type of database, such as Oracle, Sybase, or IBM, the preferred driver type is 4.

If your Java application is accessing multiple types of databases at the same time, type 3 is the preferred driver.

Type 2 drivers are useful in situations where a type 3 or type 4 driver is not available yet for your database.

The type 1 driver is not considered a deployment-level driver and is typically used for development and testing purposes only.

13.Which type of JDBC driver is the fastest one?
JDBC Net pure Java driver(Type 4) is the fastest driver because it converts the JDBC calls into vendor specific protocol calls and it directly interacts with the database.

14.Does the JDBC-ODBC Bridge support multiple concurrent open statements per connection?
No. You can open only one Statement object per connection when you are using the JDBC-ODBC Bridge.

15.What are the standard isolation levels defined by JDBC?
The standard isolation levels are

TRANSACTION_NONE
TRANSACTION_READ_COMMITTED
TRANSACTION_READ_UNCOMMITTED TRANSACTION_REPEATABLE_READ
TRANSACTION_SERIALIZABLE
16.What is the design pattern followed by JDBC?
JDBC architecture decouples an abstraction from its implementation. Hence JDBC follows a bridge design pattern. The JDBC API provides the abstraction and the JDBC drivers provide the implementation. New drivers can be plugged-in to the JDBC API without changing the client code.
17.What are the different types of JDBC Statements?
Types of statements are

Statement − regular SQL statement.
PreparedStatement − more efficient than statement due to pre-compilation of SQL. CallableStatement − to call stored procedures on the database.
18.What is difference between statement and prepared statement?
Prepared statements offer better performance, as they are pre-compiled. Prepared statements reuse the same execution plan for different arguments rather than creating a new execution plan every time. Prepared statements use bind arguments, which are sent to the database engine. This allows mapping different requests with same prepared statement but different arguments to execute the same execution plan. Prepared statements are more secure because they use bind variables, which can prevent SQL injection attack.

19.How do you register a driver? (NOV/DEC 2015)
There are 2 approaches for registering the Driver

Class.forName() − This method dynamically loads the driver's class file into memory, which automatically registers it. This method is preferable because it allows you to make the driver registration configurable and portable.

DriverManager.registerDriver() − This static method is used in case you are using a non-JDK compliant JVM, such as the one provided by Microsoft.

20.What are the benefits of JDBC 4.0?
Here are few advantages of JDBC 4.0

Auto loading of JDBC driver class. In the earlier versions we had to manually register and load drivers using class.forName.

Connection management enhancements. New methods added to javax.sql.PooledConnection.

DataSet Implementation of SQL using annotations. SQL XML support.

21.What do you mean by fastest type of JDBC driver?
JDBC driver performance or fastness depends on a number of issues Quality of the driver code, size of the driver code, database server and its load, Network topology, Number of times your request is translated to a different API.

22.How do you create a connection object?
There are 3 overloaded DriverManager.getConnection() methods to create a connection object

getConnection(String url, String user, String password)Using a database URL with a username and password. For example

String URL = "jdbcoraclethin@amrood1521EMP"; String USER = "username";

String PASS = "password"

Connection conn = DriverManager.getConnection(URL, USER, PASS); getConnection(String url)Using only a database URL. For example

String URL = "jdbcoraclethinusername/password@amrood1521EMP"; Connection conn = DriverManager.getConnection(URL); getConnection(String url, Properties prop)Using a database URL and a Properties object. For example

String URL = "jdbcoraclethin@amrood1521EMP"; Properties info = new Properties(); info.put("user", "username");

info.put("password", "password");

23.How can I determine whether a Statement and its ResultSet will be closed on a commit or rollback?
Use the DatabaseMetaData methods supportsOpenStatementsAcrossCommit() and supportsOpenStatementsAcrossRollback() to check.

24.Is there a practical limit for the number of SQL statements that can be added to an instance of a Statement object?
The specification makes no mention of any size limitation for Statement.addBatch(), this is dependent, on the driver.

25.How cursor works in scrollable result set?
There are several methods in the ResultSet interface that involve moving the cursor, like beforeFirst(), afterLast(), first(), last(), absolute(int row), relative(int row), previous(), next(), getRow(), moveToInsertRow(), moveToCurrentRow().

26.How can you view a result set?
ResultSet interface contains get methods for each of the possible data types, and each get method has two versions

One that takes in a column name. One that takes in a column index.

For e.g. getInt(String columnName), getInt(int columnIndex)

27.How do you update a result set?
ResultSet interface contains a collection of update methods for updating the data of a result set. Each update method has two versions for each data type

One that takes in a column name. One that takes in a column index.

These methods change the columns of the current row in the ResultSet object, but not in the underlying database. To update your changes to the row in the database, you need to invoke one of the following methods

updateRow(), deleteRow(), refreshRow(), cancelRowUpdates(), insertRow()

28.How does JDBC handle the data types of Java and database?
The JDBC driver converts the Java data type to the appropriate JDBC type before sending it to the database. It uses a default mapping for most data types. For example, a Java int is converted to an SQL INTEGER.

29.What causes "No suitable driver" error?
"No suitable driver" is occurs during a call to the DriverManager.getConnection method, may be of any of the following reason

Due to failing to load the appropriate JDBC drivers before calling the getConnection method.

It can be specifying an invalid JDBC URL, one that is not recognized by JDBC driver. This error can occur if one or more the shared libraries needed by the bridge cannot be

loaded.

30.What is the difference between execute, executeQuery, executeUpdate?
boolean execute() - Executes the any kind of SQL statement.
ResultSet executeQuery() - This is used generally for reading the content of the database. The output will be in the form of ResultSet. Generally SELECT statement is used.

int executeUpdate() - This is generally used for altering the databases. Generally DROP TABLE or DATABASE, INSERT into TABLE, UPDATE TABLE, DELETE from TABLE statements will be used in this. The output will be in the form of int which denotes the number of rows affected by the query.

31.Why do you have to close database connections in Java?
You need to close the resultset, the statement and the connection. If the connection has come from a pool, closing it actually sends it back to the pool for reuse. We can do this in the finally{} block, such that if an exception is thrown, you still get the chance to close this.

32.What is the use of blob, clob datatypes in JDBC? Resultset is an interface, how does it support rs.Next()?
Every vendor of Database provides implementation of ResultSet & other interfaces, through the Driver.

33.What is Connection Pooling?
Connection Pooling is a technique used for reuse of physical connections and reduced overhead for your application. Connection pooling functionality minimizes expensive operations in the

creation and closing of sessions.Database vendor's help multiple clients to share a cached set of connection objects that provides access to a database. Clients need not create a new connection everytime to interact with the database.

34.Suppose the SELECT returns 1000 rows, then how to retrieve the first 100 rows, then go back and retrieve the next 100 rows?
Use the Statement.setFetchSize method to indicate the size of each database fetch.
35.What does the Class.forName("MyClass") do?
Class.forName("MyClass")

Loads the class MyClass.

Execute any static block code of MyClass. Returns an instance of MyClass.

36.When you say Class.forName() loads the driver class, does it mean it imports the driver class using import statement?
No, it doesn't. An import statement tells the compiler which class to look for. Class.forName() instructs the Classclass to find a class-loader and load that particular Class object into the memory used by the JVM.

37.What we set the attribute Concurrency in ResultSet? What are the differences between setMaxRows(int) and SetFetchSize(int)?
The difference between setFetchSize(int) and setMaxRow(int) are

setFetchSize(int) defines the number of rows that will be read from the database when the ResultSet needs more rows. setFetchSize(int) affects how the database returns the ResultSet data.

setMaxRows(int) method of the ResultSet specifies how many rows a ResultSet can contain at a time. setMaxRows(int) affects the client side JDBC object.

38.Define socket. give structure of socket. (APR/MAY 2017)
In client server model two application program one running on local system (client) and another running on remote system (server) need to communicate with one another. The communication structure that we need in socket programming is socket.

39.Define the types of sockets?
1. Stream socket (SOCK STREAM)

2. Datagram socket (SOCK_DGRAM)

3.Raw socket(SOCK_RAW)

40.What is Remote Method Invocation (RMI)?
Remote Method Invocation (RMI) allows a Java Object that executes on one machine to invoke a method of a Java Object that executes on another machine. This is an important feature, because it allows you to build distributed applications.

41.What are stubs and skeletons in RMI?
A stub is Java Object that resides on the client machine. Its function is to present the same interfaces as the remote server. Remote method calls initiated by the client are actually directed to the stub.

A skeleton is a Java Object that resides on the server machine. It receives request, performs deserialization, and invokes the appropriate code on the server

42.What do you meant by Activation in RMI?
Activation in RMI has the capability to remotely activate an object. The activator will check the status of the remote object and perform whatever initialization is necessary to get it running again.

43.What is a Java Bean? (MAY/JUNE 2016)(NOV/DEC 2016)
A Java Bean is a software component that has been designed to be reusable in a variety of different environments. There is no restriction on the capacity of a Bean.

44.List some advantages of Java Beans.
A Bean obtains all the benefits of Java’s “Write – Once, run-anywhere” paradigm.

The configuration settings of a Bean can be saved in persistent storage and restored at a later time.

A Bean may register to receive events from other objects and can generate events that

are sent to other objects.
45.Write note on manifest file in Java Beans.

Manifest file is used to indicate which of the components in a JAR file Java Beans are. A manifest file may reference several. Class file. If a .class file is a Java Bean, its entry

must be immediately followed by the line “Java Bean: True”.

46.Write the design patterns for simple properties in Bean.
A simple property has a single value. It can be identified by the following design patterns, where N is the name of the property and T is its type.

public T get N();

public void set N(T arg);

47.What are the design patterns for Boolean properties in a Bean?
A Boolean property has a value of true or false. It can be identified by the following design, patterns, where N is the name of the property ;

public boolean is N();

public boolean get N();

public void setN(boolean value);

48.What is Bean Customizer?
A Bean Customizer is nothing but a wizard that can be used to provide values to a bean. A Customizer can be created in the same way as any other Java program and can then be attached to the bean with the help of BeanInfo file

49.What do you meant by Bound Properties in a Bean?
A Bean that has a bound property generates an event when the property is changed. The event is of type PropertyChangeEvent and is sent to objects that previously registered an interest in receiving such notifications

50.What is TCP?
TCP (Transmission Control Protocol) is a standard that defines how to establish and maintain a network conversation via which application programs can exchange data.TCP works with the Internet Protocol (IP), which defines how computers send packets of data to each other.
51.What is handshaking?
Handshaking is an automated process of negotiation that dynamically sets parameters of a communications channel established between two entities before normal communication over the channel begins. It follows the physical establishment of the channel and precedes normal information transfer.
It is usually a process that takes place when a computer is about to communicate with a foreign device to establish rules for communication. When a computer communicates with another device like a modem, printer, or network server, it needs to handshake with it to establish a connection.

52. Define URL and mention the URL classes? (NOV/DEC 2016)

The Java URL class represents an URL. URL is an acronym for Uniform Resource Locator. It points to a resource on the World Wide Web.

	Method
	Description

	public String getProtocol()
	it returns the protocol of the URL.

	public String getHost()
	it returns the host name of the URL.

	public String getPort()
	it returns the Port Number of the URL.

	public String getFile()
	it returns the file name of the URL.

	Public URLConnection openConnection()
	it returns the instance of URLConnection i.e. associated with this URL.

53.Define BDK and mention its features
The Bean Development kit is a tool that allows the user to configure and interconnect a set of beans.

Bean Development Kit (BDK) is a tool for testing whether your JavaBeans meets the JavaBean specification

The user can change the properties of a Bean, link two or more Beans and execute Beans

54.What you meant InetAddress Class and mention its methods? (MAY/JUNE 2016)(NOV/DEC 2016)

Java InetAddress class represents an IP address. The java.net.InetAddress class provides methods to get the IP of any host name

	Method
	Description

	public static InetAddress getByName(String host) throws UnknownHostException
	it returns the instance of InetAddress containing LocalHost IP and name.

	public static InetAddress getLocalHost() throws UnknownHostException
	it returns the instance of InetAdddress containing local host name and address.

	public String getHostName()
	it returns the host name of the IP address.

	public String getHostAddress()
	it returns the IP address in string format.

55.What is meant by Javabeans and mention the advantages?

JavaBeans is a portable, platform-independent component model written in the Java programming language. The JavaBeans architecture was built through a collaborative industry effort and enables developers to write reusable components in the Java programming language. Java Bean components are known as beans. Beans are dynamic in that they can be changed or customized.

Advantages of Java Beans
· A Bean obtains all the benefits of Java's "write-once, run-anywhere" paradigm.

· The properties, events, and methods of a Bean that are exposed to an application builder tool can be controlled.

· A Bean may be designed to operate correctly in different locales, which makes it useful in global markets.

· The configuration settings of a Bean can be saved in persistent storage and restored at a later time.

56.Define RMI and mention the purpose of RMI Registry?

The RMI (Remote Method Invocation) is an API that provides a mechanism to create distributed application in java. The RMI allows an object to invoke methods on an object running in another JVM.

The RMI provides remote communication between the applications using two objects stub and skeleton.

