UNIT-II
ELECTROSTATICS - II
PART-A
1. The electric potential near the origin of a system of co ordinates in V = 5x2 + 8y2 + 10z2. Find the electric field at (1, 2, 3).	 	(May 2017)
Given,	    V = 5x2 + 8y2 + 10z2



	     = 


2. What is a conservative field?	(May 2017)

A field which satisfies the equation of the form, 
A closed line integral of a field in zero is called conservative field. For such a field no work is done or no energy is conserved around the closed path. Earth gravitational field and static electric field are examples of conservative field.
3. Find the capacitance of an isolated spherical shell of radius a. (Dec 2016)
The capacitance of isolated sphere of radius ‘a’. It forms a capacitance with an outer plate which is infinitely large, hence,

	

	  F
4. Find the magnitude of D for a dielectric material in which E = 0.15 mV/m and r = 5.25    (Dec 2015)
For a dielectric medium, 

	    
 5. What is a capacitor and capacitance (June  2016)
A capacitor is a passive component that stores energy in the form of an electrostatic field. In its simplest form, a capacitor consists of two conducting plates separated by an insulating material called dielectric. The property of a capacitor is to store charge on its plates in the form of an electrostatic field is called capacitance of the capacitor. Capacitance is also the property of a capacitor which resists the change of voltage across it. Capacitance is the electrical property of a capacitor and is the measure of a capacitor ability to store electrical charge on its plates and the unit of capacitance is Farads (F).
6. Write Poisson’s equation in cylindrical co ordinates.  (June 2016)
The Poisson’s equation is given by

	
In cylindrical coordinates 

	
7. Calculate the capacitance per km between a pair of parallel wires each of diameter 1cm at a spacing of 50 cm.	(Dec 2015)
The capacitance between a pair of conductors is given by,

	 
8. What is the practical significance of Lorentz’s force?   (May 2015) (Dec 2015)




 The force  acting a particle of charge q with an instantaneous velocity  , due to an external electric field  and magnetic field  is given by

	
  The solution of Lorenz force equation in useful in determination of electron orbit in magnetron, proton paths in a cyclotron and plasma characteristics in magneto hydrodynamic (MHD) generator.
9. Give the significant physical differences between poisson’s and laplace equations.  (Dec 2014)

 The Poisson’s equation is given by 

If in certain region, volume charge density is zero (ρv = 0) which is true for dielectric medium, then Poisson’s equation becomes		
  This special case of Poisson’s equation is called Laplace’s equation.
[image: E:\new\EMT\Links\Fig 1.3.eps]10. What is meant by work done?





Suppose we wish to more a point charge ‘Q’ from ‘A’ to ‘B’ in an electric field  as shown in fig. From coulombs law the force on Q is . So workdone in displaying charge by is . Therefore total workdone                                                                             [image: E:\new\EMT\Links\Fig 1.3.eps]
  11. Define potential difference.

Potential difference is defined as work done per unit charge. It is denoted by ‘v’.  . 

Here , if it is –ve, implies that work in being done by the field and vice versa.
12. Define potential at a point.

Potential at any point is defined as the work done is transferring a test charge from infinity to that point. Thus assuming zero potential at infinity, the potential at a distance ‘r’ from the point charge is   
[image: E:\new\EMT\Links\Fig 1.4.eps]   
13. Define Electric potential due to point, line surface and volume charge densities.




We know that  due to a point charge in  and 




[image: E:\new\EMT\Links\Fig 1.5.eps]If the point ‘Q’ is not located at the origin, but at a point whose position vector is . Therefore  or  at  becomes.

 				
For ‘n’ point charge Q1, Q2, ….. Qn 

 
For a line charge 

 
For a surface charge 

 
For a volume charge 

 	

14. Obtain the relationship between and V.
The potential difference between points A and B is VAB=-VBA 

	

 along a closed path is zero (no work done to move a charge in a closed path)

Applying stoke’s theorem to eqn(a) is 



 is a conservative field.

Also  

In calculus total differentiation given by 

Comparing (c) and (d) 

		

The electric field intensity is the gradient of V. Negative  sign indicates that  is opposite to the direction of V. 
15. Define Equipotential surface and Equipotential line.
Any surface on which the potential is the same throughout is known as an equipotential surface. The intersection of an equipotential surface and a plane results in a path or line known as equipotential line.
16. Define current.