57. How you understood the concept of Stub and Skeleton.
	Stub

The stub is an object, acts as a gateway for the client side. All the outgoing requests are routed through it. It resides at the client side and represents the remote object. When the caller invokes method on the stub object, it does the following tasks:

1. It initiates a connection with remote Virtual Machine (JVM),

2. It writes and transmits (marshals) the parameters to the remote Virtual Machine (JVM),

3. It waits for the result

4. It reads (unmarshals) the return value or exception, and

5. It finally, returns the value to the caller.

	skeleton

The skeleton is an object, acts as a gateway for the server side object. All the incoming requests are routed through it. When the skeleton receives the incoming request, it does the following tasks:

1. It reads the parameter for the remote method

2. It invokes the method on the actual remote object, and

3. It writes and transmits (marshals) the result to the caller.

58.Difference between two tier, three tier and multi tier applications?

	S.No
	Two-tier Architecture
	Three -tier Architecture

	1
	Client -Server Architecture
	Web -based application

	2
	Client will hit request directly to server and client will get response directly from server
	Here in between client and server middle ware will be there, if client hits a request it will go to the middle ware and middle ware will send to server and vice versa.

	3
	2-tier means 1) Design layer 2) Data layer
	3-tier means 1) Design layer 2) Business layer or Logic layer 3) Data layer

59. What is an IP Address? Give an example. (APR/MAY 2017)
"IP" stands for Internet Protocol, so an IP address is an Internet Protocol address. What does that mean? An Internet Protocol is a set of rules that govern Internet activity and facilitate completion of a variety of actions on the World Wide Web. Therefore an Internet Protocol address is part of the systematically laid out interconnected grid that governs online communication by identifying both initiating devices and various Internet destinations, thereby making two-way communication possible.
An IP address consists of four numbers, each of which contains one to three digits, with a single dot (.) separating each number or set of digits. Each of the four numbers can range from 0 to 255. Here's an example of what an IP address might look like: 78.125.0.209.
PART-B
1. Explain the concepts of JDBC and its Drivers in details with JDBC implementation (16 Marks) (APR/MAY 2017)
What is JDBC Driver?

JDBC drivers implement the defined interfaces in the JDBC API, for interacting with your database server.

For example, using JDBC drivers enable you to open database connections and to interact with it by sending SQL or database commands then receiving results with Java.

The Java.sql package that ships with JDK, contains various classes with their behaviors defined and their actual implementation are done in third-party drivers. Third party vendors implement the java.sql.Driver interface in their database driver.

JDBC Drivers Types

JDBC driver implementations vary because of the wide variety of operating systems and hardware platforms in which Java operates. Sun has divided the implementation types into four categories, Types 1, 2, 3, and 4, which is explained below −

Type 1: JDBC-ODBC Bridge Driver

In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on each client machine. Using ODBC, requires configuring on your system a Data Source Name (DSN) that represents the target database.

When Java first came out, this was a useful driver because most databases only supported ODBC access but now this type of driver is recommended only for experimental use or when no other alternative is available.

[image: image8.jpg]Local Computer

Java Application

Application Code

H

Type 1

JDBC ODEC Bridge Local

DBMS

Propristary Vondor Notwork
Specific Protocol Communication

Ditbasa Barver

The JDBC-ODBC Bridge that comes with JDK 1.2 is a good example of this kind of driver.

Type 2: JDBC-Native API

In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls, which are unique to the database. These drivers are typically provided by the database vendors and used in the same manner as the JDBC-ODBC Bridge. The vendor-specific driver must be installed on each client machine.

If we change the Database, we have to change the native API, as it is specific to a database and they are mostly obsolete now, but you may realize some speed increase with a Type 2 driver, because it eliminates ODBC's overhead.

[image: image9.jpg]Local Computer

Java Application || DB Vendor Driver.
Application Code
H]
Local
Typo2- Nativo API DBMS
Propristary Vondor Notwork
Specific Protocol Communication

Ditbasa Barver

The Oracle Call Interface (OCI) driver is an example of a Type 2 driver.

Type 3: JDBC-Net pure Java

In a Type 3 driver, a three-tier approach is used to access databases. The JDBC clients use standard network sockets to communicate with a middleware application server. The socket information is then translated by the middleware application server into the call format required by the DBMS, and forwarded to the database server.

This kind of driver is extremely flexible, since it requires no code installed on the client and a single driver can actually provide access to multiple databases.

[image: image10.jpg]Local Computer

Middlewiare Server

Java Application

Application Code

JDBC Type 1 Driver

|

Type 3
JDBC — Not Pure Java.

JDBC Typo 2 Driver

JDBC Type 4 Driver

Propriotary Vandor Notwork
‘Specific Protocol Communication

You can think of the application server as a JDBC "proxy," meaning that it makes calls for the client application. As a result, you need some knowledge of the application server's configuration in order to effectively use this driver type.

Your application server might use a Type 1, 2, or 4 driver to communicate with the database, understanding the nuances will prove helpful.

Type 4: 100% Pure Java

In a Type 4 driver, a pure Java-based driver communicates directly with the vendor's database through socket connection. This is the highest performance driver available for the database and is usually provided by the vendor itself.

This kind of driver is extremely flexible, you don't need to install special software on the client or server. Further, these drivers can be downloaded dynamically.

[image: image11.jpg]Local Computer

Java Application
Application Code

!

Type
100% Puro Java__ [*] Local

Proprietary Vendor Notwork.
Specific Protocol | Communication

Daabse Sarer

MySQL's Connector/J driver is a Type 4 driver. Because of the proprietary nature of their network protocols, database vendors usually supply type 4 drivers.

After you've installed the appropriate driver, it is time to establish a database connection using JDBC.

The programming involved to establish a JDBC connection is fairly simple. Here are these simple four steps

· Import JDBC Packages: Add import statements to your Java program to import required classes in your Java code.

· Register JDBC Driver: This step causes the JVM to load the desired driver implementation into memory so it can fulfill your JDBC requests.

· Database URL Formulation: This is to create a properly formatted address that points to the database to which you wish to connect.

· Create Connection Object: Finally, code a call to the DriverManagerobject's getConnection() method to establish actual database connection.

[image: image12.emf]
[image: image13.emf]
2. Create a Three Tier Application for Conducting Online-Examination using JDBC (16 Marks) (NOV/DEC 2016)
HTML CODE:

<html>

<head><title>Database Test</title></head>

<body>

<center>

<h1>Online Examination</h1>

</center>

<form action="StudentServlet" method="POST">

<div align="left">
</div>

Seat Number: <input type="text" name="Seat_no">

<div align="Right">

Name: <input type="text" name="Name" size="50">

</div>

1. Every host implements transport layer.

<input type="radio" name="group1" value="True">True

<input type="radio" name="group1" value="False">False

2. It is a network layer's responsibility to forward packets reliably from source

to destination

<input type="radio" name="group2" value="True">True

<input type="radio" name="group2" value="False">False

3. Packet switching is more useful in bursty traffic

<input type="radio" name="group3" value="True">True

<input type="radio" name="group3" value="False">False

<center>

<input type="submit" value="Submit">

</center>

</form>

</body>

</html>

SERVLET CODE:

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class StudentServlet extends HttpServlet

{

String message,Seat_no,Name,ans1,ans2,ans3,ans4,ans5;

int Total=0;

Connection connect;

Statement stmt=null;

ResultSet rs=null;

public void doPost(HttpServletRequest request,HttpServletResponse response) throws ServletException,IOException

{

try

{

String url="jdbc:odbc:Student";

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

//Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

connect=DriverManager.getConnection(url);

message="Thank you for participating in online Exam";

}

catch(ClassNotFoundException cnfex){

}

catch(SQLException sqlex){

}

catch(Exception excp){

}

Seat_no=request.getParameter("Seat_no");

Name=request.getParameter("Name");

ans1=request.getParameter("group1");

ans2=request.getParameter("group2");

ans3=request.getParameter("group3");

if(ans1.equals("True"))

Total+=2;

if(ans2.equals("False"))

Total+=2;

if(ans3.equals("True"))

Total+=2;

try

{

Statement stmt1=connect.createStatement();

String query="INSERT INTO student("+"Seat_no,Name,Total"+")VALUES('"+Seat_no+"','"+Name+"','"+Total+"')";

int rs=stmt1.executeUpdate(query);

stmt1.close();

}catch(SQLException ex){

}

response.setContentType("text/html");

PrintWriter out=response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("</head>");

out.println("<body bgcolor=cyan>");

out.println("<center>");

out.println("<h1>"+message+"</h1>\n");

out.println("<h3>Yours results stored in our database</h3>");

out.print("

");

out.println(""+"Participants and their Marks"+"");

out.println("<table border=5>");

try

{

Statement stmt1=connect.createStatement();

String query="SELECT * FROM student";

rs=stmt1.executeQuery(query);

out.println("<th>"+"Seat_no"+"</th>");

out.println("<th>"+"Name"+"</th>");

out.println("<th>"+"Marks"+"</th>");

while(rs.next())

{

out.println("<tr>");

out.print("<td>"+rs.getInt(1)+"</td>");

out.print("<td>"+rs.getString(2)+"</td>");

out.print("<td>"+rs.getInt(3)+"</td>");

out.println("</tr>");

}

out.println("</table>");

}

catch(SQLException ex){ }

finally

{

try

{

if(rs!=null)

rs.close();

if(stmt!=null)

stmt.close();

if(connect!=null)

connect.close();

}

catch(SQLException e){ }

}

out.println("</center>");

out.println("</body></html>");

Total=0;

}

}
3. Explain TCP Socket Programming in details (16 marks)

TCP Socket Example

TCP client/server communication flow:

[image: image14.png]server
(Running on host i)

Create socket port—+,
for incoming request:
welconeSacket =
ServerSockat ()

N
v
Wait for incoming e Create socket connected to
connection request connection setup nostid,port-x
—_—
connectiongocket = clientBocket -
welcomeSockst.accept () Sockst ()
v -
Send request using
Resdreaetie il | alientBocket
connectiongocket
v
Write reply to
A e
cliencsocket
v l
Close Close

connectionsocket clientSocket

TCPClient.java communication model:

[image: image15.png]Process

=

Keyboard
Input §
stream— &
Output 5
stream— &

"

Monitor

—

out’

rrromgerver

|

To
transport
ayer

From
transport
layer

Input
stream

TCP socket

TCPServer.java communication model (UDP figure):

[image: image16.png]—

(tovppescess)

—
Process -

uop H £ -uop

datagram | £ 9| datagram

packet—{ 2 ¥| packet
K g
serversoskes }»UDPsocke(

port 9876

To From

wansport transport
layer layer

TCP server code:

import java.io.*;

import java.net.*;

class TCPServer

{

 public static void main(String argv[]) throws Exception

 {

 String clientSentence;

 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true)

 {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient = new BufferedReader(new InputStreamReader(connectionSocket.getInputStream()));

 DataOutputStream outToClient = new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);

 }

 }

}

TCP client code:

import java.io.*;

import java.net.*;

class TCPClient

{

 public static void main(String argv[]) throws Exception

 {

 String sentence;

 String modifiedSentence;

 BufferedReader inFromUser =

 new BufferedReader(

 new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer = new DataOutputStream(clientSocket.getOutputStream());

 BufferedReader inFromServer = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }

}

4. Explain UDP Socket Programming in details (16 Marks)(NOV/DEC 2015)
UDP Socket Example

UDP client/server communication flow:

[image: image17.png]Server
(Rurning on Lost)

Create socket port-
for incoming request:
serversacket =
DatagramSocket [)

!

Read request from
serversacket

!

Write reply to
serversocket

specifying dlient host
address, port number

—

——

Client

Create sacket

clientsocket =
DPatagramsocket ()

v

Create address
(hcstid, porz=x)
send datagram request using
clientsocket

v

Read reply from

clientSocket
v

Close
elientsacket

UDPClient.java communication model:

[image: image18.png]=
Keyboard

Input
stream —|

SnrronUser

Process

|22

uoP
catagram
packet —

sendracket

Monitor
5 f-upp
¢| datagram
7| packet

clientSacket

-~ UDP socket

To
transport
layer

From
transport
layer

UDP Server.java communication model:

[image: image19.png]—

(tovppescess)

—
Process -

uop H £ -uop

datagram | £ 9| datagram

packet—{ 2 ¥| packet
K g
serversoskes }»UDPsocke(

port 9876

To From

wansport transport
layer layer

UDP server code:

import java.io.*;

import java.net.*;

class UDPServer

{

 public static void main(String args[]) throws Exception

 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];

 byte[] sendData;

 while(true)

 {

 DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

 String sentence = new String(receivePacket.getData(), 0, receivePacket.getLength());

 InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 String capitalizedSentence = sentence.toUpperCase();

 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length,IPAddress, port);

 serverSocket.send(sendPacket);

 }

 }

}

UDP client code:

import java.io.*;

import java.net.*;

class UDPClient

{

 public static void main(String args[]) throws Exception

 {

 BufferedReader inFromUser = new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 // Replace hostname with the FQDN of the server.

 InetAddress IPAddress = InetAddress.getByName("hostname");

 byte[] sendData;

 byte[] receiveData = new byte[1024];

 String sentence = inFromUser.readLine();

 sendData = sentence.getBytes();

 DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence = new String(receivePacket.getData(), 0, receivePacket.getLength());

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close(); } }

5. Explain with an example the process of developing a client server program using RMI in java.(APR/MAY 2017)

import java.rmi.*;

public interface Adder extends Remote{

public int add(int x,int y)throws RemoteException;

}
import java.rmi.*;

import java.rmi.server.*;

public class AdderRemote extends UnicastRemoteObject implements Adder{

AdderRemote()throws RemoteException{

super();

}

public int add(int x,int y){return x+y;}

}
import java.rmi.*;

public class MyClient{

public static void main(String args[]){

try{

Adder stub=(Adder)Naming.lookup("rmi://localhost:5000/sonoo");

System.out.println(stub.add(34,4));

}catch(Exception e){System.out.println(e);}

}

}
import java.rmi.*;

import java.rmi.registry.*;

public class MyServer{

public static void main(String args[]){

try{

Adder stub=new AdderRemote();

Naming.rebind("rmi://localhost:5000/sonoo",stub);

}catch(Exception e){System.out.println(e);}

}

}
6.What is java bean with example program? (NOV/DEC 2015)

A Java Bean is a java class that should follow following conventions:

· It should have a no-arg constructor.

· It should be Serializable.

· It should provide methods to set and get the values of the properties, known as getter and setter methods.

Why use Java Bean?

According to Java white paper, it is a reusable software component. A bean encapsulates many objects into one object, so we can access this object from multiple places. Moreover, it provides the easy maintenance.

Simple example of java bean class
//Employee.java

package mypack;
public class Employee implements java.io.Serializable{
private int id;
private String name;

public Employee(){}

public void setId(int id){this.id=id;}

public int getId(){return id;}

public void setName(String name){this.name=name;}

public String getName(){return name;}

}
To access the java bean class, we should use getter and setter methods.

package mypack;
public class Test{
public static void main(String args[]){

Employee e=new Employee();//object is created

e.setName("Arjun");//setting value to the object

System.out.println(e.getName());

}}
7. Write an RMI programme in which the remote method computers the factorial of the number given by the client. (MAY/JUNE 2016)

// FactRMI.java Interfacepublicinterface FactRMI extends java.rmi.Remote

{

 long countfact(int num) throws java.rmi.RemoteException;

}

// FactRMIImpl.java, FactRMI implementation
import java.rmi.*;

import java.rmi.server.UnicastRemoteObject;

publicclass FactRMIImpl extends UnicastRemoteObject implements FactRMI

{

 privateint fact;

 public FactRMIImpl(String name) throws RemoteException

 {

 super();

 try
 {

 Naming.rebind(name, this);

 fact = 1;

 }

 catch (Exception e)

 {

 System.out.println("Exception: " + e.getMessage());

 e.printStackTrace();

 }

 }

 publiclong countfact(int num) throws RemoteException

 {

 for(int i=1;i<=num;i++)

 {

 fact = fact * i;

 }

 return fact;

 }

}

// FactRMIServer.java
import java.rmi.*;

import java.rmi.server.*;

publicclass FactRMIServer

{

 publicstaticvoid main(String args[])

 {

 // Create and install the security manager
 System.setSecurityManager(new RMISecurityManager());

 try
 {

 // Create CountRMIImpl
 FactRMIImpl myFact = new FactRMIImpl("//Binita/myFactRMI");

 System.out.println("FactRMI Server ready.");

 }

 catch (Exception e)

 {

 System.out.println("Exception: " + e.getMessage());

 e.printStackTrace();

 }

 }

}

// FactRMIClient.java RMI Count client
import java.rmi.*;

import java.rmi.registry.*;

import java.rmi.server.*;

import java.io.DataInputStream;

publicclass FactRMIClient

{ publicstaticvoid main(String args[])

 {

 // Create and install the security manager
 System.setSecurityManager(new RMISecurityManager());

 DataInputStream in = new DataInputStream(System.in);

 int num;

 try
 {

 FactRMI myFact = (FactRMI)Naming.lookup("//"
 + args[0] + "/" + "myFactRMI");

 System.out.println("\nEnter the number :");

 num = Integer.parseInt(in.readLine());

 // Calculate Factoriallong FactVal = myFact.countfact(num);

 System.out.println("Factorial = " + FactVal);

 }

 catch(Exception e)

 {

 System.err.println("System Exception" + e);

 }

 System.exit(0);

 }

}

// OUTPUT
Enter the number :

10

Factorial = 3628800

8.Explain RMI. Write an RMI programme that generates ‘n’ prime numbers. (NOV/DEC 2016)
RMI Example

In this example, we have followed all the 6 steps to create and run the rmi application. The client application need only two files, remote interface and client application. In the rmi application, both client and server interacts with the remote interface. The client application invokes methods on the proxy object, RMI sends the request to the remote JVM. The return value is sent back to the proxy object and then to the client application.

package server;

import java.util.List;

public interface PrimeTask {
 List<Long> getListofPrimes(Long n);
 Boolean isPrime(Long n);
}

package server;

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.List;

public interface PrimeCompute extends Remote {
 List<Long> getListofPrimes(PrimeTask t, Long n) throws RemoteException;
 Boolean isPrime(PrimeTask t, Long n) throws RemoteException;
}

package server;

import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.rmi.server.UnicastRemoteObject;
import java.util.List;

public class PrimeComputeEngine implements PrimeCompute{
 public List<Long> getListofPrimes(PrimeTask t, Long n) throws RemoteException
 {
 return t.getListofPrimes(n);
 }

 public Boolean isPrime(PrimeTask t, Long n) throws RemoteException
 {
 return t.isPrime(n);
 }

 public static void main(String[] args) {
 try
 {
 String name = "PrimeCompute";
 PrimeCompute engine = new PrimeComputeEngine();
 PrimeCompute stub =
 (PrimeCompute) UnicastRemoteObject.exportObject(engine, 0);
 Registry registry = LocateRegistry.getRegistry();
 registry.rebind(name, stub);
 System.out.println("ComputeEngine bound");
 } catch (Exception e) {
 System.err.println("ComputeEngine exception:");
 e.printStackTrace();
 }
 }
}

Code for client
package client;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

import server.PrimeTask;

class PrimeObject implements PrimeTask, Serializable
{
 private static final long serialVersionUID = 8954L;

 public PrimeObject()
 {

 }

 @Override
 public List<Long> getListofPrimes(Long n) {
 List<Long> temp = new ArrayList<Long>();

 for (long i = 1; i <= n; i++)
 {
 if (isPrime(i))
 temp.add(i);
 }
 return temp;
 }

 @Override
 public Boolean isPrime(Long n) {
 if (n == 1)
 return false;
 else if (n < 4)
 return true;
 else if (n % 2 == 0)
 return false;
 else if (n < 9)
 return true;
 else if (n % 3 == 0)
 return false;
 else
 {
 int r = (int)Math.floor(Math.sqrt(n));
 int f = 5;
 while (f <= r)
 {
 if (n % f == 0)
 return false;
 if (n % (f + 2) == 0)
 return false;
 f = f + 6;
 }
 }
 return true;
 }
}

package client;

import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;
import java.util.List;

import server.PrimeCompute;
import server.PrimeTask;

public class PrimeNumberUtils {
 public static void main(String[] args) {
 try {
 String name = "PrimeCompute";
 Registry registry = LocateRegistry.getRegistry(args[0]);
 PrimeCompute prime = (PrimeCompute) registry.lookup(name);
 PrimeTask o = new PrimeObject();
 Long l = 1000000L;
 List<Long> p = prime.getListofPrimes(o, l);
 for (Long n : p) {
 System.out.println(n);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

}

UNIT-4
TWO MARKS QUESTION AND ANSWER

1. Define Applet. (APR/MAY 2017)
An applet is a Java program that runs in a Web browser. An applet can be a fully functional Java application because it has the entire Java API at its disposal.

Applets are not stand-alone programs. Instead, they run within either a web browser or an applet viewer.

2. From Where does the applet starts execution?

Execution of an applet does not begin at main(). It starts with init().

3. What are the Applet Life cycle methods? (NOV/DEC 2015)(NOV/DEC 2016)
Life Cycle of an Applet:

Four methods in the Applet class give you the framework on which you build any serious applet:

init: This method is intended for whatever initialization is needed for your applet. It is called after the param tags inside the applet tag have been processed.

start: This method is automatically called after the browser calls the init method. It is also called whenever the user returns to the page containing the applet after having gone off to other pages.

stop: This method is automatically called when the user moves off the page on which the applet sits. It can, therefore, be called repeatedly in the same applet.

destroy: This method is only called when the browser shuts down normally. Because applets are meant to live on an HTML page, you should not normally leave resources behind after a user leaves the page that contains the applet. paint: Invoked immediately after the start() method, and also any time the applet needs to repaint itself in the browser. The paint() method is actually inherited from the java.awt.

4. How do Applets differ from Applications?

Following are the main differences:

	Application
	Applet

	Stand Alone, doesn’t need web-browser
	Needs no explicit installation on local machine.

	
	Can be transferred through Internet on to the local

	
	machine and may run as part of web-browser.

	Execution starts with main() method. Doesn’t
	Execution starts with init() method.

	work if main is not there.
	

	May or may not be a GUI.
	Must run within a GUI (Using AWT). This is

	
	essential feature of applets.

5. Can we pass parameters to an applet from HTML page to an applet? How?

The parameters can be passed to an applet using <param> tag in the following way: a. <param name=”param1″ value=”value1″>

b. <param name=”param2″ value=”value2″>

Access those parameters inside the applet is done by calling getParameter() method inside the applet. The getParameter() method returns String value corresponding to the parameter name.

6. How do we read number information from my applet’s parameters, given that Applet’s getParameter() method returns a string?

Use the parseInt() method in the Integer Class, the Float(String) constructor or parseFloat() method in the Class Float, or the Double(String) constructor or parseDouble() method in the class Double.

7. How can I arrange for different applets on a web page to communicate with each other?

Name your applets inside the Applet tag and invoke AppletContext’s getApplet() method in your applet code to obtain references to the other applets on the page.

8. How do I select a URL from my Applet and send the browser to that page?

Ask the applet for its applet context and invoke showDocument() on that context object. URL targetURL;

String URLString

AppletContext context = getAppletContext(); try

{

targetURL = new URL(URLString);

}

catch (MalformedURLException e)

{

// Code for recover from the exception

}

context. showDocument (targetURL);

9. Can applets on different pages communicate with each other?

No, Not Directly. The applets will exchange the information at one meeting place either on the local file system or at remote system.

10. How do I determine the width and height of my application?

Use the getSize() method, which the Applet class inherits from the Component class in the Java.awt package. The getSize() method returns the size of the applet as a Dimension object, from which you extract separate width, height fields. The following code snippet explains this:

Dimension dim = getSize(); int appletwidth = dim.width(); int appletheight = dim.height();

11. Which classes and interfaces does Applet class consist?

Applet class consists of a single class, the Applet class and three interfaces: AppletContext, AppletStub, and AudioClip.

· What is AppletStub Interface?

The applet stub interface provides the means by which an applet and the browser communicate. Your code will not typically implement this interface.

12. What are the Applet’s information methods?

The following are the Applet’s information methods: getAppletInfo() method: Returns a string describing the applet, its author, copyright information, etc. getParameterInfo() method: Returns an array of string describing the applet’s parameters.

14.
What are the steps involved in Applet development?

Following are the steps involved in Applet development:

o
Create/Edit a Java source file. This file must contain a class which extends Applet class.

o
Compile your program using javac

o
Execute the appletviewer, specifying the name of your applet’s source file or html file. In case the

applet information is stored in html file then Applet can be invoked using java enabled web browser.

15. Which method is used to output a string to an applet? Which function is this method included in? drawString() method is used to output a string to an applet. This method is included in the paint method of the Applet.
16. Define Delegation Event Model

A source generates an event and sends it to one or more listeners.

In this scheme, the listener simply waits until it receives an event. Once an event is received, the listener processes the event and then returns. It is a standard and consistent mechanisms to generate and process events.

20. List the advantages of Delegation Event Model

Advantage

The application logic that processes events is cleanly separated from the user interface logic that generates those events.

A user interface element is able to “delegate” the processing of an event to a separate piece of code.

In the delegation event model, listeners must register with a source in order to receive an event notification. This provides an important benefit: notifications are sent only to listeners that want to receive them.

This is a more efficient way to handle events than the design used by the old Java 1.0 approach. Previously, an event was propagated up the containment hierarchy until it was handled by a component. This required components to receive events that they did not process, and it wasted valuable time. The delegation event model eliminates this overhead

21. Define events, Event Sources and Listeners

Events : An event is a change of state of an object.

Events Source : Event source is an object that generates an event.

Listeners : A listener is an object that listens to the event. A listener gets notified when an event occurs. It has two major requirements.

First, it must have been registered with one or more sources to receive notifications about specific types of events. Second, it must implement methods to receive and process these notifications

19. What is the purpose of repaint method? When should we use repaint method?

repaint() requests an erase and redraw (update) after a small time delay. When you invoke repaint(), a message is sent to the native GUI requesting it to perform the action sometime in the distant future

21. What is Java AWT? (APR/MAY 2017)
Java AWT (Abstract Windowing Toolkit) is an API to develop GUI or window-based application in java.

Java AWT components are platform-dependent i.e. components are displayed according to the view of operating system. AWT is heavyweight i.e. its components uses the resources of system.

27. Define Component

Component is an object having a graphical representation that can be displayed on the screen and that can interact with the user. For examples buttons, checkboxes, list and scrollbars of a graphical user interface.

31. Define Container

Container object is a component that can contain other components. Components added to a container are tracked in a list. The order of the list will define the components' front-to-back stacking order within the container. If no index is specified when adding a component to a container, it will be added to the end of the list.

34. Define Panel

Panel provides space in which an application can attach any other components, including other panels.