The current (in amperes) through a given area is the electric charge passing through the area per unit time. 
17. Define current density.

The current density at a given point is the current through a unit normal area at point (or) current/unit area. It is denoted by ‘J’.       
18. Define convection and conduction current densities.


Convection current is the current which occurs when charges flow in an insulating medium such as liquid, rarefied gas or vacuum. (e.g. A beam of electron in vacuum to be is convention current, this does not involve  conductors and does not satisfy ohm’s law). If there is a flow of charge  with velocity ‘u’ is an insulating medium then the convection current density ‘J’ is 

Conduction current is the current which occurs when charges (free electrons in a conductor) flows in a conductor due to an impressed electric field. If ‘σ’ is the conductivity of the conductor and ‘E’ the applied electric field then the conduction current density is .This is Ohm’s law in point form.

19. Brief about the properties of a conductor under the influence of Electric field .
· A conductor has abundance of charge free to move ie(σ>>1)
· 


As shown in diagram if external field c is applied on a conductor, positive change move in direction of field and negative charges in opposite direction. They accumulate on the surface producing surface charge with internal electric field i in opposite direction. Thus the total electric field internally vanishes ie =0 inside a conductor. 


[image: E:\new\EMT\Links\Fig 1.6.eps]
· 
Alternatively,  J=σE, for a perfect n conductor   σ→α, hence J/σ=E E=J/α=0 inside a conductor.
· 
Using Gauss law, ρv=0,     hence VAB =0. 
· To conclude, A perfect conductor cannot contain an electrostatic field within it, under static conditions. A conductor is called an equipotential body.
20. Define polarization in Dielectrics.
· Dielectric materials do not have charges which are free to move, since they are bound by finite force.
· 
An atom with equal negative charge (electron) and positive charge (nucleus) as shown in figure (a) when subjected to an electric field, the positive charge is displaced from its equilibrium  position in direction of and negative charge in opposite. This displacement causes the formation of dipole as shown in fig(b) . Then, dielectric is said to be polarized. This phenomenon is said to be polarization in dielectric.
[image: E:\new\EMT\Links\Fig 1.7.eps]
21. Define Dielectric constant and Dielectric strength.

We know that 

Here = electric susceptibility, a measure of how much sensitive a given dielectric to electric fields.

	        0 = permittivity of free space → 8.854x10-12F/m

	         r= Relative permittivity or delectric constant.

The Dielectric constant r is the ratio of the permittivity of the dielectric to that of free space.
The Dielectric strength is the maximum electric field that a dielectric can tolerate without breakdown.
22. State continuity equation (i.e continuity of current equation)

We know that current coming out of a closed surface is 
Using divergence theorem we write, 






States that there can be no accumulation of charges for steady current 
23. Derive poisson’s and Laplace’s equation.
Poisson’s equation can be derived from Gauss’s law.





If the region is charge free i.e ρv=0.Then the above equation reduces to .
24. State Uniqueness Theorem.
Uniqueness theorem states that, if a solution to laplace’s equation can be found that satisfies the, boundary condition, then the solution is unique.
25. What is Potential Gradient?
The rate of change of potential with respect to the distance is called potential gradient.	

26. What is Gradient of V?
The maximum value of rate of change of potential with distance is called gradient of V. The mathematical operation on V by which is obtained is called gradient and denoted as,  
27. Define dipole moment.
The term dipole is used for two equal and opposite point charges seperated by a distance which is small compared to the distance of point 'P' at which we desire the electric field and potential. Dipole is also called doublet.
Dipole moment is denoted by . If the vector directed from –Q to +Q is , then the dipole moment is defined as,

28. What is drift current and convection current?
The current constituted due to the drifting of electrons in metallic conductor is called drift current.
While in dielectrics, there can be flow of charges, under the influence of electric field intensity. Such a current is called convection current.
29. What is Polarization and 
The applied field E shifts the charges inside the dielectric to induce the electric dipoles. This process is called Polarization.
30. What is Polarization of Dielectrics?
Polarization of dielectric means, when an electron cloud has a centre separated from the nucleus. This forms an electric dipole. The dipole gets aligned with the applied field.
31. State the point form of Ohm’s law.
The relationship between  can also be expressed in terms of conductivity of the material. Thus for metallic conductor,

Where  conductivity of material
This equation is called point form of Ohm’s law.
32. What do Boundary conditions mean?
The conditions existing at the boundary of the two media when field passes from one medium to other are called boundary conditions.
33. State the boundary conditions for two different dielectric mediums.
The tangential components are continuous across the boundary o two dielectrics.