35. Define Window

Window is a rectangular area which is displayed on the screen. In different window we can execute different program and display different data. Window provide us with multitasking environment. A window must have either a frame, dialog, or another window defined as its owner when it's constructed.

25. Define Frame

A Frame is a top-level window with a title and a border. The size of the frame includes any area designated for the border. Frame encapsulates window. It and has a title bar, menu bar, borders, and resizing corners.

26. Define Canvas

Canvas component represents a blank rectangular area of the screen onto which the application can draw. Application can also trap input events from the use from that blank area of Canvas component.

27. Sketch the hierarchy of AWT Classes

56. What is the difference between a Window and a Frame?

A frame is a resizable, movable window with title bar and close button. Usually it contains Panels. Its derived from a window and has a borderlayout by default.

A window is a Container and has BorderLayout by default. A window must have a parent Frame mentioned in the constructor.

60. List the various AWT Controls. (APR/MAY 2017)
The AWT supports the following types of controls:

Labels

Push buttons

Check boxes

Choice lists

Lists

Scroll bars

Text editing

63. Define Servlet.
Java Servlets are programs that run on a Web or Application server and act as a middle layer between a request coming from a Web browser or other HTTP client and databases or applications on the HTTP server.

Using Servlets, you can collect input from users through web page forms, present records from a database or another source, and create web pages dynamically.

64. Difference between Java Applications and Java Applets?
	Application
	Applet

	· Object class extended

· Class not declared public
· Has a main()
· static keyword used

· Uses System.exit(1)
	· JApplet class extended

· class declared to be public
· init() instead of main()
· init() not declared with static keyword

65. Write a program to print "Hello World" with co-ordinates using applets

import java.awt.*;

import java.applet.Applet;

public class HelloWorldApplet extends Applet {

public void paint(Graphics g) {

 Dimension d = getSize();

g.setColor(Color.BLACK);

g.fillRect(0, 0, d.width, d.height); // paint background

g.setFont(new Font("San-serif", Font.BOLD, 24));

g.setColor(new Color(255, 215,0));

g.drawString("Hello, world!", 60, 40);

 } }
66. Differentiate Flow Layout and Set Layout

Set Layout is used to setting the layout of the device. The parameter to this function is an object of the layout manager.

Flow layout is the simplest one. using this the components are arranged from top left corner lying down from left to right and from top to bottom.

67. Define AWT. and Draw AWT event Hierarchy
Java AWT (Abstract Windowing Toolkit) is an API to develop GUI or window-based application in java. Java AWT components are platform-dependent i.e. components are displayed according to the view of operating system. AWT is heavyweight i.e. its components uses the resources of system. The java.awt package provides classes for AWT api such as TextField, Label, TextArea, RadioButton, CheckBox, Choice, List etc.

68. Mention the Advantages of Event Delegation Model

There are two advantages of event-delegation model over event-inheritance model.
First – Event-delegation enables the handling of events by objects other than the ones which generate the events. It is a clean separation between design and usage of a component.
Second – It's performance is much better in applications in which many events are generated. This improvement of performance is due to the fact that the unhandled events need not be repeatedly processed, which is the case of event-inheritance model.
69. Mention the difference between servlet and applet

	Applets
	Servlets

	Client Side Program
	Server Side Program

	May have GUI
	No GUI Required

	Uses the resources of Client
	Processed at Server, No Client Resources required

	Require JRE or Web browser`s plug-in to run
	Require Java Enabled Web Server

	Use More Network bandwidth as runs loads and executes on Client machine
	Less Network Bandwidth as runs on Server and only Results sent to Client

70. Differentiate GridBag Layout from Grid Layout
Gridbag layout is a flexible layout which aligns components vertically and horizontally, without requiring that the components be of the same size. Each GridBagLayout object maintains a dynamic, rectangular grid of cells, with each components occupying one or more cells, called display area.
71. How Parameter passing is done in Applet.(Define <PARAM> Tag)
We can pass any information from the HTML file as a parameter using the tag called <PARAM>. For this purpose, Applet class provides a method named getParameter(), param tags-Each has a name and a value.

eg)

Passing parameter from HTML

<html>
<applet code="LogoApplet.class" width=400 height=400>

<param name="imagename" value="deitel">

<param name="animationdelay" value="200">

</applet>
</html>

Applet method to get parameter

parameter = getParameter("animationdelay");

72. How Frames are created using JAVA.

We can create a frame using Frame() or JFrame() & using JFrames getContentPanel(), setSize() & setVisible() methods to display this frame.

eg)

	Example 1

public static void main(String[] args)

{

 JFrame f = new JFrame();

 f.getContentPane().add(new Main());

 f.setSize(450, 350);

 f.setVisible(true); }
	Example 2

public static void main(String[] args)

{

 Frame f = new Frame();

 f.setSize(450, 350);

 f.setVisible(true);

}

73. How do you manage colors and fonts of graphics in applet?

· The color can be specified as color(int R,int G,intB);

· The background color can be set by setBackground(Color.colorname);

· The text color can be set by setForeground(Color.colorname);

· The font can be set by setFont() method

Eg) code

import java.awt.*;

import java.applet.Applet;

public class HelloWorldApplet extends Applet {

public void paint(Graphics g) {

g.setBackground(Color.BLACK);

g.setFont(new Font("San-serif", Font.BOLD, 24));

g.setColor(new Color(255, 215,0));

 }

}
74. Draw Servlet Lifecycle.
The web container maintains the life cycle of a servlet instance. Let's see the life cycle of the servlet:

1. Servlet class is loaded.

2. Servlet instance is created.

3. init method is invoked.

4. service method is invoked.

5. destroy method is invoked.

75. Define Servlet Container? Specify its Objectives

The basic idea of Servlet container is using Java to dynamically generate the web page on the server side. So servlet container is essentially a part of a web server that interacts with the servlets.
76. List the JSP implicit objects?

JSP container makes some Java objects available to the JSP page. No specific declaration or initialization is required within the JSP page. These objects are called implicit objects. List of the JSP implicit objects is included below

	Object Name
	Object type

	request
	javax.servlet.http.HttpServletRequest

	response
	javax.servlet.http.HttpServletResponse

	session
	javax.servlet.http.HttpSession

	application
	javax.servlet.ServletContext

	pageContext
	javax.servlet.jsp.PageContext

	exception
	java.lang.Throwable

	config
	javax.servlet.ServletConfig

	page
	Object

77. Difference between get request and post request
	GET
	POST

	1) In case of Get request, only limited amount of data can be sent because data is sent in header.
	In case of post request, large amount of data can be sent because data is sent in body.

	2) Get request is not secured because data is exposed in URL bar.
	Post request is secured because data is not exposed in URL bar.

	3) Get request can be bookmarked.
	Post request cannot be bookmarked.

	4) Get request is idempotent . It means second request will be ignored until response of first request is delivered
	Post request is non-idempotent.

	5) Get request is more efficient and used more than Post.
	Post request is less efficient and used less than get.

78. List the Types of directives in JSP
There are three types of directive tag:

	Directive
	Description

	<%@ page ... %>
	Defines page-dependent attributes, such as scripting language, error page, and buffering requirements.

	<%@ include ... %>
	Includes a file during the translation phase.

	<%@ taglib ... %>
	Declares a tag library, containing custom actions, used in the page

79. What is life cycle of servlet?(NOV/DEC 2016)
The following are the paths followed by a servlet

The servlet is initialized by calling the init () method.

The servlet calls service() method to process a client's request.

The servlet is terminated by calling the destroy() method.

Finally, servlet is garbage collected by the garbage collector of the JVM.

80. Who is responsible to create the object of servlet?

The web container or servlet container.

81. When servlet object is created?

At the time of first request.

82. What is difference between Get and Post method?

	
	
	
	

	
	Get
	Post
	

	
	
	
	

	
	
	
	

	1)
	Limited amount of data can be sent because data is sent
	Large amount of data can be sent because data is sent
	

	in header.
	in body.
	

	
	
	
	

	
	
	
	

	2)
	Not Secured because data is exposed in URL bar.
	Secured because data is not exposed in URL bar.
	

	
	
	
	

	
	
	
	

	3)
	Can be bookmarked
	Cannot be bookmarked
	

	
	
	
	

	
	
	
	

	4)
	Idempotent
	Non-Idempotent
	

	
	
	
	

	
	
	
	

	5)
	It is more efficient and used than Post
	It is less efficient and used
	

	
	
	
	

	
	
	
	

83. What is difference between GenericServlet and HttpServlet?

The GenericServlet is protocol independent whereas HttpServlet is HTTP protocol specific. HttpServlet provides additional functionalities such as state management etc.

84. What is difference between ServletConfig and ServletContext?

The container creates object of ServletConfig for each servlet whereas object of ServletContext is created for each web application.

85. What is Session Tracking?

Session simply means a particular interval of time.

Session Tracking is a way to maintain state of an user.Http protocol is a stateless protocol.Each time user requests to the server, server treats the request as the new request.So we need to maintain the state of an user to recognize to particular user.

86. What are Cookies?

A cookie is a small piece of information that is persisted between the multiple client requests. A cookie has a name, a single value, and optional attributes such as a comment, path and domain qualifiers, a maximum age, and a version number.

87. What is difference between Cookies and HttpSession?

Cookie works at client side whereas HttpSession works at server side.

88. What is the disadvantage of cookies?

It will not work if cookie is disabled from the browser.

89. What is JavaServer Pages? (MAY/JUNE2016)
JavaServer Pages (JSP) is a technology for developing web pages that support dynamic content which helps developers insert java code in HTML pages by making use of special JSP tags, most of which start with <% and end with %>.

90.What are advantages of using JSP?

JSP offer several advantages as listed below:

Performance is significantly better because JSP allows embedding Dynamic Elements in HTML Pages itself. JSP are always compiled before it's processed by the server unlike CGI/Perl which requires the server to load an interpreter and the target script each time the page is requested.

JavaServer Pages are built on top of the Java Servlets API, so like Servlets, JSP also has access to all the powerful Enterprise Java APIs, including JDBC, JNDI, EJB, JAXP etc.

JSP pages can be used in combination with servlets that handle the business logic, the model supported by Java servlet template engines.

91.What are the life-cycle methods for a jsp?

Method

public void jspInit()

Description

It is invoked only once, same as init method of servlet.

public void _jspService(ServletRequest request,ServletResponse)throws ServletException,IOException

public void jspDestroy()

It is invoked at each request, same as service() method of servlet.

It is invoked only once, same as destroy() method of servlet.

92.What is difference between include directive and include action?

	
	
	
	

	include directive
	
	include action
	

	
	
	
	

	
	
	
	

	
	
	
	
	

	1) The include directive includes the content at page
	
	1)
	The include action includes the content at request time.
	

	translation time.
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	

	2) The include directive includes the original
	
	2)
	The include action doesn't include the original content
	

	content of the page so page size increases at
	
	rather invokes the include() method of Vendor provided
	

	runtime.
	
	class.
	

	
	
	
	

	
	
	
	

	3) It's better for static pages.
	
	3) It's better for dynamic pages
	

	
	
	
	
	

	
	
	
	
	

93.What are the JSP Implicit objects?

	
	
	
	
	

	
	Objects
	
	Description
	

	
	
	
	
	

	
	request
	
	This is the HttpServletRequest object associated with the request.
	

	
	
	
	
	

	
	response
	
	This is the HttpServletResponse object associated with the response to the client.
	

	
	
	
	
	

	
	out
	
	This is the PrintWriter object used to send output to the client.
	

	
	
	
	
	

	
	session
	
	This is the HttpSession object associated with the request.
	

	
	
	
	
	

	
	application
	
	This is the ServletContext object associated with application context.
	

	
	
	
	
	

	
	config
	
	This is the ServletConfig object associated with the page.
	

	
	
	
	
	

	
	pageContext
	
	This encapsulates use of server-specific features like higher performance
	

	
	
	
	JspWriters.
	

	
	
	
	
	

	
	
	
	
	

	
	page
	
	This is simply a synonym for this, and is used to call the methods defined by the
	

	
	
	
	translated servlet class.
	

	
	
	
	
	

	
	
	
	
	

	
	Exception
	
	The Exception object allows the exception data to be accessed by designated
	

	
	
	
	JSP.
	

	
	
	
	
	

	
	
	
	
	

94. Is JSP technology extensible?

Yes. JSP technology is extensible through the development of custom actions, or tags, which are encapsulated in tag libraries.

95.What are the two ways to include the result of another page. ?

There are two ways to include the result of another page:

By include directive By include action
96.How to disable session in JSP?

<%@ page session="false" %> What are JSP declarations?

A declaration declares one or more variables or methods that you can use in Java code later in the JSP file. You must declare the variable or method before you use it in the JSP file.

<%! declaration; [declaration;]+ ... %>

97.What are JSP expressions?

A JSP expression element contains a scripting language expression that is evaluated, converted to a String, and inserted where the expression appears in the JSP file.

The expression element can contain any expression that is valid according to the Java Language Specification but you cannot use a semicolon to end an expression.

Its syntax is:

<%= expression %>

98.What are JSP comments?

JSP comment marks text or statements that the JSP container should ignore. A JSP comment is useful when you want to hide or "comment out" part of your JSP page.

Following is the syntax of JSP comments: <%-- This is JSP comment --%>

99.What are JSP Directives?

A JSP directive affects the overall structure of the servlet class. It usually has the following form: <%@ directive attribute="value" %>

100.What are the types of directive tags?

The types directive tags are as follows:

<%@ page ... %> : Defines page-dependent attributes, such as scripting language, error page, and buffering requirements.

<%@ include ... %> : Includes a file during the translation phase.

<%@ taglib ... %> : Declares a tag library, containing custom actions, used in the page.

101.What are JSP actions?

JSP actions use constructs in XML syntax to control the behavior of the servlet engine. You can dynamically insert a file, reuse JavaBeans components, forward the user to another page, or generate HTML for the Java plugin.

Its syntax is as follows: <jsp:action_name attribute="value" />

102.Name some JSP actions.

jsp:include, jsp:useBean,jsp:setProperty,jsp:getProperty, jsp:forward,jsp:plugin,jsp:element, jsp:attribute, jsp:body, jsp:text

103. What are JSP literals?

Literals are the values, such as a number or a text string, that are written literally as part of a program code. The JSP expression language defines the following literals:

Boolean: true and false Integer: as in Java

Floating point: as in Java

String: with single and double quotes; " is escaped as \", ' is escaped as \', and \ is escaped as \\. Null: null

104. What is a page directive?

The page directive is used to provide instructions to the container that pertain to the current JSP page. You may code page directives anywhere in your JSP page.
Part-B

1. i) Explain the Event Listerners with an exampleii) Write a sample program to demonstrate the key events. (8 Marks)
(MAY/JUNE 2016)
Event Handling

Any program that uses GUI (graphical user interface) such as Java application written for windows, is event driven. Event describes the change of state of any object. Example : Pressing a button, Entering a character in Textbox.

Components of Event Handling

Event handling has three main components,

· Events : An event is a change of state of an object.

· Events Source : Event source is an object that generates an event.

· Listeners : A listener is an object that listens to the event. A listener gets notified when an event occurs.

How Events are handled ?

A source generates an Event and send it to one or more listeners registered with the source. Once event is received by the listener, they processe the event and then return. Events are supported by a number of Java packages, like java.util, java.awt and java.awt.event.

Important Event Classe and Interface

	Event Classes
	Description
	Listener Interface
	Sample Methods

	ActionEvent
	generated when button is pressed, menu-item is selected, list-item is double clicked
	ActionListener
	void actionPerformed(ActionEvent act)

	MouseEvent
	generated when mouse is dragged, moved,clicked,pressed or released also when the enters or exit a component
	MouseListener
	void mouseClicked(MouseEvent m)

void mousePressed(MouseEvent m)

void mouseReleased(MouseEvent m)

void mouseEntered(MouseEvent m)

	KeyEvent
	generated when input is received from keyboard
	KeyListener
	void KeyPressed(KeyEvent ke)

void KeyReleased(KeyEvent ke)

void KeyTyped(KeyEvent ke)

	ItemEvent
	generated when check-box or list item is clicked
	ItemListener
	void itemStateChanged(ItemEvent ie)

	TextEvent
	generated when value of textarea or textfield is changed
	TextListener
	void textChanged(TextEvent tx)

	MouseMotionEvent
	generated when mouse wheel is moved
	MouseMotionListener
	void mouseDragged(MouseEvent m)

void mouseMoved(MouseEvent m)

	WindowEvent
	generated when window is activated, deactivated, deiconified, iconified, opened or closed
	WindowListener
	void windowOpened(WindowEvent w)

void windowClosed(WindowEvent w)

void windowActivated(WindowEvent w)

void windowClosing(WindowEvent w)

	ComponentEvent
	generated when component is hidden, moved, resized or set visible
	ComponentEventListener
	void componentShown(ComponentEvent c)

void componentHidden(ComponentEvent c)

void componentMoved(ComponentEvent c)

void componentResized(ComponentEvent c)

	ContainerEvent
	generated when component is added or removed from container
	ContainerListener
	void componentAdded(ContainerEvent c)

void componentRemoved(ContainerEvent c)

	AdjustmentEvent
	generated when scroll bar is manipulated
	AdjustmentListener
	void adjustmentValueChanged(Action Event act)

	FocusEvent
	generated when component gains or loses keyboard focus
	FocusListener
	void focusGained(FocusEvent f)

void focusLost(FocusEvent f)

ii) Example of Keyboard Event Handling(8 Marks)
import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.applet.*;

import java.awt.event.*;

import java.awt.*;

public class Test extends Applet implements KeyListener

{

 String msg="";

public void init()

 {

addKeyListener(this);

 }

public void keyPressed(KeyEvent k)

 {

showStatus("KeyPressed");

 }

public void keyReleased(KeyEvent k)

 {

showStatus("KeyRealesed");

 }

public void keyTyped(KeyEvent k)

 {

msg = msg+k.getKeyChar();

repaint();

 }

public void paint(Graphics g)

 {

g.drawString(msg, 20, 40);

 }

}

HTML code :
<applet code="Test" width=300, height=100 >

2. Explain the various Layout Managers and Menus in Details (16 Marks)(NOV/DEC 2016)
Layout Managers

Layout Manager automatically arranges your controls within a window by using some type of algorithm.

Each Container object has a layout manager associated with it. A layout manager is an instance of any class that implements the LayoutManager interface.

Is set by

void setLayout (LayoutManager layoutObj)

To disable the layout manager and position components manually, pass null for layoutObj. Then you determine the size and position of each component manually, using setBounds() method defined byComponent.

Whenever the container needs to be resized, the layout manager is consulted via minimumLayoutSize() and preferredLayoutSize() methods.

FlowLayout

FlowLayout is the default layout manager.

Components are laid out from the upper-left corner, left to right and top to bottom.

When no mre components fit in a line, the next one appears on the next line.

Constructors

FlowLayout ()

FlowLayout (int how)

FlowLayout (int how, int horz, int vert)

Valid values for how are as follows:

Flowlayout.LEFT

Flowlayout.CENTER

Flowlayout.RIGHT

BorderLayout

BorderLayout class implements a common layout style for top-level windows. Four fixed narrow, fixed-width components at edges and one large area in the center.

Constructors:

BorderLayout ()

BorderLayout (int horz, int vert)

BorderLayout defines the following constants that specify the regions:

BorderLayout.CENTER

BorderLayout.SOUTH

BorderLayout.NORTH

BorderLayout.EAST

BorderLayout.WEST

When adding a component, you will use these constsnts with the following form of add () method.

void add(Component compObj, Object region)

Using Insets

Override the getInsets () method that is defined by Container.
Constructor for Insets is:

Insets (int top, int left, int bottom, int right)

Sample Code

import java.awt.*;

import java.applet.*;

/*

<applet code="InsetsDemo" width=300 height=200>

</applet>

*/

public class InsetsDemo extends Applet {

public void init () {

setBackground (Color.cyan);

setLayout (new BorderLayout ());

add(new Button ("This is across the Top"),BorderLayout.NORTH);

add(new Label ("The Footer message goes here"),BorderLayout.SOUTH);

add(new Button ("Right"),BorderLayout.EAST);

add(new Button ("Left"),BorderLayout.WEST);

String msg = "This text appears in the Center of the Border layout";

add(new TextArea (msg), BorderLayout.CENTER);

}

public Insets getInsets () {

return new Insets(10, 10, 10, 10);

}

}

GridLayout

It lays the components in a 2-dimensional grid.

Constructors:

GridLayout ()

GridLayout (int numRows, int numColumns)

GridLayout (int numRows, int numColumns, int horz, int vert)

Sample Code

import java.awt.*;

import java.applet.*;

/*

<applet code="GridLayoutDemo" width=300 height=200>

</applet>

*/

public class GridLayoutDemo extends Applet {

static final int n = 4;

public void init () {

setLayout (new GridLayout (n,n));

for(int i = 0; i < n; i++){

for (int j = 0; j < n; j++) {

int k = i*n + j;

if (k>0)

add(new Button (" " + k));

}

}

}

}

CardLayout

Unique among the other layout managers in that it stores several different layouts.

Each layout can be thought of as being on a separate index card in a deck that can be shuffled so that any card is on the top at a given time. This can be useful for user interfaces with optional components that can be dynamically enabled and disabled upon user input.

Constructors:

CardLayout()

CardLayout(int horz, int vert)

The cards are typically held in an object of type Panel. This Panel must have CardLayout selected as its Layout manager. The cards that form the deck are also typically objects of type Panel. Thus, you must create a Panel that contains the deck and a panel for each card in the deck.

Methods

void add (Component panelObj, Object name)

void first (Container deck)

void last (Container deck)

void next (Container deck)

void previous (Container deck)

void show (Container deck, String cardname) // displays the card whose name is

//passed in cardname

Menu Bars and Menus

A top-level can have a menu bar associated with it.

This concept is implemented in java by the following classes:

MenuBar, Menu, and MenuItem

A menu bar contains one or more Menu Objects. Each Menu Object contains a list of MenuItem objects. Each MenuItem object represents something that can be selected by the user. Since Menu is a subclass of MenuItem, a hierarchy of nested submenus can be created.

Can include checkable menu Items using objects of type CheckboxMenuItem

Constructors and Methods:

Menu()

Menu(String optionName)

Menu(String optionName, boolean removable) // if removable true, the pop-up menu

//can be removed and allowed to float free

MenuItem ()

MenuItem (String itemName)

MenuItem (String itemName, MenuShortcut keyAccel) //keyAccel is the menu

//shortcut for this item

void setEnabled (boolean enabledFlag) //to enable menu item

boolean isEnabled ()

void setLabel (String newName)

String getLabel ()

CheckboxMenuItem ()

CheckboxMenuItem (String itemName)

CheckboxMenuItem (String itemName, boolean on)

boolean getState ()

void setState (boolean checked)

MenuItem add (MenuItem item)

Menu add (Menu menu)

Object getItem()

getItem () method of ItemEvent returns a reference to the item that generated this event.

Dialog Boxes

Dialog boxes are primarily used to obtain user input.

They are always child windows to a top-level window.

Don’t have menu bars.

Constructors:

Dialog (Frame parentWindow, boolean mode)

Dialog (Frame parentWindow,String title, boolean mode)

When a model dialog box is active, all input is directed to it until it is closed. This means you can not acces other parts of your program until you have closed the dialog box. When modeless dialog box is active, input focus can be directed to another window in your program.

When the dialog box is closed, dispose () is called. This method is defined by Window, and it frees all system resources associated with the dialog box window.

FileDialog

Java provides a built-in dialog box that lets the user specify a file.

Constructors:

FileDialog (Frame parent)

FileDialog (Frame parent, String boxName)

FileDialog (Frame parent, String boxName, int how)

how is FileDialog.LOAD (the box is selecting a file to read) or FileDialog.SAVE (the box is selecting a file for writing).

String getDirectory ()

String getFile ()

3. What is session? Explain how client state is maintained using session and also explain various session tracking techniques with an example (16 Marks) (MAY/JUNE 2016)
[image: image20.png]Basically there are two types of protocols : Stateful and stateless protocol. I
stateful protocol, part of data is exchanged between client and server and the

protocols always keep track of communication sessions. On the 0

her hand

stateless protocol s a protocol in which neither client not server keeps track of

the state of communication session. HTTP is a stateless protocol in w

hich each

request is independent of the previous request. And HITP is 2 protocol using
which user can interact with the server via web browser and it cannot remembet
previously held communications but sometimes there is serious need to keep
track of previous communication sessions. This can be achieved by session

tracking,

[image: image21.png]The session tracking technique is a mechanism by which we can keep track of
previous sessions between server and the browser. The session tracking can be

done using three techniques and those are -

1. Use of cookies
2. Embedding hidden fields in an HTML form

3. Sending URL string in response body.
For sending all state information to and fro between browser and server, usually an
ID is used. This ID is basically a session-ID. Thus session-ID is passed between the
browser and server while processing the information. This method of keeping track of all
the information between server and browser using session-ID is called session tracking.

[image: image22.png]1. Use of Cookies

A cookie i a name-value pair information. This information is passed from server
browser in response header. The browser then returns these cookies unchanged o
server by including the tate. By returning a ookie to a web server,the browser prosi
the server a means of connecting the current page view with previous page views. Use
session-ID in session tracking using the cookies can be llustrated as follows -

Suppose we want to access web page
http:/ /wiww mywebpage.com/introduction html,

then the browser connects to g
server www.mywebpage.com by making a request | HOST - www.mywebpage.com

GET fintroduction.html ~ HTTP P.1

[image: image23.png]3
foet MINS ow HTTPIP.A 2000
—_—
Malﬁmnpﬁsmﬂj&fmnﬂﬂ?mm%pﬂﬂmﬂmm setCoote I
rpsing b ks,
GET IChaptert himl ~ HTTP1.1 Bowser Response. Senver
—

Host ‘Www mywebpage.com Using se<ookie ttement ever i eqesting brovser o stoete sidef 3. S

e — ﬁhrrfursuypmbmh&l?ﬂm«l\ subseqes agerequest o tesame sever il
ann tecookie.

Browser Request Server
—_—

This is another request to the same server. By including cookies which contain
sid=xf1234ad server knows that this request is related to the previous one. Thus
server-browser can keep track of current session.

[image: image24.png]2. Hidden Form Field

The ASP.NET uses this method of session tracking. In this method when browser
makes a request to the server for some web page then server repsonds by inserting hidden

form field in the html page, and then sending that page to the browser.

GET fintroductionhtml HTTP1.1
Host www.mywebpage.com

Browser Request Server
_
HTTPM.1 200 OK
<html>

<form ~ action = introduction.html method=post>

<input type = hidden
name = sid value = xf1234ad
l-—Content of page >

</html>

[image: image25.png]Browser Response Server
—~—
The hidden contents will not be displayed on webbrowser. But those will be stor

with browser and when browser makes another request to the same server.