 The normal component is continuous across the charge free boundary between two dielectrics.


34. State the boundary conditions at the interface of conductor and dielectric medium.
The boundary conditions for conductor-dielectric interface

35. State the boundary conditions on a perfect conductor surface.
Under static conditions, the following conditions can be made about a perfect conductor:
No electric field may exist within a conductor. 
Since , there can be no potential difference between any two points in the conductor; that is the conductor is an equipotential body.
36. State Laplace’s equation in Cartesian, cylindrical and spherical coordinates.
Laplace equation in Cartesian coordinates

Laplace equation in Cylindrical coordinates

Laplace equation in Spherical coordinates

37. State the applications of Poisson’s equation and Laplace’s equation. 
To obtain potential distribution over the region. 
To obtain E in the region. 
To check whether given region is free of charge or not. 
To obtain the charge induced on the surface of the region. 
38. How is electric energy stored in a capacitor?
In a capacitor, the work done in charging a capacitor is stored in the form of electric energy. 
39. Distinguish between Dielectric constant and Dielectric Strength (May 2015)
The dielectric constant is the ratio of the permittivity of a substance to the permittivity of free space. It is an expression of the extent to which a material concentrates electric flux, and is the electrical equivalent of relative magnetic permeability. Whereas the minimum value of the applied electric field at which the dielectric beaks down is called dielectric strength of that dielectric.
40. Determine the electric field intensity at any point between two infinite sheets of charge densities +s C/m2. (May 2015)
The Electric field intensity due to a infinite sheet of charge is.
If two infinite sheets of charge densities with +s C/m2 is present then the Electric field intensity at the midpoint of the infinite sheets is                                                            ) = 0 (zero).

PART - B
1. Two point charges -4μc and 5μc are located at (2,-1,3) and (0,4,-2) respectively. Find the potential at (1,0,1) assuming zero potential at infinity. (Dec 2014)

[image: E:\new\EMT\Links\Fig 1.25.eps]




[image: E:\new\EMT\Links\Fig 1.26.eps]2. Given a field Calculate the potential difference  given   A(-7,2,1) and B(4,2,1)		(May 2011)

Let the path of integration be from 






3. Given the potential , (a)Find the electric flux density  (b) Calculate the work done in moving a10μc charge from point A(1,30°,120°) to B(4,90°,60°).
(a) It is well known that










4. Find the Electric field intensity  at a point ‘P’(r,θ,φ)  due to a dipole . (May 2017)

[image: E:\new\EMT\Links\Fig 1.27.eps]Let the potential at point ‘P’(r,θ,φ)  be given by   


Where,  r1 → distance between P and +Q
	r2→ distance between P and –Q
If r>>d,r2-r1≈ d cosθ ,r1r2≈ r2 ,   





If we define as dipole moment, then

(Note dipole moment is directed from –Q to +Q) 
If the dipole centre is not at the origin, but at r’, then using (a)





Note:
· A point charge is a monopole and its electric field varies inversely as r2 .
· For a point charge potential varies inversely as ‘r’.
· 
But  due to a dipole varies inversely as r3.
· V due to a dipole varies inversely as r2.
· 
For two dipole (Quadrapole) and so on  vary inversely as r4,r5,…
· For two  dipole (Quadrapole) and so on V vary inversely as r3,r4,..

5. Two dipoles with dipole moments are localed at points (0,0,-2) and (0,0,3) respectively. Find the potential at the origin.