GET /Chapter1.html HTTP1.1

sid=xf1234ad

Browser Request Serv

- -
By hidden field sid=xf1234ad server will come to know that this request is related

the previous one. The server will then answer by sending the requested page. When n v
session will start new session id will be set as hidden field.

[image: image26.png]3. URL Rewriting

This s more precise technique in which information is embedded into URL.

instance. (oo mywebpage cory

Browser Requests Server

The server then repsonds by putting sid=xf1234ad in response body.

HTTP/1.4 200 0K
<htmi>
<ahref = introduction html; sid=xf1234ad>

Click here to go to Next page

</htmi>

Browser Response Server
‘The browser will demand for the required web page by putting the same URL string
n the request.

GET fintroduction.html ~ sid=xf1234ad HTTP/1.1

[image: image27.png]Browser Request Server
SRS
When browser makes requests for another page same URL is embedded. There by
server will come to know that the request is related to previous page and the work in
same session will get co-related.

When browser gets closed then normally session gets lost. In such cases cookies expire
or URLS will not be available. So when user opens the browser again, server cannot
associate new request with previous session. Hence this is how a new session starts.
However all session data associated with previous session remains on server and can be
used by user in the browser.

Session Handling:

[image: image28.png]In servlets, for creating the sessions getSession() method can be used. This mel
returns the object which stores the bindings with the names that use this object. And
bindings can be managed using getAttribute(), setAttribute(), removeAttrib
methods. Actually in session tracking two things are playing an important role -

¢ Oneis HttpServletRequest interface which supports getSession() method.

o The another class is HttpSession class which supports the binding mana
functions such as getAttribute(), setAttribute(), removeAttribute()
getAttributeNames().

Let us first discuss the servlet program which returns the number of previous sessi
established between client and server. Note that any client can communicate with
server using some web browser only!

[image: image29.png]Serviet Program(SessionServietDemo)
import java.io.*;
import java.util. *;
import javax.servlet.*;
import javax.servliet.http.*;
public class SessionServlietDemo extends HttpServilet
i
public void doGet(HttpServletReguest req,HttpServletResponse res)
throws ServletException,IOException
X
res.setContentType('text/html");
HttpSession session—=reqg.getSession();
String heading;
Integer cnt=(Integer)session.getAttribute('cnt");
if(cnt= =mnull)
{
cnt=new Integer(0);
heading="Welcome You are accessing the page for the First Time";
by
else

{

[image: image30.png]" heading="Welcome once again!";
_cnt=new Integer(cnt.intValue()+1);

; }

kw ion.setAttribute('cnt”,cnt);
"rf'PrlntWriter out=res.getWriter();
*out.println("<html>");
out.println("<head>");
""3 out.println("</head >");
out.println("<body>");
“out.println("<center>");
%out.println(" <h1>"+heading);
out.printin("<h2> The number of previous access= "+cnt);

out.printin("</center>");
out.printin("</body>");
out.println('</html>");

}

1

4. Explain how cookies are created and sessions are tracked by Servlet in detail with suitable example (16 Marks)(NOV/DEC 2015)
[image: image31.png]Generally this information is left on your computer by some advertising agencies on
the internet. Using the information stored in the cookies these advertising agencies can
keep track of your internet usage. For the applications like on-line purchase systems once
you enter your personal information such as your name or your e-mail ID then it can be
remembered by these systems with the help of cookies. Sometimes cookies are very much
dangerous because by using information from your local disk some malicious data may
be passed to you. So it is upto you how to maintain your own privacy and security. Below
is simple HTML form in which a servlet is invoked. This servlet creates a cookie by the
name My_Cookie and stores the value entered by you in the textbox of HTML form. You
can further get the information stored in the cookie by another servlet program
getCookieServlet. Hence we will write three programs -

1. Our normal HTML script in which some value is entered in the textbox.

2. The servlet program named mycookieservlet which will set a cookies and take
the value entered by you in the HTML form.

3. The another servlet program named getCookieServlet which helps us to view
the cookie.

Example Code for Cookie Mechanism

[image: image32.png]HTML Program

<html>

<head>

<title>Demo of Cookie</title>

</head>

<body>

<form name="form1" method="post"
action="http://localhost:8080/examples/servlet/mycookieservlet'>
<h3> Enter the value for my Cookie: </h3>

<input type=text name="txt data' size =30 value="">
<input type=submit value="Submit">

<fform>

</body>

</html>

[image: image33.png]Servilet Program [mycookieserviet.java]l

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class mycookieservlet extends HttpServlet

{

public void doPost(HttpServletRequest req,HttpServletResponse res)
throws ServletException, IOException

{

String txt_data = req.getParameter("txt_data");

// Create cookie.

Cookie cookie = new Cookie("My_Cookie", txt_data);
// Adding cookie to HTTP response.
res.addCookie(cookie);

// Wrrite friendly output to browser.
res.setContentType('text/html");

PrintWriter out = res.getWriter();
out.println("<h2>MyCookie has been set to: ");
out.println(txt_data);

out.println("

");

out.println("This page shows that the cookie has been added");
out.close();

}

¥

We have first created an object of Cookie class using which the cookie can be add
using addCookie() method.

[image: image34.png]Serviet Program[getcookieserviet.java]

import java.io.*;
import javax.servlet.”;

import javax. serviet.http.*;

public class getCookieServlet extends HttpServiet

{
public void doGet(HittpServietRequest req HttpServietResponse res)
throws ServletException IOException
{
Cookie[| my_cookies=req.getCookies();

setContentType('text/html); ’
p“,:mwmn:‘;,,-m,mwﬁw()’; Inthe above program using getNamef)and getValue() functions wiecan get the name:
putegnuslebad: of thecookeas wel s the value of thecookerespecivel. The outpt of all he above
int ‘cookies.length;

given thre programsi s given bl -

out printin(‘and value= *+value);
b

out.close();

}

}

5. How to display image using Applet? (APR/MAY 2017)
Solution

Following example demonstrates how to display image using getImage() method. It also uses addImage() method of MediaTracker class.

import java.applet.*;

import java.awt.*;
public class appletImage extends Applet {

 Image img;
 MediaTracker tr;
 public void paint(Graphics g) {
 tr = new MediaTracker(this);
 img = getImage(getCodeBase(), "demoimg.gif");
 tr.addImage(img,0);
 g.drawImage(img, 0, 0, this);
 }

}

UNIT-V

TWO MARKS QUESTION AND ANSWER

1.
What is XML?

XML stands for EXtensible Markup Language XML is a markup language much like HTML XML was designed to store and transport data XML was designed to be self-descriptive XML is a W3C Recommendation

2.
How XML is different from HTML?

HTML stands for Hyper Text Markup Language while XML stands for eXtensible Markup Language. The key differences between HTML and XML are given below:

	
	
	
	
	
	
	

	HTML
	
	
	
	XML
	
	

	
	
	

	
	
	

	HTML is used to display data and focuses on how
	
	XML is a software and hardware independent tool used

	data looks.
	
	to transport and store data. It focuses on what data is.

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	HTML is a markup language itself.
	
	XML
	provides a
	framework to
	define
	markup

	
	
	languages.
	
	
	

	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	HTML is not case sensitive.
	
	XML is case sensitive.
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	HTML is a presentation language.
	
	XML
	is neither
	a presentation
	language
	nor a

	
	
	programming language.
	
	

	
	
	
	
	

	
	
	
	

	
	
	
	

	HTML has its own predefined tags.
	
	You can define tags according to your need.
	

	
	
	
	

	
	
	
	

	In HTML, it is not necessary to use a closing tag.
	
	XML makes it mandatory to use a closing tag.
	

	
	
	

	
	
	

	HTML is static because it is used to display data.
	
	XML is dynamic because it is used to transport data.

	
	
	
	
	

	
	
	
	
	

	HTML does not preserve whitespaces.
	
	XML preserve whitespaces.
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

3.
What is the meaning of version in XML?

Version is a tag used to show which version of XML is used.

5. What are the benefits of XML?

These are the main benefits of using XML.

Simplicity: Very easy to read and understand the information coded in XML. Openness: It is a W3C standard, endorsed by software industry market leaders.

Extensibility: It is extensible because it has no fixed set of tags. You can define them as you need.

Self-descriptive: XML documents do not need special schema set-up like traditional databases to store data. XML documents can be stored without such definitions, because they contain metadata in the form of tags and attributes.

Scalable: XML is not in binary format so you can create and edit files with anything and it is also easy to debug.

Fast access: XML documents are arranged in hierarchical form so it is comparatively faster.

6. What is a well formed XML document?

A syntactically correct document is called well formed XML document. A well formed XML document must follow the XML’s basic rules of syntax:

It must have a closing tag.

The closing tag must exactly match the open tag: XML is case sensitive. All elements should be included within a single root tag.

Child elements must be closed within parent tag.

6.
What is DTD? (NOV/DEC 2015)
DTD stands for Document Type Definition. It defines a leading building block of an XML document. It defines:

Names of elements

How and where they can be used Element attributes

Proper nesting

12. List the XML Syntax Rules

XML Documents Must Have a Root Element

The XML prolog is optional. If it exists, it must come first in the document. All XML Elements Must Have a Closing Tag

XML Tags are Case Sensitive

XML Elements Must be Properly Nested XML Attribute Values Must be Quoted <!-- This is a comment -->

White-space is Preserved in XML XML Stores New Line as LF

Well Formed XML

13. How can you apply a DTD to an XML document?

To apply a DTD to an XML document, you can:

Use the DTD element definition within the XML document itself.

Provide a DTD as a separate file and reference its name in XML document.

· What is XSL?

XSL stands for Extensible Stylesheet Language. It is a language for expressing stylesheets. These stylesheets are like CSS which describes how to display an XML document of a given type.

10. What is XSLT? (APR/MAY 2017)(NOV/DEC 2016)
XSLT is a popular XML technology which is used to transform one XML file to other format like HTML etc. XSLT is like a language which has its own syntax, functions and operator to transform XML documents. XSLT is also used to display data present in XML files as HTML pages.

11. What is XPath in XML?

XPath is a technology used in XML. It is used to retrieve elements from XML documents. XPath expressions can be used to locate and retrieve elements, attributes and values from XML files because XML documents are structured. It is similar to SQL.

As SQL is used to retrieve data from database, XPath is used to retrieve data from XML.

12. Is XML meant to be a replacement of HTML?

No, both languages have their own specification and used for different purposes. XML is used to describes data while HTML focus on how to display data.

13. What is the difference between CDATA and PCDATA?

CDATA means unparsed character data whereas PCDATA means parsed character data.

14. What is XML Namespace?

An XSL sheet or a document may have duplicate elements and attributes. Therefore, the XML namespaces define a way to distinguish between duplicate element types and attribute names.

An XML namespace is a collection of element type and attribute names. It is a URI due to which any element type or attribute name in an XML namespace can be uniquely identified.

It consists of two parts : the name of the XML namespace and the local name. e.g.: xmlns: h=”http://www.abc.com”

<h:table>

……..

</h:table>

to associate the table with the declared namespace.

13. What are the building block of XML Documents? (MAY/JUNE 2016)
The Building Blocks of XML Documents Elements

Attributes Entities

PCDATA

CDATA

14. Define Web Service. (APR/MAY 2017)
A Web Service is can be defined as:

is a client server application or application component for communication. method of communication between two devices over network.

is a software system for interoperable machine to machine communication.

is a collection of standards or protocols for exchanging information between two devices or application.

17. How Does a Web Service Work?

A web service enables communication among various applications by using open standards such as HTML, XML, WSDL, and SOAP. A web service takes the help of:

XML to tag the data

SOAP to transfer a message

WSDL to describe the availability of service.

20. Give the benefits of Web Services.

Benefits

Exposing the Existing Function on the network

Interoperability- Web services allow various applications to talk to each other and share data and services among themselves.

Standardized Protocol - This standardization of protocol stack gives the business many advantages such as a wide range of choices, reduction in the cost due to competition, and increase in the quality.

Low Cost of Communication - Web services use SOAP over HTTP protocol, so you can use your existing low-cost internet for implementing web services

21. List the various web service components

XML-RPC

SOAP

UDDI

WSDL

22. What is XML – RPC?

RPC stands for Remote Procedure Call. As its name indicates, it is a mechanism to call a procedure or a function available on a remote computer.

RPC is a much older technology than the Web.

Effectively, RPC gives developers a mechanism for defining interfaces that can be called over a network. These interfaces can be as simple as a single function call or as complex as a large API.

28. Why XML-RPC ?

XML-RPC is an excellent tool for establishing a wide variety of connections between computers.

XML-RPC offers integrators an opportunity to use a standard vocabulary and approach for exchanging information. XML-RPC's most obvious field of application is connecting different kinds of environments, allowing Java to talk with Perl, Python, ASP, and so on.

22. What are the various parts of XML – RPC?

XML-RPC data model : A set of types for use in passing parameters, return values, and faults (error messages). XML-RPC request structures : An HTTP POST request containing method and parameter information. XML-RPC response structures : An HTTP response that contains return values or fault information.

23. Define SOAP

SOAP is an acronym for Simple Object Access Protocol.

It is an XML-based messaging protocol for exchanging information among computers.

24. What are the various elements of SOAP Message?

Envelope − Defines the start and the end of the message. It is a mandatory element.

Header − Contains any optional attributes of the message used in processing the message, either at an intermediary point or at the ultimate end-point. It is an optional element.

Body − Contains the XML data comprising the message being sent. It is a mandatory element.

Fault − An optional Fault element that provides information about errors that occur while processing the message.

25. Define WSDL.(NOV/DEC 2015)
WSDL stands for Web Services Description Language.

It is the standard format for describing a web service.

WSDL was developed jointly by Microsoft and IBM.

26. List the Features WSDL

WSDL is an XML-based protocol for information exchange in decentralized and distributed environments. WSDL definitions describe how to access a web service and what operations it will perform.

WSDL is a language for describing how to interface with XML-based services.

WSDL is an integral part of Universal Description, Discovery, and Integration (UDDI), an XML-based worldwide business registry.

WSDL is the language that UDDI uses.

WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'.

27. What are the elements of WSDL message?

Definition - Root element. Contains name of the web service, declares multiple namespaces and all the service elements

Data types - The data types to be used in the messages are in the form of XML schemas. Message - abstract definition of the data

Operation - abstract definition of the operation for a message

Port type - abstract set of operations mapped to one or more end-points, defining the collection of operations for a binding; the collection of operations, as it is abstract, can be mapped to multiple transports through various bindings. Binding - It is the concrete protocol and data formats for the operations and messages defined for a particular port type.

Port - It is a combination of a binding and a network address, providing the target address of the service communication.

Service - It is a collection of related end-points encompassing the service definitions in the file; the services map the binding to the port and include any extensibility definitions

28. Define UDDI. (MAY/JUNE 2016)
Universal Description, Discovery, and Integration

UDDI is an XML-based standard for describing, publishing, and finding web services.

UDDI is a specification for a distributed registry of web services.

UDDI is a platform-independent, open framework.

29. List the three elements of UDDI

These three elements are:

White Pages,

Yellow Pages, and

Green Pages.

30. What does the elements of UDDI contain?

31. List the Java Web Service API

There are two main API's defined by Java for developing web service applications

32. JAX-WS: for SOAP web services. There two ways to write JAX-WS application code: by RPC style and Document style.

33. JAX-RS: for RESTful web services. There are mainly 2 implementation currently in use for creating JAX-RS application: Jersey and RESTeasy

Part-B

1.i) Explain the DTD and its Types in XML (8 Marks)

The purpose of a DTD is to define the legal building blocks of an XML document. It defines the document structure with a list of legal elements. A DTD can be declared inline in your XML document, or as an external reference.

PCDATA

PCDATA means parsed character data.

Think of character data as the text found between the start tag and the end tag of an XML element.

PCDATA is text that will be parsed by a parser. Tags inside the text will be treated as markup and entities will be expanded.

CDATA

CDATA also means character data.CDATA is text that will NOT be parsed by a parser. Tags inside the text will NOT be treated as markup and entities will not be expanded.

Internal DTD

This is an XML document with a Document Type Definition: (Open it in IE5, and select view source)

	<?xml version="1.0"?>

<!DOCTYPE note [

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

The DTD is interpreted like this:
!ELEMENT note (in line 2) defines the element "note" as having four elements: "to,from,heading,body".
!ELEMENT to (in line 3) defines the "to" element to be of the type "CDATA".
!ELEMENT from (in line 4) defines the "from" element to be of the type "CDATA"

External DTD

This is the same XML document with an external DTD: (Open it in IE5, and select view source)

	<?xml version="1.0"?>

<!DOCTYPE note SYSTEM "note.dtd">

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

This is a copy of the file "note.dtd" containing the Document Type Definition:

	<?xml version="1.0"?>

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

Why use a DTD?

XML provides an application independent way of sharing data. With a DTD, independent groups of people can agree to use a common DTD for interchanging data. Your application can use a standard DTD to verify that data that you receive from the outside world is valid. You can also use a DTD to verify your own data.

ii) Write the hospital management system. Write the DTD program to consolidate and show the bill to be paid by the patient (8 Marks) (APR/MAY 2017)
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Patients [

<!ELEMENT Patients(Patient)*>

<!ELEMENT Patients(Name,Address,Test,Date,Doctror,Bill)>

<!ELEMENT Address(#PCDATA)>

<!ELEMENT Test(#PCDATA)>

<!ELEMENT Date(#PCDATA)>

<!ELEMENT Doctor(#PCDATA)>

<!ELEMENT Bill(#PCDATA)>]>

<Patients>

<Patient>

<Name>Anu</Name>

<Address>Chennai</Address>

<Test>ECG</Test>

<Date>10-09-2016</Date>

<Doctor>Susan</Doctor>

<Bill>Rs.5000</Bill>

</Patient>

<Patients>

<Patient>

<Name>Anand</Name>

<Address>Chennai</Address>

<Test>X-Ray</Test>

<Date>10-09-2016</Date>

<Doctor>Susan</Doctor>

<Bill>Rs.2000</Bill>

</Patient>

.

.

.

.

.

etc.,

2. Explain the creation of JAVA Web Services in Detail with examples (16 Marks) (APR/MAY 2017)(MAY/JUNE 2016)
How To: Call a Java EE Web Service from a .Net Client

This post is a step by step guide for building a Java EE Web Service, and a .Net client application that consumes it.

· Java Development Kit (JDK) 6
· Java EE 5 SDK
· NetBeans 6.1 IDE (Web & Java EE)
Create a Java Web Service (Java EE, JAX-WS)

1. Create a new Web Application

In the NetBeans 6.1 IDE, choose File –>New Project. In the New Project Dialog select the Web category, and choose Web Application from the projects list. Then, Click Next.

[image: image35.png]

In the Name and Location page, set the location where you want to create the web application, and provide a name for the project. Click Next.

[image: image36.png][p——

ot o

oot Cam
P

s oudcned ke St

[T —p———r————t
s st

In the Server and Settings page, leave the default settings (Java EE 5, Use GlassFish V2) and Click Finish.

[image: image37.png]P——

[——

e G
e v e <]
oot [coin

This creates the initial web application and opens the project for editing.

[image: image38.png]05 webpsges

W wes e

8 dexsp
Configurstion Fies
Source Packages
Test Packages
Lbrares

Test Liares

2. Create the Web Service

Add a new web service to the project. Right click the project node and choose New –>Web Service.

 [image: image39.png]&
@
@

In the New Web Service dialog, provide the Web Service Name, and the Package. The name of the service will affect the final URL for calling the service, and the package name will be the namespace of the service contract. Click Finish.

[image: image40.png]o>) () (i) (i)

The Web Service now appears in the project tree.

[image: image41.png]=@ Calculator
[webpages

=B
(5 Cotorsenvice
& ConfiguraionFies

[y serverResources
1y Sourcepackages
[Testpacksges
(B vibrares
(B TestLiraries

To implement the service, double click the service node in the project tree (in the figure above – CalculatorService). This will open the Web Service in Design mode, that lets you graphically design your service.

[image: image42.png]Source [Design || [[o3 100% | & & |6

CalculatorServiceService

Operations had Operaton.| ()

Quality Of Servic

- Optimize Transfer Of Binary Data (MTOM)
7 Reliable Message Delivery

© Secure Service

Click Source Tab and Paste the Package Code

package org.bursteg.calculator;

 import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

 @WebService

public class CalculatorService

{

 @WebMethod

 public int Add(@WebParam(name="a") int a,

 @WebParam(name="b") int b)

 {

 return a + b;

 }

}

3. Deploy and Undeploy WebServices

Deploy the web service to the web application server. From the NetBeans IDE this is done by right clicking the project node, and choosing Undeploy and Deploy.
[image: image43.png]Test RESTAuI Web Services

4.Testing of Webservices

After the web application has been deployed, just to make sure the web service works as expected, you can right click the web service node, and choose Test Web Service.

[image: image44.png]=@ Ccalculator
05 webpges
0 wesav
&) ndexp
ieb Serices

&

o
~@

@ Add:int Open
Configuration Fies Refresh Service
Server Resources
Source Packages
Test Packages
Libraries

Test Lbraries

5. Call the Java Web Service from a .Net Client

In Visual Studio 2008, create a new console application.

[image: image45.png]

This creates a new solution with a single Console Application project in it.

Right click the project node and choose Add Service Reference.

[image: image46.png][Solution ‘Solution1' 1 project)

[Calcuator lentAppiicaion|
Properties Build
i References .
@) Program.cs

Clean

Publish...
Run Code Analysis

2 View Gl viagram:

In the Add Service Reference Dialog, paste the address of the service metadata endpoint (service address + ?wsdl suffix: http://localhost:9232/Calculator/CalculatorServiceService?wsdl), and click Go. The dialog will get the service metadata and understand the service contract.

[image: image47.png]Tosee st of vaiable services on specfic seve,enterasenvice URL and clic Go. To browse for vaiable:

senices, click Discover.

Address.

hitp://localnost9232/Calculator/CalculatorSenviceServicelwsdl Go | | [piscover |

Senvices:

Qpersions:

5-® 8 CalculatorsenviceSenvice
57 Caleulatorservice:

Select semvice contractto view its operations.

T sevices) found a address itp/localhost9232/Calcultor/CalculatorSenvceSenvicewsdl.

Provide a namespace for the service reference, and click OK.

This will generate the client side proxy that lets you consume the service easily, and the required configuration settings into the configuration file.

[image: image48.png]L Solution "CalculatorService Solution’ (1 project)

- (@ CalculatorClientApplication
[Properties

[References

£ Ly Service References

] CaleulatorseniceServicewsdl
2] CalculstorsenviceSenviceasd
3 configurstion.sucinfo

] configurstonSLsvcinfo

] Referencesvemap.

b
ot

& app.config
@ Program.cs

To call the service using the generated client side proxy, open Program.cs and use the following code:

staticvoid Main(string[] args)

{

 CalculatorServiceClient proxy = newCalculatorServiceClient();

 int result = proxy.Add(2, 3);

 Console.WriteLine("Calculator Service returned: " + result.ToString());

}

Run the program and see that the web service is being called and the result is correct.
6. Conclusion

Since Java EE Web Services (JAX-WS) are standard SOAP services, they are easily interoperable from a .Net client application with only several clicks. Visual Studio generated a .Net client proxy that makes it very easy to connect and call the service.

int result =clientreference.calculatorserviceService.ReferenceEquals();

Console.WriteLine("Calculator Service returned: " + result.ToString());

3. Describe the significance and working of WSDL with example (16 Marks)

A WSDL document defines services as collections of network endpoints, or ports. In WSDL, the abstract definition of endpoints and messages is separated from their concrete network deployment or data format bindings. This allows the reuse of abstract definitions: messages, which are abstract descriptions of the data being exchanged, and port types which are abstract collections of operations. The concrete protocol and data format specifications for a particular port type constitutes a reusable binding. A port is defined by associating a network address with a reusable binding, and a collection of ports define a service. Hence, a WSDL document uses the following elements in the definition of network services:

· Types– a container for data type definitions using some type system (such as XSD).

· Message– an abstract, typed definition of the data being communicated.

· Operation– an abstract description of an action supported by the service.

· Port Type–an abstract set of operations supported by one or more endpoints.

· Binding– a concrete protocol and data format specification for a particular port type.

· Port– a single endpoint defined as a combination of a binding and a network address.

· Service– a collection of related endpoints.

1)Type:

The types element encloses data type definitions that are relevant for the exchanged messages. For maximum interoperability and platform neutrality, WSDL prefers the use of XSD as the canonical type system, and treats it as the intrinsic type system.

<definitions>

<types>

<xsd:schema />*

</types>

</definitions>

The XSD type system can be used to define the types in a message regardless of whether or not the resulting wire format is actually XML, or whether the resulting XSD schema validates the particular wire format.

2)Message

Messages consist of one or more logical parts. Each part is associated with a type from some type system using a message-typing attribute. The set of message-typing attributes is extensible. WSDL defines several such message-typing attributes for use with XSD:

· element. Refers to an XSD element using a QName.

· type. Refers to an XSD simpleType or complexType using a QName.

Other message-typing attributes may be defined as long as they use a namespace different from that of WSDL. Binding extensibility elements may also use message-typing attributes.

The syntax for defining a message is as follows. The message-typing attributes (which may vary depending on the type system used) are shown in bold.

<definitions>

<message name="nmtoken"> *

<part name="nmtoken" element="qname"? type="qname"?/> *

</message>

</definitions>

The message name attribute provides a unique name among all messages defined within the enclosing WSDL document.

The part name attribute provides a unique name among all the parts of the enclosing message.

3) PortTypes

A port type is a named set of abstract operations and the abstract messages involved.

<wsdl:definitions >

<wsdl:portType name="nmtoken">
<wsdl:operation name="nmtoken" /> *
</wsdl:portType>
</wsdl:definitions>

The port type name attribute provides a unique name among all port types defined within in the enclosing WSDL document.

An operation is named via the name attribute.

WSDL has four transmission primitives that an endpoint can support:

· One-way. The endpoint receives a message.

· Request-response. The endpoint receives a message, and sends a correlated message.

· Solicit-response. The endpoint sends a message, and receives a correlated message.

· Notification. The endpoint sends a message.

WSDL refers to these primitives as operations. Although request/response or solicit/response can be modeled abstractly using two one-way messages, it is useful to model these as primitive operation types because:

· They are very common.

· The sequence can be correlated without having to introduce more complex flow information.