It is well known that potential due to multiple dipoles using superposition principle can be written as 



Here,
6. Derive the expression for energy density in electrostatic fields.  (May 2012)(Dec 2015)
To determine the energy present in an assembly of charges, we must first determine the amount of work necessary to assemble them. Suppose we wish to position three point charges Q1, Q2  and Q3 in an initially empty space as shown in figure. No work is required to transfer Q1. For Q2 work done is product of Q2 and potential at ‘2’ due to charge Q1 at ‘1’ . i.e W=Q2V21 . For Q3, work done is product of Q3 and sum of potential at ‘3’ due to Q1 and Q2 at P1 and P2 respectively i.e W= Q3(V31+V32) 
[image: E:\new\EMT\Links\Fig 1.28.eps]WE = W1+W2+W3  = 0+ Q2V21+Q3(V31+V32) → (a) 
If the charges are placed in the reverse direction. Then 
WE= 0+Q2(V23) + Q(V13 +V12) → (b)
Adding (a) and (b) 
2WE=Q1(V12+V13) + Q2(V21+V23) +Q3(V31+V32)
2WE=Q1V1+Q2V2+Q3V3  
WE=1/2 Q1V1+Q2V2+Q3V3 
Where V1, V2, V3 are potentials at P1, P2,and P3 respectively. Therefore if there are ‘n’ charges then the total work done using superposition is 





from Gauss’s law. For volume charge distribution



From vector identity 


Applying Divergence theorem for I term




In the above equation ‘V’ varies as 1/r as 1/r2 and  as r2 

If surface is too large 

The first term vanishes hence  





Electrostatic energy density,

 
7. Derive the expressions for boundary condition at an interface of Dielectric (εr1) – Dielectric (εr2) medium. (Dec 2014)(Dec 2015)(May 2017)
[image: E:\new\EMT\Links\Fig 1.29.eps]
Fig. (a)








Consider the  field existing in a region that consists of two different dielectrics ie ε1 and ε2 as shown in figure (a) with  and fields .  and  can be decomposed as If we apply Maxwell’s equation  to the closed path abcda assuming the path is very small with respect to spatial variation of , then.







Note : (tangential component of ) undergoes no change, hence continuous on both medium. But undergoes a change, hence discontinuous. Similarly we can find the relationship of in the two mediums using Maxwell’s equation (Gauss law) for the fig(b) shown.
[image: E:\new\EMT\Links\Fig 1.30.eps]
Fig. (b)


Assuming a Gaussian pill box (cylindrical) here = free charge enclosed by the surface. Assuming ‘ρs’ in the free charge placed deliberately then. , the contribution due to sides vanishes, since ‘ρs’ is placed on the surface of boundary. Hence 








Note: The normal component of in continuous and that of  in discontinuous at the boundary.




To find Refraction of electric field, consider or  and or  making angles θ1 and θ2 with the normal to the interface as shown in fig (c) 

[image: E:\new\EMT\Links\Fig 1.31.eps]  
Fig. (c)






Equation (c) is the Law of refraction of Electric field at a boundary free of charge.
8. Derive the expression for boundary condition at an interface of conductor-dielectric  boundary. 											(May 2012)
[image: E:\new\EMT\Links\Fig 1.32.eps]  



In conductor-dielectric case, =0 in conductor (since  σ→  ρc→0)

For  Consider the closed loop abcda.



Applying . For the diagram shown results in 
[image: E:\new\EMT\Links\Fig 1.33.eps]  






Note : 
· 
Dt=εEt =0   and Dn=ε=ρs i.e the tangential component is zero, only the normal component exists.
· Since E=0 inside a conductor, it can act as a shield.
· 

E=0 E=-V=0, i.e potential difference inside a conductor is zero means conductor is an equipotential surface.
9. Give the boundary condition at a interface near conductor –free space boundary.

[image: E:\new\EMT\Links\Fig 1.34.eps]
The conditions are similar to Q.No.8 except that here ε=ε0, εr=1. Therefore to conclude 

	


10. Two extensive homogeneous isotropic dielectrics meet on plane z=0. For z>0, εr1=4 and for z<0,  εr2=3. A uniform electric field exists for z≥0.  Find (a)for z≤0  (b)The angles E1 and E2 make with the interface (c)The energy densities (in J/m3) in both dielectrics. (Dec 2011)
Refer to the fig. (a) Shown in Q.No.7 –Dielectric-Dielectric boundary.








(b) Let α1 and α2 be the angles made  by E1 and E2 at the interface as shown in fig.

[image: E:\new\EMT\Links\Fig 1.35.eps]
We have to find θ1 and θ2 


C) Energy densities are given by




11. Derive the expression for capacitance for a parallel plate capacitor with plate area ‘s’  seperated by a distance ‘d’ . The plates carry +Q and =-Q charges respectively with dielectric ‘ε’ in between.										(Nov 2010)(May 2017)
[image: E:\new\EMT\Links\Fig 1.36.eps]Let the parallel plate capacitor be charged as shown in fig. Let ρs  = Q/s be the surface charge density of each plate.The electric field intensity due to plate ‘A’ is 




12. Derive the expression  for energy stored in a parallel plate capacitor.
It is well known that

 



13. Derive the capacitance for a coaxial capacitor having inner radius ‘a’ and outer radius ‘b’ separated by a dielectric ‘ε’ of length ‘l’ 	(Nov-2011)
[image: E:\new\EMT\Links\Fig 1.37.eps] 
Let the coaxial cylindrical capacitor be as shown in figure. Let the inner cylinder with radius ‘a’ carry +Q and that of the outer with radius ‘b’ carry –Q, from Gauss’s law 



 


Also it is well known that the capacitance of coaxial cylinder is 


14. Derive the capacitance for a spherical capacitor with two concentric spherical conductors of radius ‘a’ (+Q) and radius ‘b’ (-Q). Assume b>a 			(May 2011) (Dec 2015)
Solution:

[image: E:\new\EMT\Links\Fig 1.38.eps] Applying Gauss’s law to an arbitrary Gaussian surface with radius ‘r’ (a<r<b) in

 
Therefore the potential difference between the conductors is 





Thus capacitance of the spherical capacitor is  
15. Determine the capacitance of each of the capacitors shown in below fig. Take εr1=4, εr2=6, d=5mm, s=30cm2.								(May-2012) (May 2016)
[image: E:\new\EMT\Links\Fig 1.39.eps]
Fig (a)


In fig (a) two parallel plate capacitors say C1 and C2 are connected in series. Since and  are normal to the interface surface.



 
In fig. (b) D and E are parallel to the interface surface hence C1 and C2 are in parallel.

  
16. A dielectric slab of flat surface with r = 4 is disposed with its surface normal to a uniform field with flux density 1.5 c/m2. The slab occupies a volume of 0.08 m3 and is uniformly polarized. Determine 
i) Polarization in the slab					(Dec 2014)
ii) Total dipole moment of slab

Given,	0 = 4  = 1.5 c/m2, v = 0.08 m3
a) Polarization is given by






	b) The total dipole moment is
		P = |P|  total volume of slab
		    = 1.125  0.08 = 0.09 cm
17. A capacitor consists of two parallel metal plates 30 xm  30 cm surface area separated by 5 mm in air. Determine its capacitance. Find the total energy stored by the capacitor and the energy density if the capacitor is charged to a potential difference of 500V? 		(Dec 2014)
Given that,	A = 30 x 30 = 900 cm2, V = 500 V,	 d = 5 mm, r = 1




	= 19.92 J.



 Energy density = 

		
18. Calculate the potential at point P(0,0) in due to point charges Q1 and Q2. Q1 = 10-12C in located at (0.5,0) and Q2 = -10-11 C is located at (-0.5,0) m.						(May 2016)
The potential at point P due to Q1 and Q2 is given by,

	

	
19. Find the potential at rA = 5 m with respect to rB = 15 m due to a point charge Q = 500 p C at the origin and zero reference at infinity.						(Dec 2016)
The potential at A with reference to B.

  	

	        
20. In spherical coordinates V = -25 V on a conductor at r = 2 cm and V = 150 V at r = 35 cm. The space between the conductor is a dielectric of r = 3.12 . Find the surface charge densities on the conductor. (Dec 2016)
[image: E:\new\Question bank odd sem\EMT\Fig.2. 2..eps]V depends only r. Hence the Laplace equation becomes, 
		∇2V = 0

		
Applying the boundary condition, when	r = 2, V = -25V

	-25 = 
   When  r = 35, V = 150

	
Solving eqn (1) and (2)

	
	A = 371.21

	B = 

  



	  = 


 Surface charge densities,   at r = 2m,    

 

  at r = 35 m,   
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