· Some endpoints can only receive messages if they are the result of a synchronous request response.

· A simple flow can algorithmically be derived from these primitives at the point when flow definition is desired.

Although request/response or solicit/response are logically correlated in the WSDL document, a given binding describes the concrete correlation information. For example, the request and response messages may be exchanged as part of one or two actual network communications.

Although the base WSDL structure supports bindings for these four transmission primitives, WSDL only defines bindings for the One-way and Request-response primitives. It is expected that specifications that define the protocols for Solicit-response or Notification would also include WSDL binding extensions that allow use of these primitives.

4)Binding

A binding defines message format and protocol details for operations and messages defined by a particular portType. There may be any number of bindings for a given portType. The grammar for a binding is as follows:

<wsdl:definitions >

<wsdl:binding name="nmtoken" type="qname"> *
<-- extensibility element (1) --> *
<wsdl:operation name="nmtoken"> *
<-- extensibility element (2) --> *
<wsdl:input name="nmtoken"? > ?
<-- extensibility element (3) -->
</wsdl:input>
<wsdl:output name="nmtoken"? > ?
<-- extensibility element (4) --> *
</wsdl:output>
<wsdl:fault name="nmtoken"> *
<-- extensibility element (5) --> *
</wsdl:fault>
</wsdl:operation>
</wsdl:binding>
</wsdl:definitions>

The name attribute provides a unique name among all bindings defined within in the enclosing WSDL document.

A binding references the portType that it binds using the type attribute. This QName value follows the linking rules defined by WSDL

Binding extensibility elements are used to specify the concrete grammar for the input (3), output (4), and fault messages (5). Per-operation binding information (2) as well as per-binding information (1) may also be specified.

An operation element within a binding specifies binding information for the operation with the same name within the binding's portType. Since operation names are not required to be unique (for example, in the case of overloading of method names), the name attribute in the operation binding element might not be enough to uniquely identify an operation. In that case, the correct operation should be identified by providing the name attributes of the corresponding wsdl:input and wsdl:output elements.

5) Ports

A port defines an individual endpoint by specifying a single address for a binding.

<wsdl:definitions >

<wsdl:service > *

<wsdl:port name="nmtoken" binding="qname"> *
<-- extensibility element (1) -->
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The name attribute provides a unique name among all ports defined within in the enclosing WSDL document.

The binding attribute (of type QName) refers to the binding using the linking rules defined by WSDL Binding extensibility elements (1) are used to specify the address information for the port.

A port MUST NOT specify more than one address.

A port MUST NOT specify any binding information other than address information.

6)Services

A service groups a set of related ports together:

<wsdl:definitions >

<wsdl:service name="nmtoken"> *

<wsdl:port />*
</wsdl:service>

</wsdl:definitions>

The name attribute provides a unique name among all services defined within in the enclosing WSDL document.

Ports within a service have the following relationship:

· None of the ports communicate with each other (e.g. the output of one port is not the input of another).

· If a service has several ports that share a port type, but employ different bindings or addresses, the ports are alternatives. Each port provides semantically equivalent behavior (within the transport and message format limitations imposed by each binding). This allows a consumer of a WSDL document to choose particular port(s) to communicate with based on some criteria (protocol, distance, etc.).

· By examining it's ports, we can determine a service's port types. This allows a consumer of a WSDL document to determine if it wishes to communicate to a particular service based whether or not it supports several port types. This is useful if there is some implied relationship between the operations of the port types, and that the entire set of port types must be present in order to accomplish a particular task.

4. Explain the SOAP Elements and Their RPC Representation in Detail (16 Marks)(NOV/DEC 2015)
What is SOAP?

SOAP is an acronym for Simple Object Access Protocol. It is an XML-based messaging protocol for exchanging information among computers. SOAP is an application of the XML specification.

· SOAP is a communication protocol designed to communicate via Internet.

· SOAP can extend HTTP for XML messaging.

· SOAP provides data transport for Web services.

· SOAP can exchange complete documents or call a remote procedure.

· SOAP can be used for broadcasting a message.

· SOAP is platform- and language-independent.

· SOAP is the XML way of defining what information is sent and how.

· SOAP enables client applications to easily connect to remote services and invoke remote methods.

Although SOAP can be used in a variety of messaging systems and can be delivered via a variety of transport protocols, the initial focus of SOAP is remote procedure calls transported via HTTP.

Other frameworks including CORBA, DCOM, and Java RMI provide similar functionality to SOAP, but SOAP messages are written entirely in XML and are therefore uniquely platform- and language-independent.

SOAP - Message Structure
A SOAP message is an ordinary XML document containing the following elements −

· Envelope − Defines the start and the end of the message. It is a mandatory element.

· Header − Contains any optional attributes of the message used in processing the message, either at an intermediary point or at the ultimate end-point. It is an optional element.

· Body − Contains the XML data comprising the message being sent. It is a mandatory element.

· Fault − An optional Fault element that provides information about errors that occur while processing the message.

SOAP Message Structure

The following block depicts the general structure of a SOAP message −

<?xml version="1.0"?>
<SOAP-ENV:Envelopexmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"SOAP-ENV:encodingStyle=" http://www.w3.org/2001/12/soap-encoding">

<SOAP-ENV:Header>

 ...

 ...

</SOAP-ENV:Header>

<SOAP-ENV:Body>

 ...

 ...

<SOAP-ENV:Fault>

 ...

 ...

</SOAP-ENV:Fault>

</SOAP-ENV:Body>

</SOAP_ENV:Envelope>

SOAP - Envelope Element

The SOAP envelope indicates the start and the end of the message so that the receiver knows when an entire message has been received. The SOAP envelope solves the problem of knowing when you are done receiving a message and are ready to process it. The SOAP envelope is therefore basically a packaging mechanism.

v1.2-Compliant SOAP Message

Given below is an example of v1.2-compliant SOAP message.

<?xml version="1.0"?>

<SOAP-ENV:Envelopexmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"SOAP-ENV:encodingStyle=" http://www.w3.org/2001/12/soap-encoding">

 ...

 Message information goes here

 ...

</SOAP-ENV:Envelope>

SOAP with HTTP POST

The following example illustrates the use of a SOAP message within an HTTP POST operation, which sends the message to the server. It shows the namespaces for the envelope schema definition and for the schema definition of the encoding rules. The OrderEntry reference in the HTTP header is the name of the program to be invoked at the tutorialspoint.com website.

POST /OrderEntry HTTP/1.1

Host: www.tutorialspoint.com

Content-Type: application/soap; charset="utf-8"

Content-Length: nnnn

<?xml version="1.0"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope" SOAP-ENV:encodingStyle=" http://www.w3.org/2001/12/soap-encoding">

...

Message information goes here

...

</SOAP-ENV:Envelope>

NOTE − The HTTP binding specifies the location of the service.

SOAP - Header Element

The optional Header element offers a flexible framework for specifying additional application-level requirements. For example, the Header element can be used to specify a digital signature for password-protected services. Likewise, it can be used to specify an account number for pay-per-use SOAP services.

SOAP Header Attributes

A SOAP Header can have the following two attributes −

Actor attribute

The SOAP protocol defines a message path as a list of SOAP service nodes. Each of these intermediate nodes can perform some processing and then forward the message to the next node in the chain. By setting the Actor attribute, the client can specify the recipient of the SOAP header.

MustUnderstand attribute

It indicates whether a Header element is optional or mandatory. If set to true, the recipient must understand and process the Header attribute according to its defined semantics, or return a fault.

The following example shows how to use a Header in a SOAP message.

<?xml version="1.0"?>

<SOAP-ENV:Envelopexmlns:SOAP-ENV=" http://www.w3.org/2001/12/soap-envelope"SOAP-ENV:encodingStyle=" http://www.w3.org/2001/12/soap-encoding">

<SOAP-ENV:Header>

<t:Transactionxmlns:t="http://www.tutorialspoint.com/transaction/"SOAP-ENV:mustUnderstand="true">5</t:Transaction>

</SOAP-ENV:Header>

 ...

 ...

</SOAP-ENV:Envelope>

SOAP - Body Element

The SOAP body is a mandatory element that contains the application-defined XML data being exchanged in the SOAP message. The body must be contained within the envelope and must follow any headers that might be defined for the message.

The body is defined as a child element of the envelope, and the semantics for the body are defined in the associated SOAP schema.

The body contains mandatory information intended for the ultimate receiver of the message. For example −

<?xml version="1.0"?>

<SOAP-ENV:Envelope>

<SOAP-ENV:Body>

<m:GetQuotationxmlns:m="http://www.tp.com/Quotation">

<m:Item>Computers</m:Item>

</m:GetQuotation>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The example above requests a quotation of computer sets. Note that the m:GetQuotation and the Item elements above are application-specific elements. They are not a part of the SOAP standard.

Here is the response to the above query −

<?xml version="1.0"?>

<SOAP-ENV:Envelope>

........

<SOAP-ENV:Body>

<m:GetQuotationResponsexmlns:m="http://www.tp.com/Quotation">

<m:Quotation>This is Qutation</m:Quotation>

</m:GetQuotationResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Normally, the application also defines a schema to contain semantics associated with the request and response elements.

The Quotation service might be implemented using an EJB running in an application server; if so, the SOAP processor would be responsible for mapping the body information as parameters into and out of the EJB implementation of the GetQuotationResponse service. The SOAP processor could also be mapping the body information to a .NET object, a CORBA object, a COBOL program, and so on.

SOAP - Fault Element

If an error occurs during processing, the response to a SOAP message is a SOAP fault element in the body of the message, and the fault is returned to the sender of the SOAP message.

The SOAP fault mechanism returns specific information about the error, including a predefined code, a description, and the address of the SOAP processor that generated the fault.

Sub-elements of Fault

The SOAP Fault has the following sub elements −

	Sub-element
	Description

	<faultCode>
	It is a text code used to indicate a class of errors.

	<faultString>
	It is a text message explaining the error.

	<faultActor>
	It is a text string indicating who caused the fault.

	<detail>
	It is an element used to carry application-specific error messages.

SOAP - Encoding

· SOAP includes a built-in set of rules for encoding data types. It enables the SOAP message to indicate specific data types, such as integers, floats, doubles, or arrays.

· SOAP data types are divided into two broad categories − scalar types and compound types.

· Scalar types contain exactly one value such as a last name, price, or product description.

· Compound types contain multiple values such as a purchase order or a list of stock quotes.

· Compound types are further subdivided into arrays and structs.

· The encoding style for a SOAP message is set via the SOAP-ENV:encodingStyle attribute.

· Latest SOAP specification adopts all the built-in types defined by XML Schema. Still, SOAP maintains its own convention for defining constructs not standardized by XML Schema, such as arrays and references.

Scalar Types

For scalar types, SOAP adopts all the built-in simple types specified by the XML Schema specification. This includes strings, floats, doubles, and integers.

For example, here is a SOAP response with a double data type −

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelopexmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns1:getPriceResponsexmlns:ns1="urn:examples:priceservice"SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<returnxsi:type="xsd:double">54.99</return>

</ns1:getPriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP - Transport

SOAP is not tied to any transport protocol. SOAP can be transported via SMTP, FTP, IBM's MQSeries, or Microsoft Message Queuing (MSMQ).

SOAP specification includes details on HTTP only. HTTP remains the most popular SOAP transport protocol.

SOAP via HTTP

Quite logically, SOAP requests are sent via an HTTP request and SOAP responses are returned within the content of the HTTP response. While SOAP requests can be sent via an HTTP GET, the specification includes details on HTTP POST only.

Additionally, both HTTP requests and responses are required to set their content type to text/xml.

The SOAP specification mandates that the client must provide a SOAPAction header, but the actual value of the SOAPAction header is dependent on the SOAP server implementation.

For example, to access the AltaVista BabelFish Translation service, hosted by XMethods, you must specify the following as a SOAPAction header.

urn:xmethodsBabelFish#BabelFish

Even if the server does not require a full SOAPAction header, the client must specify an empty string ("") or a null value. For example −

SOAPAction: ""

SOAPAction:

Here is a sample request sent via HTTP to the XMethods Babelfish Translation service −

POST /perl/soaplite.cgi HTTP/1.0

Host: services.xmethods.com

Content-Type: text/xml; charset=utf-8

Content-Length:538

SOAPAction:"urn:xmethodsBabelFish#BabelFish"

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance" xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:BabelFish xmlns:ns1="urn:xmethodsBabelFish" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<translationmode xsi:type="xsd:string">en_fr</translationmode>

<sourcedata xsi:type="xsd:string">Hello, world!</sourcedata>

</ns1:BabelFish>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Here is the response from XMethods −

HTTP/1.1200 OK

Date:Sat,09Jun200115:01:55 GMT

Server:Apache/1.3.14(Unix) tomcat/1.0 PHP/4.0.1pl2

SOAPServer: SOAP::Lite/Perl/0.50

Cache-Control: s-maxage=60, proxy-revalidate

Content-Length:539

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<namesp1:BabelFishResponse xmlns:namesp1="urn:xmethodsBabelFish">

<return xsi:type="xsd:string">Bonjour, monde!</return>

</namesp1:BabelFishResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
[image: image49][image: image50][image: image51][image: image52][image: image53][image: image54][image: image55][image: image56][image: image57][image: image58][image: image59][image: image60]
Output:

�

Output : 02:15:57

Cellpadding is the amount of space between the outer edges of the table cell

and the content of the cell.

Cellspacing is the amount of space in between the individual table cells.

�

