CS6303 - COMPUTER ARCHITECTURE

UNIT – I

OVERVIEW & INSTRUCTIONS

PART A

1. What are cache memory?

The small and fast RAM units are called as caches when the execution of an instruction calls for data located in the main memory, the data are fetched and a copy is placed in the cache. Later if the same data is required it is read directly from the cache.

2. What is the function of ALU?

Most of the computer operations (arithmetic and logic) are performed in ALU.The data required for the operation is brought by the processor and the operation is performed by the ALU.

3. What is the function of CU?

The control unit acts as the nerve center that coordinates all the computer operations. It issues timing signals that governs the data transfer.
4. What are basic operations of a computer?

The basic operations are READ and WRITE.

5. What are the registers generally contained in the processor? (April /May 2015)

· MAR-Memory Address Register

· MDR-Memory Data Register

· IR-Instruction Register

· R0-Rn-General purpose Registers

· PC-Program Counter

6. What are the steps in executing a program?

1. Fetch

2. Decode

3. Execute

4. Store

7. Define interrupt.

An interrupt is a request from an I/O device for service by the processor. The processor provides the requested service by executing the interrupt service routine.

8. Define Bus?

A group of lines that serves as a connecting path for several devices is called a bus.

9. What is the use of buffer register?

The buffer register is used to avoid speed mismatch between the I/O device and the processor.

10. Compare single bus structure and multiple bus structure?

A system that contains only one bus (i.e. only one transfer at a time) is called as a single bus structure. A system is called as multiple bus structure if it contains multiple buses.

11. What is System Software? Give an example?

It is a collection of programs that are executed as needed to perform functions such as receiving and interpreting user commands and entering and editing application programs and storing them as files in secondary storage devices.

Ex: Assembler, Linker, Compiler etc.

12. What is Application Software? Give an example?

Application programs are usually written in a high- level programming language, in which the programmer specifies mathematical or text-processing operations. These operations are described in a format that is independent of the particular computer used to execute the program.

Ex: C, C++, JAVA

13. What is a compiler?

A system software program called a compiler translates the high- level language program into a suitable machine language program containing instructions such as the Add and Load instructions.

14. What is text editor?

It is used for entering and editing application programs. The user of this program interactively executes command that allow statements of a source program entered at a keyboard to be accumulated in a file.

15. Discuss about OS as system software?

OS is a large program, or actually a collection of routines, that is used to control individual application programs.

16. What is multiprogramming or multitasking?

The operating system manages the concurrent execution of several application programs to make the best possible uses of computer resources. This pattern of concurrent execution is called multiprogramming or multitasking.

17. What is elapsed time of computer system?

The total time to execute the total program is called elapsed time.it is affected by the speed of the processor, the disk and the printer.

18. What is processor time of a program?

The periods during which the processor is active is called processor time of a program .It depends on the hardware involved in the execution of individual machine instructions.

19. Define clock rate?

The clock rate is given by,

R=1/ Where P is the length of one clock cycle.

20. Write down the basic performance equation?

T=N*S/R

T=processor time N=no of instructions S=no of steps R=clock rate

21. What is pipelining?

The overlapping of execution of successive instructions is called pipelining.

22. What is byte addressable memory?

The assignment of successive addresses to successive byte locations in the memory is called byte addressable memory.

23. What is big endian and little endian format?

The name big endian is used when lower byte addresses are used for the more significant of the word. The name little endian is used for the less significant bytes of the word.

24. What is a branch instruction?

Branch instruction is a type of instruction which loads a new value into the program counter.

25. What is branch target?

As a result of branch instructions, the processor fetches and executes the required branch information.

26. What are condition code flags?

The processor keep track of information about the results of various operations for use by subsequent conditional branch instructions. This is accomplished by recording the required information in individual bits, often called condition code flags.

27. Define addressing mode.

The different ways in which the location of an operand is specified in an instruction are referred to as addressing modes.

28. Define various addressing modes. (Nov/Dec 2013)

The various addressing modes are

1. Absolute addressing mode

2. Register addressing mode

3. Indirect addressing mode

4. Index addressing mode

5. Immediate addressing mode

6. Relative addressing mode

7. Auto increment addressing mode

8. Auto decrement addressing mode

29. What is a pointer?

The register or memory location that contains the address of an operand is called a pointer.

30. What is index register?

In index mode the effective address of the operand is generated by adding a constant value to the contents of a register. The register used may be either a special register or may be any one of a set of general purpose registers in the processor. This register is referred to as an index register.

31. What is assembly language?

A complete set of symbolic names and rules for the use of machines constitute a programming language, generally referred to as an assembly language.

32.What is an instruction register?(Nov/Dec 2016)

· In computing, an instruction register (IR) is the part of a CPU's control unit that holds the instruction currently being executed or decoded.[1] In simple processors each instruction to be executed is loaded into the instruction register which holds it while it is decoded, prepared and ultimately executed, which can take several steps.

· Decoding the op-code in the instruction register includes determining the instruction, determining where its operands are in memory, retrieving the operands from memory, allocating processor resources to execute the command (in superscalar processors), etc.

· The output of IR is available to control circuits which generate the timing signals that control the various processing elements involved in executing the instruction.

· In the instruction cycle, the instruction is loaded into the Instruction register after the processor fetches it from the memory location pointed by the program counter.

33.Give the formula for CPU execution time for a program. (Nov/Dec 2015,Nov/Dec 2016)

· CPU execution time (CPU time) – time the CPU spends working on a task

· Does not include time waiting for I/O or running other programs

[image: image219.wmf]Time (cycles)

lw $s2, 40($0)

RF

40

$0

RF

$s2

+

DM

RF

$t2

$t1

RF

$s3

+

DM

RF

$s5

$s1

RF

$s4

-

DM

RF

$t6

$t5

RF

$s5

&

DM

RF

20

$s1

RF

$s6

+

DM

RF

$t4

$t3

RF

$s7

|

DM

add $s3, $t1, $t2

sub $s4, $s1, $s5

and $s5, $t5, $t6

sw $s6, 20($s1)

or $s7, $t3, $t4

1

2

3

4

5

6

7

8

9

10

add

IM

IM

IM

IM

IM

IM

lw

sub

and

sw

or

(OR)

[image: image2.png]for a program

clock rate

· Can improve performance by reducing either the length of the clock cycle or the number of clock cycles required for a program

34.Distinguish pipelining from parallelism.(April/May 2015)

Pipelining is a particular form of parallelism. In general, parallelism is simply multiple operations happening at the same time. Pipelining is a particular arrangement of functions so that different portions of an operation flow through a particular set of sub-functions, with the sub-functions happening in parallel.
35. What are the five classic components of a computer?
The five classic components of a computer are input, output, memory, data path, and control, with the last two sometimes combined and called the processor.

36. Define – Throughput
Throughput or bandwidth is the total amount of work done in a given time.

37. What are the eight great ideas in computer architecture? (April/May 2015)
The eight great ideas in computer architecture are:

1. Design for Moore’s Law

2. Use Abstraction to Simplify Design

3. Make the Common Case Fast

4. Performance via Parallelism

5. Performance via Pipelining

6. Performance via Prediction

7. Hierarchy of Memories

8. Dependability via Redundancy

38. Define – ISA (Nov/Dec 2015,Nov/Dec 2013)

The instruction set architecture, or simply architecture of a computer is the interface between the hardware and the lowest-level software. It includes anything programmers need to know to make a binary machine language program work correctly, including instructions, I/O devices, and so on.

39. Define – ABI

Typically, the operating system will encapsulate the details of doing I/O, allocating memory, and other low-level system functions so that application programmers do not need to worry about such details. The combination of the basic instruction set and the operating system interface provided for application programmers is called the application binary interface (ABI).

40. What are the advantages of network computers?

Networked computers have several major advantages:

■ Communication: Information is exchanged between computers at high speeds.

■ Resource sharing: Rather than each computer having its own I/O devices, computers on the network can share I/O devices.

■ Nonlocal access: By connecting computers over long distances, users need not be near the computer they are using.

41. Define – Response Time (Nov/Dec 2015)

Response time is also called execution time. The total time required for the computer to complete a task, including disk accesses, memory accesses, I/O activities, operating system overhead, CPU execution time, and so on is called response time.

42. Write the CPU performance equation. (Nov/Dec 2015)

The Classic CPU Performance Equation in terms of instruction count (the number of instructions executed by the program), CPI, and clock cycle time.

43.State Amdahl’s law.(Nov/Dec 2014)

Amdhal’s law states that the performance improvement to be gained from using some faster mode of execution is limited by the fraction of the time the faster mode can be used.

Amdhal’s law defines the speedup that can be gained by using a particular feature.

Speedup=Performance for entire task using the enhancement when possible

[image: image1.png]CPU execution time _ # CPU clock cycles . | cycle time
for a program for a program

 Performance for entire task without using the enhancement

44.Brief about relative addressing mode with an example. .(Nov/Dec 2014)

The PC-relative addressing mode can be used to load a register with a value stored in program memory a short distance away from the current instruction. It can be seen as a special case of the "base plus offset" addressing mode, one that selects the program counter (PC) as the "base register"

45.How to represent instruction in a computer system?(May/June 2016)

 Numbers are kept in computer hardware as a series of high and low electronic signals, and so they are considered base 2 numbers (binary numbers). A single digit of binary number is thus the “atom” of computing, since all information is composed of binary digits or bits. This fundamental building block can be one of two values, which can be thought of as several alternatives: high or low, on or off, true or false, or 1 or 0.

 Instructions are also kept in the computer as a series of high and low electronic signals and may be represented as numbers. In fact, each piece of an instruction can be considered as an individual number, and placing these numbers side by side forms the instruction.

46.Distinguish between auto increment and auto decrement addressing mode(May/June 2016)

Autoincrement Mode
This addressing mode is similar to the register indirect addressing mode in the sense that the effective address of the operand is the content of a register, call it the autoincrement register, that is included in the instruction.However, with autoincrement, the content of the autoincrement register is automatically incremented after accessing the operand. As before, indirection is indicated by including the autoincrement register in parentheses. The automatic increment of the register’s content after accessing the operand is indicated by including a (+) after the parentheses. Consider, for example, the instruction LOAD (Rauto)‏+, Ri. This instruction loads register Ri with the operand whose address is the content of register Rauto. After loading the operand into register Ri, the content of register Rauto is incremented, pointing for example to the next item in a list of items.
Autodecrement Mode

Similar to the autoincrement, the autodecrement mode uses a register to hold the address of the operand. However, in this case the content of the autodecrement register is first decremented and the new content is used as the effective address of the operand. In order to reflect the fact that the content of the autodecrement register is decremented before accessing the operand, a (ــــ) is included before the indirection parentheses. Consider, for example, the instruction LOAD ــــ (Rauto), Ri. This instruction decrements the content of the register Rauto and then uses the new content as the effective address of the operand that is to be loaded into register Ri.

PART-B

1.Discuss about eight ideas of a computer architecture?

Eight ideas that the computer architecture has been invented for computer design.

1. Design for moore’s law

2. Use abstraction for design

3. Make common case fast

4. Performance via parallelism

5. Performance via pipelining

6. Performance via prediction

7. Hierarchy of memory

8. Dependability via redundancy

Design for moore’s law :

· It states that integrated circuit resources (transistors) double every 18–24 months.

· The computer designer must predict the rapid change in IC capacity & design it accordingly.

· Moore’s Law graph to represent designing for rapid change.

[image: image206.png]0000 0000 0000 0000 0000 0000 0000 0111y, = 7:ep
0000 0000 0000 0000 0000 0000 0000 01104y, = 6:en

0000 0000 0000 0000 0000 0000 0000 0001,,, = I

Use abstraction for design:

· Abstraction means freedom from representational quality

· A major productivity technique for hardware and software is to use abstractions.
· Use abstractions to represent the design at different levels of representation.

· Lower-level details are hidden to offer a simpler model at higher levels.

Make the Common Case Fast :

· Make the common case fast to enhance performance better than optimizing the rare case.

· For this idea the common case has to be carefully identified and experimented.

· Example: increasing speed level for a sports car is very easier than to a minivan

Performance via parallelism:

· Parallelism means simultaneous execution of source task on multiple processors in order to obtain the result faster

· Computer architects have offered designs that get more performance by performing operations in parallel.

Example: Dual- quad processor

Performance via pipelining :

· A particular pattern of parallelism is called pipelining.

· In pipelining more than one instruction are executed at the same time to increase the performance and throughput.

Performance via prediction:

· A statement about what will happen or might happen in the future.

· In some cases, based on prediction.

· It is better to start working based on prediction or average guess to make the performance faster rather than working until you know for sure.

Hierarchy of Memories :

· Memory speed and size often plays a vital role in increasing the performance of the system, but due to the high cost of memory, the size of problem that can be solved is limited.

· To address this demand, hierarchy of memory has to be used.

· Memory to be faster, smallest and most expensive memory per bit at the top of the hierarchy and the slowest, largest and cheapest memory bit at the bottom of the hierarchy.

[image: image207.emf]

0 1 0 0 1 1 1 1 0

size
speed

Dependability via Redundancy :

· Computers not only need to be fast, They need to be dependable by including redundant components.

· Since any physical device can fail, the systems has to be made dependable while including redundant components that can take over when a failure occurs and to help detect failures.

2. Discuss about the various components of a computer systems.(Nov/Dec 2016,May/June 2016,Nov/Dec 2015,Nov/Dec 2014)

· A computer in its simplest form is a fast electronic machine.

· It accepts digitize information from the user processes it according to a sequence of instruction and provides the processor information to the user.

· Components of computer system are hardware and software

[image: image208.emf]

0 1 0 0 1 1 1 1 0

Hardware components are:

1. Input unit 2. Output unit 3. Memory unit 4. Cpu
1. Input unit:

· It is used for entering data and programs from user to computer system for processing.

· Most commonly used input device are keyboard and mouse [Expalin].

2. Output unit:

· It is used for displaying the results produced by the system after processing.

· Most commonly used output devices are monitor, printer, plotter etc [Explain].

3. Memory unit:

· It is used for storing data and instruction before and after processing.

· It is divided into primary memory and secondary memory.[explain Ram,Rom]
Primary memory (volatile main memory):

· It is fast semiconductor RAM.

· It loses instructions and data when power off.

· It used to hold program while they are running.

Secondary memory (non- volatile):

· It is magnetic tapes, magnetic disk are used for the storage of larger amount of data.

· A form of memory that retains data even in the absence of a power source.

· It is permanent storage device.

4. Central processing unit (CPU):

· Cpu is a brain of the system.

· Cpu takes data and instructions from the storage unit and makes all sorts of calculations based on the instructions gives, type of data provided.

· Cpu is dived into 2 sections namely:

1.ALU: arithmetic and logical unit.

· All arithmetic and logical operations are performed by the ALU.

· To perform these operations operands from the main memory are brought into internal registers of processor.

· After performing operation the result is either stored in the register or memory.

2. Control unit:

· It co-ordinates and controls all the activities among the functional units.

· A basic function of control unit is to fetch the instructions stored in main memory, identify the operations and devices involved in it and accordingly generate control signals to execute the desired operations.

Network communication:

Network have becomes so popular that they are the backbone of current computer systems.

Networked computer have several major advantages:

· Communication: Information is exchanged between computers at high speeds.

· Resource sharing: Rather than each computer having its own I/O devices, computers on the network can share I/O devices.

· Nonlocal access: By connecting computers over long distances, users need not be near the computer they are using.

Software components: Software is a collection of progam

Computer software is divided into two broad categories:

1. System software 2.Application software

1. System software:

· It is collection of programs which is needed in the creation, preparation and execution of other program.

· System software includes editor, assemblers, linker, loader, compilers, interpreters, debuggers and operating system

2. Application software:

· Allows to perform specific task on a computer using capabilities of computer.

· Application software to accomplish a task.

· Different application software are needed to perform different tasks.

Operating system:

· OS Is a collection of routines that tells the computer what to do uner a variety of conditions.

· It is used to control the sharing of and interaction among various computer units as they execute application programs.

3. . Explain in detail about technologies used in building processors and memory.
· Technology shapes the computer for better performance.

· Technologies that have been used over time with relative performance per unit cost for each technology.

	Year
	Technology used in computer
	Relative performance/unit cost

	1951
	Vacuum tube
	1

	1965
	Transistor
	35

	1975
	Integrated circuit
	900

	1995
	Very large – scale IC’s
	2400.00

	2013
	Ultra large-scale IC’s
	6,200,000.00

Vacuum Tubes:

· The first electronic computer, ENIAC (Electronic Numerical Integrator and computer)

· It was designed and constructed by Eckert and Mauchly.

· It was made up of more than 18000 vacuum tubes and 1500 relays.

· It was able to perform nearly 5000 additions or subtractions per second.

· It was a decimal rather than a binary machine.

· Weight-30 tones, area -15000 sq.ft , power consumption -140kW.

· Data memory consists of 20 accumulators, each capable of storing a ten digit decimal number.

Transistors:

· A transistor is simply an on/off switch controlled by electricity.
· Transistors are smaller, cheaper and low power consumption

· Greater speed, larger memory capacity and smaller size than first generation.

· CPU can handle both floating point and fixed point operation.

· Separate I/O processor having direct access to main memory to control I/O operations.

· It introduction of more complex arithmetic and logic unit and control units to support high level languages.

Integrated circuit:

· It enabled lower cost, faster processors and development of memory chips.

· IC allowed to increase memory size and number of I/O port

· Magnetic core memories were replaced by integrated circuit memories.

· IC combined dozens to hundreds of transistors into a single chip.

VLSI: very large-scale integrated (VLSI) circuit

It consists of billions of combinations of conductors, insulators & switches manufactured in a small package.

■ Excellent conductors of electricity (using either microscopic copper or aluminum wire)

■ Excellent insulators from electricity (like plastic sheathing or glass)

■ Areas that can conduct or insulate under special conditions (as a switch)
Chip manufacturing process: Today, most integrated circuits (ICs) are made of silicon
[image: image3.png]Silicon ingot

Packaged dies

Blank
wafers

Tested
wafer

C O —[=—) —

2010 40
processing steps

Patterned wafers

Wafer | _,

@4

tester

‘\(\L\

Tested dies
oo
Bond die to D%EDDDBE
package |~ O OO0 | Dicer
ooon
oo

Tested packaged dies

Part

Ship to

o
]] [

O
tester| —~ [DOD

customers

Silicon :

· Silicon does not conduct electricity well
· Is a natural element that is a semi conductor.
· Semiconductor: A substance that does not conduct electricity well

· Silicon that allow tiny areas to transform into one of three devices: (conductors , insulator and switch)

Silicon crystal ingot :

 is a rod composed of a silicon crystal that is between 8 to 12 inches in diameter and about 12 to 24 inches long.

Slicer: These cylinders are sliced into thin

Blank wafer:

These cylinders are highly polished wafers less than one-fortieth of an inch thick.

20 to 40 processing steps:

the wafers are exposed to a multiple-step photolithography process that is repeated once for each mask required by the circuit.

Each mask defines different parts of a transistor, capacitor, resistor, or connector composing the complete integrated circuit and defines the circuitry pattern for each layer on which the device is fabricated.

Patterned wafers:

pattern on the wafer in the exact design of the mask

Tester packaged dies:

die :The individual rectangular sections that are cut from a wafer, more informally known as chips.
yield :The percentage of good dies from the total number of dies on the wafer.
Elaboration:

The cost of an integrated circuit can be expressed in three simple equations:

[image: image4.png]Cost per wafer

dies per wafer x yield

[image: image5.png]. wafer area
Diea per wafer=——"———
Dies area

[image: image6.png]yield = (

y arzea)) 5

ULSI:

· Is the process of integrating or embedding millions of transistors on a single silicon semiconductor micro chip.

· It is a successor to large scale integration and very large scale integrating technology

· It was design to provide the greatest possible computational power from the smallest form factor of microchip or microprocessor dye.

4. State the CPU performance equation and discuss the factors that affect performance.(Nov/Dec 2014)

· Performance is an important attribute of a computer.

· It is an important criterion for selection of a computer.

· Performance of a computer can be measured in number of ways.

Performance based on:

1. Response time:
· How long it takes to do a task.

· It is also called execution time.

· It includes disk access, memory access, I/O activities.

2. Throughput :

· Total amount of work done in a given time.

· It is also called bandwidth.

Performance of computer is directly related to the throughput and hence it is reciprocal of execution time.

[image: image7.png]performance = —————
Executiontime

Evaluate two computers A & B. then performance of A is greater than B.

Performance A > performance B

[image: image8.png]1 1
.
Executiontime A ~ Executiontime B

Execution time B > Execution A

Execution time B greater than execution A so A is faster than B

A is n times faster as B to mean

[image: image9.png]performance A

performance B

[image: image10.png]performance A 1 / 1

performance B Executiontime A Executiontime B

[image: image11.png]performance A Execution B

performance B Executiontime A

Problem:

If a computer A runs a program in 10 second & B runs the same problem in 15 seconds how much faster is A than B?

[image: image12.png]performance A Execution time B

performance B Executiontime A

[image: image13.png]15
— =15
10

A is therefore 1.5 times as fast as B

[image: image14.png]performance A
performance B

[image: image15.png]performance A
15

= performance B

Measuring performance:

· One of the important measures of a computer performance is a time.

· Program execution time is measured in seconds per program.

· Time can be divided in different ways

CPU time:

· It is also called CPU execution time

· The actual time the cpu spends for computing a specific task.

· CPU time is divided into user cpu time and system cpu time.

User CPU time: The cpu time spent in a program.

System cpu time: The cpu time spend in the operating system perform task on behalf of the program.

Performance metrics:

· Users and designers often examine performance using different metrics.

· All computers are constructed using a clock that determines when events take place in the hardware

Most basic metrics are:

1.Clock cycle : A clock cycle, or simply a "cycle," is a single electronic pulse of a CPU. During each cycle, a CPU can perform a basic operation such as fetching an instruction, accessing memory, or writing data.
2.Clock cycle time :

[image: image16.png]CPU execution time for aprogram
= cpu clock cycle for aprogram X clock cycle time

Alternatively because clock rate and clock cycle time are inverses:

[image: image17.png]CPU clock cycles for a program

CPU execution time for aprogram =
for aprog Clock rate

3.Clock rate:

The clock rate of a computer is normally determined bythe frequency of a crystal.
Problems:

Computer A run a program in 12 seconds with a 3 GHz clock. We have to design a computer B such that it can run the same program within 9 seconds. Determine the clock rate for computer B. Assume that due to increase in clock cycle rate , CPU design of computer b is affected and it requires 1.2 times as many clock cycles as computer A for execution this program.

Solution:

Clock rate A = 3 * 109 cycles/sec

CPU time A = 12 seconds

CPU time B = 9 seconds

We have:

[image: image18.png]CPU clock cycles A

CPU tis A=
ime Clock rate A

[image: image19.png]CPU clock cycles A
3%10 ° cycles/sec

12 seconds

CPU clock cycles A = 12 seconds * 3 * 109 cycle /sec =36*109 cycles

The cpu time for computer B can be given as

[image: image20.png]CPU clock cycles B

CPU tis B =
ime Clockrate B

[image: image21.png]1.2+ CPU clock cycles A

CPU tis B =
ime Clock rate B

[image: image22.png]1.2 * 36 * 10%cycles

9 ds =
secon Clock rate B

[image: image23.png]1.2 36 * 10°cycles
clock rate B = —————————— = 48+ 10°cycles = 4.8 GHz
9 second

Instruction performance:

The computer had to execute the instructions to run the program.

The execution time must depend on the number of instructions in a program.

CPU clock cycles =instructions for a program * Average clock cycles per instructions.

Clock cycle per instructions (CPI):

Average number of clock cycles per instructions for a program or program fragment

[image: image24.png]CPU clock cycles

Pl =———
Instruction count

Problem:

Let us assume that two computers use same instruction set architecture. Computer A has a clock cycle time of 250ps and a CPI of 2.0 for some program and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. Which computer is faster for this program and by how much?

Answer: Each computer executes the same number of instructions for the program call this number I. first find number of processor clock cycles for each computer:

1. CPU clock cycles = instructions for a program * Average clock cycles per instructions.

CPU clock cycle A = I * 2.0

CPU clock cycle B = I * 1.2

2. Compute the cpu time for each computers

Cpu time A = cpuclock cycle A * clock cycle time A

 = I * 2.0 * 250 ps

=500 Ips

Cpu time B = cpuclock cycle B * clock cycle time B

 = I * 1.2 * 500 ps

=600 Ips

3. Computer A is faster the amount faster is given by the ratio of the exection time

[image: image25.png]performance A Execution time B

performance B Executiontime A

[image: image26.png]6001ps

500 Ips

Computer A is 1.2 times faster than computer B for this program

The classic cpu performance equation:

Cpu time = instruction count * CPI * clock cycle time

Since the clock rate is the inverse of the clock cycle time.

[image: image27.png]instruction count * CPI

time =
cpu time “lock rate

IC : the number of instructions executed by the program.

Problem:

The table shows the two code sequence with number of instructions of different instruction classes within each code sequence respectively. The instruction are classified as A,B and C according to the CPI as shown in table.

(i) Determine which code sequence executes the most instructions.

(ii) Determine which code sequence will execute quickly.

(iii) Determine the CPI for each code sequence

	Code sequence
	Instruction counts for each instruction class

	
	A
	B
	C

	1
	4
	2
	4

	2
	8
	2
	2

Solution :
(i) Code sequence execution:

Code sequence 1 executes : 4+2+4 = 10 instructions

Code sequence 2 executes : 8+2+2 = 12 instructions

Therefore , code sequence 2 executes more instructions

(ii) CPU clock cycles required to executes these code sequences is given as

CPU clock cycles 1 = (4*1) + (2*2) + (4*3) = 20 cycles

CPU clock cycles 2 = (8*1) + (2*2) + (2*3) = 18 cycles

Code sequence 2 is faster than code sequence 1.

(iii) CPI for each code sequence

[image: image28.png]CPU clock cycles

Pl =———
Instruction count

[image: image30.png]CPI 1

o

= 2.0 [image: image32.png]CPI2 =T

= 1.5

	Components of performance
	Units of measure

	Cpu execution time for a program
	Seconds for the program

	Instruction count
	Instructions executed for the program

	Clock cycles per instruction (CPI)
	average no.of clock cycles per instruction

	Clock cycle time
	Seconds per clock cycle

5. Explain about Power Wall and Performance evaluation?
When processor runs at a high speed, it generates more & more power consumes.

When there is an increase clock rate there is increase in power consumed.

Power wall shows the increase in clock rate & power of eight generation of Intel microprocessor over 30 years.

Clock rate and power for intel X86 processor

[image: image33.png](z681) o
ey

(e661)
wnueg

(6361)
9808

(sa61)
98608

o 4 (zeo1)
=¥ saz08

(z) oves 6010

Pentium 4 made a dramatic jump in clock Rate and power but less in performance .Due to thermal problem.

Core 2 has simpler pipeline with lower clock rates and multiple processors per chip.

IC (Integrated circuit) are called CMOS (Complementary metal oxide semi conductor)

For CMOS the Primary source of energy consumption is called dynamic energy.

	 Energy = capacity load * voltage 2

The power consumed by a cpu is given by:

	P= C V2 f

Where C = Capacity loading, V = voltage applied, F= Running Frequency

Problem:

If a new processor has 85% of the capacitive load of old processor it supply voltage is reduced by 20% and new processor results in a 25% shrink in frequency. What is the impact on power consumption?

[image: image34.png]Power (new Processor) (C*0.85)*(V=*038)2*(F=*0.75)
Power (old Processor) cv2f

 = 0.85 * (0.8)2 * 0.75

 = 0.408

The new processor uses only 40.8% of the power of the old processor

Power consumption can be addressed in the following ways:

1. Lowering the power supply voltage to reduce power consumption

2. By using large cooling devices

3. Turing off part of chip that are not used in a given clock cycle

6.Explain in detail about the uniprocessor to multiprocessors.

The power limit has forced a dramatic change in the design of microprocessor.

To decrease the response time of a single program running on the single processor designer came up with multiple processors per chip.

The intension was to increase throughput rather than to decrease response time.

Multicore microprocessor:

· To avoid confusion between the word processor and microprocessors of such microprocessor are generally know as multicore microprocessor.

· Example: dual core,quard core microprocessors.

· Multicore processor imposed new challenges on the programming aspects.

Writing programs to support parallelism is not a simple task for the following reasons:

· It increases difficulty level of programming.

· Needs scheduling of subtask.

· Needs to synchronize tasks.

· Needs to maintain coordination between subtasks.

Advantage:

1. Improves cost/performance ratio.

2. Sytem provides room for expansion.

3. Tasks are divided among the modules.

4. Reliability of the system.

7. Discuss about the various techniques to represent instructions in a computer system.(May/June 2015)
Representing instruction in the computer:

· Instructions are kept in computers as a series of high and low electric signals and represented as number.

· Each piece of an instruction can be considered as an individual number .

· Placing these number side by side forms the instruction.

Instruction format:

A form of representation of an instruction composed of fields of binary numbers.

In MIPS ISA instructions fall into 3 categories

1. R- format: register format

	6
	5
	5
	5
	5
	6

	op
	rs
	rt
	rd
	shamt
	funct

Where:

Op: basic operation of the instruction, traditionally called the opcode

Rs: the first register source operand. RS hold one of the argument of the operation

Rt: The second register source. Rt hold another arguments of the operation

Rd: The register destination operand. Rd stores the result of the operation.

Shamt: shift amount. Amount of bit to shift

Funct: function code. To specify the operation in addition to the opcode.

2. I-format: intermediate format

	6
	5
	5
	6

	op
	rs
	rt
	Constant or address

3. J – format: Jump format

	6
	36

	op
	Address

Opcode and function code for each operation:

	Operation
	Opcode
	Function code

	add
	0
	32

	Sub
	0
	34

	Addi
	8
	

	Lw
	35
	

	Sw
	43
	

	And
	0
	36

	Or
	0
	37

	Nor
	0
	39

	Andi
	12
	

	Ori
	13
	

	Sll
	0
	0

	Srl
	0
	2

	Beq
	4
	

	Bne
	5
	

	Slt
	42
	

	Slti
	10
	

	Jump
	2
	

Example: add $t0, $s1,$s2 (R format)

	6
	5
	5
	5
	5
	6

	op
	rs
	rt
	Rd
	shamt
	funct

R-forma

	0
	17
	8
	25
	0
	32

Decimal

	000000
	10001
	01000
	11001
	00000
	100000

Binary

2) lw $t0, 32($s3) (I – format)

	6
	5
	5
	6

	op
	rs
	rt
	Constant or address

	35
	19
	8
	32

Decimal

	100011
	10011
	01000
	0000 0000 0010 0000

Binary

3.A[300] = h+A[300] (both R & I – formats)

Lw $t0, 1200 ($s2)

Add $t1, $s1, $t0

Sw $t1, 1200 ($s2)

	R-format
	op
	rs
	rt
	Address or constant

	I-format
	op
	rs
	rt
	rd
	shamt
	Funct

	J-format
	op
	rs
	rt
	Address or constant

Decimal representation:

	35
	18
	8
	1200

	0
	17
	8
	9
	0
	32

	43
	9
	18
	1200

Binary representation:

	100011
	10010
	01000
	0000010010110000

	000000
	10001
	01000
	01001
	00000
	100000

	101011
	01001
	10010
	0000010010110000

8.Explain operations and operands of computer Hardware in detail.

Operations and operand

Operations of computer hardware:

· Instructions step by step instructions in a top down fashion.

· In MIPS processor (Advance Risk Machine (ARM)) , the declaration is always done by the register.

· It support 32 bit register.

MIPS (ARM) Assembly language:

	Category
	Instruction
	Example
	Meaning

	Data transfer
	LOAD WORD
	Lw $s1,20($s2)
	$s1= Memory [$s2+20]

	
	STORE WORD
	Sw $s1, 20($s2)
	Memory[$s2+20]=$s1

	
	LOAD HALF
	Lh $s1,20($s2)
	$s1= Memory [$s2+20]

	
	STORE HALF
	Sh $s1, 20($s2)
	Memory[$s2+20]=$s1

	
	LOAD BYTE
	Lb $s1,20($s2)
	$s1= Memory [$s2+20]

	
	STORE BYTE
	Sb $s1, 20($s2)
	Memory[$s2+20]=$s1

	Arithmetic instructions
	ADD
	add $s1, $s2, $s3
	$s1 = $s2 + $s3

	
	SUB
	sub $s1, $s2, $s3
	$s1 = $s2 - $s3

	
	Add immediate
	addi $s1, $s2, 4
	$s1 = $s2 + 4

	Logical operations
	And
	and $s1, $s2, $s3
	$s1 = $s2 & $s3

	
	Or
	or $s1, $s2, $s3
	$s1 = $s2 | $s3

	
	Nor
	nor $s1, $s2, $s3
	$s1 = ~ ($s2 | $s3)

	
	And immediate
	andi $s1, $s2, 4
	$s1 = $s2 & 4

	
	Or immediate
	ori $s1, $s2, 4
	$s1 = $s2 | 4

	
	Nor immediate
	nori $s1, $s2, 4
	$s1 = ~ ($s2 | 4)

	
	Shift left logical
	sll $s1, $s2, 4
	$s1 = $s2 << $s3

	
	Shift right logical
	srl $s1, $s2, 4
	$s1 = $s2 >> $s3

	Conditional branch
	Branch on equal
	beq $s1, $s2, 5
	If($s1 == $s2) goto PC+25+100

	
	Branch on not equal
	bne $s1, $s2, 5
	If($s1 != $s2) goto PC (procedure call)+25+100

	
	Set on less than
	slt $s1, $s2, $s3
	If($s1 < $s2) $s1 = 1

 else $s1 = 0

	
	Set on less than immediate
	slti $s1, $s2, 4
	If($s1 < 4) $s1 = 1

 else $s1 = 0

	Unconditional branch
	Jump
	j 2500
	goto 100

	
	Jump register
	jr $ ra
	goto $ra

Operands of the computer hardware:

High level language, the operands of arithmetic instructions are restricted.

Three types of operands:

1. 32 register operand

2. 230 memory words operand

3. Constant or immediate operand

32 register operand:

· Registers are primitives used in hardware design that are also visible to the programmers where the computer is completed.

· The size of register in the MIPS (ARM) architecture is 32 bits.

	Register
	0
	1
	2-3
	4-7
	8-15
	16-23
	24-25
	26-27
	28
	29
	30
	31

	Name
	$Zero
	$at
	$v0-$v1
	$a0-$a3
	$t0-$t7
	$s0-$s7
	$t8-$t9
	$k0-$k1
	$gp
	$sp
	$fp
	$ra

at – Reserved for assembler

v0 – v1 = value for results and expression evaluation

a0 – a3 = argument register

t0 – t7 = temporary register

s0 - s7 = saved register

t8 – t9 = more temporary register

k0 – k1 = reserved for operating system

gp = global pointer

sp = stack pointer

fp = frame pointer

ra = return address

Example: compiling a c assignment using register

f = (g + h) – (i + j)

add $t0, $s1, $s2

add $t1, $s3, $s4

sub $s0, $t0, $t1

230 memory word operand:

· Accessed only by data transfer instructions. MIPS (ARM) uses byte addresses.

· So sequential word addresses differ by 4byte.

· Memory holds data, array, and spelled register.

	Memory [0]
	Memory[4]
	
	Memory [4294967292]

Example: compiling an assignment when an operand is in memory

g= h + A[8]

lw $t0 , 32 ($s2) [Effective address = base address + offset [offset = address *4 byte)]]

 [Effective address = 0 + 8 * 4 = 32]

Add $s0, $s1, $t0

Compiling using load and store:

A[12] = h + A[8]

LDR $to,32($s1)

STR $t0,48($s1)

Constant or immediate operands:

Program will use a constant in an operation.

In ARM arithmetic instructions have a constant as an operand.

Example:

a= b + 4

addi $s0, $s1, 4

9. Explain in detail about the logical operations.
· An instruction in which the quantity being operated on and the result of the operation can have two values.

· Logic operations include any operations that manipulate Boolean values.
· Boolean values are either true or false. They can also be represented as 1 and 0. Normally, 1 represents true, and 0 represents false, but it could be the other way around.
Types of logical operation:

1. AND operation,

2. OR operation

3. NOR operation

4. ANDI operation

5. SLL operation

6. SRL operation

AND operation: A logical bit by bit operation with two operands that calculation as 1 only if there is 1 in both the operation.

	
A
	B
	A ^ B

	0
	0
	0

	0
	1
	0

	1
	0
	0

	1
	1
	1

Example: and $s0,$s1,$s2 [s1 =17 and s2 =35]

S1 -> 0000 0000 0000 0000 0000 0000 0001 0001

S2 -> 0000 0000 0000 0000 0000 0000 0010 0011

--

S0 -> 0000 0000 0000 0000 0000 0000 0000 0001

OR operation: A logical bit by bit operation with two operation with two operands that calculates 1 if there is a 1 in ether operand

	A
	B
	A v B

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1

Example: and $s0,$s1,$s2 [s1 =17 and s2 =35]

S1 -> 0000 0000 0000 0000 0000 0000 0001 0001

S2 -> 0000 0000 0000 0000 0000 0000 0010 0011

S0 -> 0000 0000 0000 0000 0000 0000 0011 0011

NOT OPERATION: A logical bit by bit operation with one operand that inverts the bits, that is replaces every 1 with a 0 and every 0 with 1 .

	A
	A

	0
	1

	1
	0

Example:

nor $t0, $t1, $zero
[image: image35.png]$t1 0000 0000 0000 OO0O0 0011 1100 OO0O0 0000

$tO |’I11‘I 1111 1111 1111 1100 OO011 1111 1111 |

Nor operation: A logical bit by bit operation with two operations with two operands that calculates 1 if there is a 1 in ether operand

	A
	B
	A+B

	0
	0
	1

	0
	1
	0

	1
	0
	0

	1
	1
	0

Example: and $s0,$s1,$s2 [s1 =17 and s2 =35]

S1 -> 0000 0000 0000 0000 0000 0000 0001 0001

S2 -> 0000 0000 0000 0000 0000 0000 0010 0011

S0 -> 1111
 1111 1111 1111 1111 1111 1100 1100

Andi operation: A logical bit by bit operation with 1 operand and immediate value that calculation as 1 only if there is 1 in both the operation.

Example: Andi $s0,$s1,9 [s1 =17]

S1 -> 0000 0000 0000 0000 0000 0000 0001 0001

9 -> 0000 0000 0000 0000 0000 0000 0000 1001

S0 -> 0000 0000 0000 0000 0000 0000 0000 0001

SLL operation: logical shift left. This instruction shift an operand by a number of the positions specified in a count operand in left side.

Example: SLL $s0,$s1,6 [s1 =18]

S1 -> 0000 0000 0000 0000 0000 0000 0001 0010

S0 -> 0000 0000 0000 0000 0000 0100 1000 0000
18 * 2 i = 18 * 2 6 = 1152

SRL operation: logical shift right. This instruction shift an operand by a number of the positions specified in a count operand in right side.

Example: SLL $s0,$s1,6 [s1 =1152]

S1 -> 0000 0000 0000 0000 0000 0100 1000 0000

S0 -> 0000 0000 0000 0000 0000 0000 0001 0010
1152 / 2 n = 18 / 2 6 = 18

12. Control operation:

1. Decision Making (branch instruction)

· A computer from a simple calculator is its ability to make decisions

· Decision making is commonly represented in programming languages using the if statement, sometimes combined with go to statements and labels.

MIPS assembly language includes two decision-making instructions:

1. beq register1, register2, L1

If the value in register1equals the value in register2 go to labeled statement L1. The mnemonic beq stands for branch if equal.

2. bne register1, register2, L1

If the value in register1 does not equal the value in register2 go to the statement labeled L1. The mnemonic bne stands for branch if not equal.

These two instructions are traditionally called conditional branches.

Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, i, and j are variables.

if (i == j)

f = g + h;

else f = g – h;

[image: image36.png]

If the five variables f through j correspond to the five registers $s0 through $s4, what is the compiled MIPS code for this C if statement?

In general, the code will be more efficient if we test for the opposite condition to branch over the code that performs the subsequent then part of the if (the label Else is defined below)

and so we use the branch if registers are not equal instruction (bne):

bne $s3,$s4,else

go to Else if i ≠ j

add $s0, $s1 , $s2

f = g + h (skipped if i ≠ j)

j exit

go to Exit

else: sub $so, $s1, $s2

f = g – h (skipped if i = j)

exit

3. LOOP :

Decisions are important both for choosing between two alternatives

1. found in if statements

2. found in loops.

The same assembly instructions are the building blocks for both cases.
Compiling a while Loop in C

while (save[i] == k)

i += 1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the array save is in $s6. What is the MIPS assembly code corresponding to this C segment?

branch back to that instruction at the end of the loop :

Loop:

 sll $t1,$s3,2

 # Temp reg $t1 = i * 4

add $t1,$t1,$s6

 # $t1 = address of save[i]

lw $t0,0($t1)
 # Temp reg $t0 = save[i]

bne $t0,$s5, Exit

go to Exit if save[i] ≠ k

addi $s3,$s3,1

i = i + 1

j Loop

 # go to Loop

Exit:

Explanation:

1. To get the address of save[i], we need to add $t1 and the base of save in $s6.

2. Now we can use that address to load save[i] into a temporary register:

3. The next instruction performs the loop test, exiting if save[i] ≠ k:

4. The next instruction adds 1 to i:

5. The end of the loop branches back to the while test at the top of the loop. We

6. just add the Exit label aft er it, and we’re done

3. Case/Switch Statement

Most programming languages have a case or switch statement that allows the programmer to select one of many alternatives depending on a single value.

The simplest way to implement switch is via a sequence of conditional tests, turning the

switch statement into a chain of if-then-else statements.

Sometimes the alternatives may be more efficiently encoded as a table of addresses of alternative instruction sequences, called a jump address table or jump table.

Jump table:
· The jump table is then just an array of words containing addresses that correspond to labels in the code.

· The program loads the appropriate entry from the jump table into a register.

· It then needs to jump using the address in the register.

· To support such situations, computers like MIPS include a jump register instruction (jr), meaning an unconditional jump to the address specified in a register.

· Then it jumps to the proper address using this instruction.
· jump address table Also called jump table. A table of addresses of alternative instruction sequences
 Example: j lable // Jump to lable

Jr $s1 // Jump to address present in register

10.Elaborate the different types of addressing modes with a suitable example.(Nov/Dec 2016,May/June 2016,Nov/Dec 2015,April/May 2015,Nov/Dec 2014)

Addressing modes are the way of specifying an operand or memory address in an instruction.

The different ways in which the location of an operand is specified in an instruction are called address modes.

Types of addressing modes:

1. Register addressing mode

2. Immediate addressing mode.

3. Base or displacement addressing mode

4. Pc-relative addressing mode

5. Pseudo- direct addressing mode

6. In direct addressing mode

7. Auto increment addressing mode

8. Auto decrement addressing mode

Register addressing mode:

· Is the considered the simplest addressing mode.

· Because the operands are in register.

· It allows the instructions to be executed much faster.

· It is a form of direct addressing.

Example: add $s0, Ss1, $s2 where s1=5, s2=8

	Op
	[image: image209.emf]rs
	rt
	rd
	shamt
	Funct

s1(5) s2(8)
 s0(13)

	

	

	

	

	

	

	

	

	

	 MEMORY

[image: image210.png]Field
Bit positions
a. R-type i

Field
Bit positions
b. Load or

Field
Bit positions

c. Branch i

(0] rs rt rd shamt funct
31:26 25:21 20:16 15:11 10:6 5:0
nstruction
35 0r43 rs rt address
31:26 25:21 20:16 15:0
store instruction
4 rs rt address
31:26 25:21 20:16 15:0

nstruction

 Register

Immediate Addressing Mode:

· MIPS immediate addressing means that one operand is a constant within the instruction itself.

· The advantage of using it is that there is no need to have extra memory access to fetch the operand.

· But keep in mind that the operand is limited to 16 bits in size.
Example: add $s0, $s1, 4 s1=5

	Op
	[image: image211.emf]beq

$

s

1

, $

s

2

,

L

rs

rt

4

31

:

26

25

:

21

20

-

16

address

15

:

0

s

1

s

2

+

subtract

rs

rt

35

or

43

31

:

26

25

:

21

20

-

16

address

15

:

0

lw

$

s

1

,

100

(

$

s

2

)

sw

$

s

1

,

100

(

$

s

2

)

s

t

o

r

e

base

l

o

a

d

rs

rt

rd

shamt

0

funct

31

:

26

25

:

21

20

-

16

15

:

11

10

:

6

5

:

0

s

2

s

3

+

+

add

$

s

1

, $

s

2

, $

s

3

s

1

beq $s1, $s2, L

rs rt 4

31:26 25:21 20-16

address

15:0

s

1

s

2

+

subtract

rs rt 35 or 43

31:26 25:21 20-16

address

15:0

lw $s1, 100($s2)

sw $s1, 100($s2)

s

t

o

r

e

base

l

o

a

d

rs rt rd shamt 0 funct

31:26 25:21 20-16 15:11 10:6 5:0

s

2

s

3

+

+

add $s1, $s2, $s3

s1

rs
	rt
	4

S1(5) s0(9)

	

	

	

	

	

	

	

	

	

	

[image: image212.emf]000010

address

31

:

26

25

:

0

000010 address

31:26 25:0

 register

memory

Base or displacement addressing mode:

· Base address is a data or instruction memory location is specified as a signed offset from a register.

· It is also known as indirect addressing; a register act as a pointer to an operand located at the memory location whose address is in the register.

· The address of the operand is the sum of the offset value and the base value.

· The size of the operand is limited to 16 bits.

Example: lw $to,32 ($s1)

	Op
	rs
	rt
	Offset

[image: image213.emf]Time (ps)

Instr

Fetch

Instruction

Decode

Read Reg

Execute

ALU

Memory

Read / Write

Write

Reg

1

2

0 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800 1900 1000

Instr

1

2

3

Fetch

Instruction

Decode

Read Reg

Execute

ALU

Memory

Read / Write

Write

Reg

Fetch

Instruction

Decode

Read Reg

Execute

ALU

Memory

Read/Write

Write

Reg

Fetch

Instruction

Decode

Read Reg

Execute

ALU

Memory

Read/Write

Write

Reg

Fetch

Instruction

Decode

Read Reg

Execute

ALU

Memory

Read/Write

Write

Reg

Single-Cycle

Pipelined

	

	

	

	

	

	

	

	

	

	

 register

memory

PC- relative addressing mode:

· It is also known as program counter addressing.

· It is a data or instruction memory location is specified as an offset relative to the incremented PC.

· It is usually used in conditional branches.

· Pc stores the address of next instruction to be fetched.

· It offset value can be an immediate value or an interpreted label value.

It implements position independent code.

Example: beq $s0, $s1, label

Address instruction

4008 addi $s0,$s1, 1 // Offset

4012 beq $s0, $s1, Label // this condition true move the control to the address (4024)

4016 sub $s0, $s1, $s2 // Pc hold address of next instruction pc= 4016

4020 addi $s2,$s3, 1

4024 Label addi $s1,$s2 ,4 // EA = (pc + offset) = 4016 + 4008 =4024.

	Op
	[image: image214.emf]Time (cycles)

lw $s2, 40($0)

RF

40

$0

RF

$s2

+

DM

RF

$t2

$t1

RF

$s3

+

DM

RF

$s5

$s1

RF

$s4

-

DM

RF

$t6

$t5

RF

$s5

&

DM

RF

20

$s1

RF

$s6

+

DM

RF

$t4

$t3

RF

$s7

|

DM

add $s3, $t1, $t2

sub $s4, $s1, $s5

and $s5, $t5, $t6

sw $s6, 20($s1)

or $s7, $t3, $t4

1 2 3 4 5 6 7 8 9 10

add

IM

IM

IM

IM

IM

IM

lw

sub

and

sw

or

rs
	[image: image215.png]As B3 Az B

| |

JIREINNEINNEN)

P3gs Cs P29z Cz PO Ci Pogo
4-bit Carry Look Ahead PG GG

v

-]

Ca

rt
	[image: image216.wmf]beq

$

s

1

, $

s

2

,

L

rs

rt

4

31

:

26

25

:

21

20

-

16

address

15

:

0

s

1

s

2

+

subtract

rs

rt

35

or

43

31

:

26

25

:

21

20

-

16

address

15

:

0

lw

$

s

1

,

100

(

$

s

2

)

sw

$

s

1

,

100

(

$

s

2

)

s

t

o

r

e

base

l

o

a

d

rs

rt

rd

shamt

0

funct

31

:

26

25

:

21

20

-

16

15

:

11

10

:

6

5

:

0

s

2

s

3

+

+

add

$

s

1

, $

s

2

, $

s

3

s

1

offset

	

	

	

	

	

	

	

	

	[image: image217.wmf]000010

address

31

:

26

25

:

0

	

[image: image218.wmf]Time (ps)

Instr

Fetch

Instruction

Decode

Read Reg

Execute

ALU

Memory

Read / Write

Write

Reg

1

2

0

100

200

300

400

500

600

700

800

900

1100

1200

1300

1400

1500

1600

1700

1800

1900

1000

Instr

1

2

3

Fetch

Instruction

Decode

Read Reg

Execute

ALU

Memory

Read / Write

Write

Reg

Fetch

Instruction

Decode

Read Reg

Execute

ALU

Memory

Read/Write

Write

Reg

Fetch

Instruction

Decode

Read Reg

Execute

ALU

Memory

Read/Write

Write

Reg

Fetch

Instruction

Decode

Read Reg

Execute

ALU

Memory

Read/Write

Write

Reg

Single-Cycle

Pipelined

register

memory

Pseudo direct Addressing mode:

-It is the memory address which (mostly) embedded in the instructions.

-It is specifically used for J-type instructions, j and jal.

-The instruction format is 6 bits of opcode and 26 bits for the immediate value.

-The effective address will always be a word aligned.

Example: j label.

	

	

	

	

	

	

	

	

	

	

 register

memory

Indirect Addressing Mode:

It is also called register direct addressing mode

In this mode, the instruction contains the address of memory which refers the address of the operand.

Example: j $s1 // s1= 4008 (address)

	Op
	rs
	rt
	rd
	shamt
	Funct

	

	

	

	

	

	

	

	

	

	

Auto increment addressing mode:

After accessing the operand, the content of this register are incremented to address the next location

Example: Mov R0,(R2)+

Auto decrement addressing mode

The content of register specified in the instruction are first decremented ant then used an effective address of the operand

Example : Mov – (R0),R2

UNIT-2

Arithmetic operations

PART-A

1. Add 610 to 710 in binary and Subtract 610 from 710 in binary.
Addition,

[image: image37.png]+

0000 0000 0000 0000 0000 0000 0000 0111y, =
0000 0000 0000 0000 0000 0000 0000 01104, =

7ten
6ten

0000 0000 0000 0000 0000 0000 0000 11014, =

13ten

Subtraction directly,

Or via two’s complement of -6,

[image: image38.png]+

0000 0000 0000 0000 0000 0000 0000 0111:,, =
1111 1111 1111 1111 1111 1111 1111 10104y, =

7ten
76ten

0000 0000 0000 0000 0000 0000 0000 00014y, =

1ten

2. Write the overflow conditions for addition and subtraction.(Nov/Dec 2015)
	Operation
	Operand A
	Operand B
	Result Indicating overflow

	A+B
	≥0
	≥0
	<0

	A+B
	<0
	<0
	≥0

	A-B
	≥0
	<0
	<0

	A-B
	<0
	≥0
	≥0

3. Define – Moore’s Law
Moore’s Law has provided so much more in resources that hardware designers

can now build much faster multiplication and division hardware. Whether the multiplicand is to be added or not is known at the beginning of the multiplication by looking at each of the 32 multiplier bits.

[image: image39.png]uuuuuuuuuu

4. What are the floating point instructions in MIPS?
MIPS supports the IEEE 754 single precision and double precision formats with

these instructions:

■ Floating-point addition

■ Floating-point subtraction

■ Floating-point multiplication

■ Floating-point division

■ Floating-point comparison

■ Floating-point branch

5. Define – Guard and Round
Guard is the first of two extra bits kept on the right during intermediate calculations

of floating point numbers. It is used to improve rounding accuracy.

Round is a method to make the intermediate floating-point result fit the floating-point format; the goal is typically to find the nearest number that can be represented in the format. IEEE 754, therefore, always keeps two extra bits on the right during intermediate additions, called guard and round, respectively.

6. Define – ULP
Units in the Last Place is defined as the number of bits in error in the least significant

bits of the significant between the actual number and the number that can be represented.

7. What is meant by sticky bit?
Sticky bit is a bit used in rounding in addition to guard and round that is set whenever

there are nonzero bits to the right of the round bit. This sticky bit allows the computer to

see the difference between 0.50 … 00 ten and 01 ten when rounding.

8. Write the IEEE 754 floating point format.
The IEEE 754 standard floating point representation is almost

always an approximation of the real number.

[image: image40.png](—1)% X (1 + Fraction) X 2(Exponent = Bias)

9. What is meant by sub-word parallelism? (May/June 2016, May/June 2015)
Given that the parallelism occurs within a wide word, the extensions are classified

as sub-word parallelism. It is also classified under the more general name of data level parallelism. They have been also called vector or SIMD, for single instruction, multiple data . The rising popularity of multimedia applications led to arithmetic instructions that support narrower operations that can easily operate in parallel.

For example, ARM added more than 100 instructions in the NEON multimedia instruction extension to support sub-word parallelism, which can be used either with ARMv7 or ARMv8.

10. Multiply 100010 * 100110.
[image: image41.png]Multiplicand 1000+¢e,
Multiplier X 10014e,
1000

0000

0000

2000
Product 10010004,

11. Divide 1,001,010ten by 1000ten.
[image: image42.png]Divisor 1000t oy [10010101¢p
~1000

Quotient
Dividend

Remainder

12. What are the steps in the floating-point addition?
The steps in the floating-point addition are

1. Align the decimal point of the number that has the smaller exponent.

2. Addition of the significands

3. Normalize the sum.

4. Round the result.

13. Give the symbol of a full adder circuit for a single stage addition

xi yi

FA

Ci

Ci+1

Si

14. Give the representation for n bit ripple carry adder

xi yi xi yi

Ci+1

FA FA

Ci C0

Si Si

15. Write down the Booth’s algorithm

Multiplier Version of multiplicand selected by bit i

0 0 0 x M

0 1 +1 x M

1 0 -1 x M

1 1 0 x M

16. What are the 2 ways to detect overflow in an n-bit adder?

Overflow can occur when the signs of two operands are the same. Overflow occurs when the carry bits Cn and Cn-1 are different.

17. What is the delay encountered for Cn-1, Sn-1 and Cn in the FA for a single stage

Cn-1 – 2(n-1)

Sn-1 – 2(n-1)+1

Cn – 2n

18. What is the delay encountered for all the sum bits in n-bit binary addition/ subtraction logic unit?

The gate delays with and without overflow logic are 2n+2 and 2n respectively

19. Write down the basic generate and propagate functions for stage i

Gi = XiYi, Pi=Xi xor with Yi

20. What are the two approaches to reduce delay in adders?

· (Fastest electronic technology in implementing the ripple carry logic design

· Augmented logic gate network

21. What is the delay encountered in the path in an n x n array multiplier

The delay encountered in the path in an n x n array multiplier is 6(n-1)-1

22. What is skipping over of one’s in Booth decoding?

The Transformation 011… 110= +100…0 – 10 is called skipping over one’s. In his case multiplier has its ones grouped into a few contiguous blocks.

23. What are the two attractive features of Booth Algorithm?

· It handles both positive and negative multipliers uniformly

· (It achieves some efficiency in the number of additions required when the multiplier has a few large blocks of ones

24. Give an example for the worst case of Booth algorithm

The worst case is shown as below

+1 -1 +1 -1 +1 -1 +1 -1 +1

In the worst case each bit of the multiplier selects the summands. This results in more number of summands.

25. What are the two techniques for speeding up the multiplication operation?

· Bit Pair recoding

· CSA

26. How bit pair recoding of multiplier speeds up the multiplication process?

It guarantees that the maximum number of summands that must be added is n/2 for n- bit operands.

27. How CSA speeds up multiplication?

It reduces the time needed to add the summands. Instead of letting the carries ripple along the rows, they can be saved and introduced into the next row, at the correct waited position.

28. Write down the steps for restoring division and non-restoring division

1. If the sign of A is 0, shift A and Q left one bit position and subtract M from A otherwise shift A and Q left and add M to A.

2. Now if the sign of A is 0, set Q0 to 1; otherwise set Q0 to 0

Step 2: If the sign of A is 1, add M to A Restoring:

Shift A and Q left one binary position

Subtract M from A if the sign of A is one, set Q0 to 0, add M back to A otherwise set Q0 to 1

29. What is the advantage of non-restoring over restoring division?

Non restoring division avoids the need for restoring the contents of register after a successful subtraction.

30. What is the need for adding binary 8 value to the true exponential in floating point numbers?

This solves the problem of negative exponent. Due to this the magnitude of the numbers can be compared. The excess- x representation for exponents enables efficient comparison of the relative sizes of the two floating point numbers.

31. Briefly explain the floating point representation with an example?

The floating point representation has 3 fields

1. Sign bit

2. Significant bits

3. Exponent

For example consider 1.11101100110 x 10^5, Mantissa=11101100110

Sign=0 Exponent=5

32. What are the 2 IEEE standards for floating point numbers?

1. Single

2. Double

33. What is overflow, underflow case in single precision (sp)?

Underflow-In SP it means that the normalized representation requires an exponent less than -126.greater than +127.

34. What are the exceptions encounted for FP operation?

The exceptions encounted for FP operation are overflow, underflow, /0, inexact and invalid values.

35. What is a guard bit?What are the ways to truncate guard bits? (Nov/Dec 2016)

 Guard is the first of two extra bits kept on the right during intermediate calculations

of floating point numbers. It is used to improve rounding accuracy.

1. Chopping

2. Von Neumann rounding

3. Rounding procedure

36. Define – ULP
Units in the Last Place are defined as the number of bits in error in the least significant bits of the significant between the actual number and the number that can be represented.

37. What is meant by sticky bit?
Sticky bit is a bit used in rounding in addition to guard and round that is set whenever there are nonzero bits to the right of the round bit. This sticky bit allows the computer to see the difference between 0.50 … 00 ten and.... 01 ten when rounding.

38. Write the IEEE 754 floating point format.
The IEEE 754 standard floating point representation is almost always an approximation of the real number.

[image: image46.emf]
39. What is meant by sub-word parallelism? (April/May 2015)
Given that the parallelism occurs within a wide word, the extensions are classified as sub-word parallelism. It is also classified under the more general name of data level parallelism. They have been also called vector or SIMD, for single instruction, multiple data. The rising popularity of multimedia applications led to arithmetic instructions that support narrower operations that can easily operate in parallel.

40. Multiply 100010 * 100110.

[image: image47.emf]
41. Divide 1,001,010ten by 1000ten.
[image: image48.emf]
42. What are the steps in the floating-point addition?
The steps in the floating-point addition are

1. Align the decimal point of the number that has the smaller exponent.

2. Addition of the significands

3. Normalize the sum.

4. Round the result.

43.State the representation of double precision floating point number(Nov/Dec 2015)

The IEEE 754 standard specifies a binary64 as having:

· Sign bit: 1 bit

· Exponent: 11 bits

· Significand precision: 53 bits

[image: image49.png]exponent fraction
sign (11 bif) (52 bit)

° °
63 52

44.How overflow occur in subtraction?(April/May 2015)

If 2 Two's Complement numbers are subtracted, and their signs are different, then overflow occurs if and only if the result has the same sign as the subtrahend.

· Overflow occurs if

· (+A) − (−B) = −C

· (−A) − (+B) = +C

Example: Using 4-bit Two's Complement numbers (−8 ≤ x ≤ +7)

Subtract −6 from +7

 (+7) 0111 0111

 −(−6) 1010 -> Negate -> +0110

 ---------- -----

 13 1101 = −8 + 5 = −3 : Overflow

45.What is arithmetic overflow?(Nov/Dec 2016)

An arithmetic overflow is a condition that occurs in computers, especially in the area of computer programming, when a calculation or operation yields a result that is too large for the storage system or register to handle. Overflow can also refer to the amount by with the given result exceeds the memory designated for storage. In some cases, the overflow of data may be stored at another data storage location; in others, it can cause a program to crash, run slowly, or yield inaccurate results.

46.Define ALU.(May/June 2016)

An arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and logic operations. It represents the fundamental building block of the central processing unit (CPU) of a computer. Modern CPUs contain very powerful and complex ALUs. In addition to ALUs, modern CPUs contain a control unit (CU).

47.Define little Indian arrangement.(Nov/Dec 2014)

In little endian, you store the least significant byte in the smallest address. Here's how it would look:

	Address
	Value

	1000
	CD

	1001
	12

	1002
	AB

	1003
	90

Notice that this is in the reverse order compared to big endian. To remember which is which, recall whether the least significant byte is stored first (thus, little endian) or the most significant byte is stored first (thus, big endian).

Notice I used "byte" instead of "bit" in least significant bit. I sometimes abbreciated this as LSB and MSB, with the 'B' capitalized to refer to byte and use the lowercase 'b' to represent bit. I only refer to most and least significant byte when it comes to endianness.

48.What is DMA?(Nov/Dec 2014)

Direct memory access (DMA) is a method that allows an input/output (I/O) device to send or receive data directly to or from the main memory, bypassing the CPU to speed up memory operations. The process is managed by a chip known as a DMA controller (DMAC)

PART-B

1. What are the Basic data types?

ALU is responsible for performing arithmetic operations such as add, subtract, division and multiplication and logical operation such as AND, OR, Inverting etc.

Arithmetic operation to be performed is based on data type.

Two basic data types:

1. Fixed point numbers

2. Floating point numbers

Fixed point number:

It allows the representation of number positive or negative integer numbers.

The length of 1, 2, 4 or more byes.

Floating point numbers:

It allows the representation of number having both integer part and fractional part.

The length of single precision (4 bytes) or double precision (8 bytes).

Big-Endian and Little-Endian Assignments:

Two ways that byte addresses can be assigned across words

1. Big-Endian Assignments:

When lower byte addresses are used for the more significant bytes (leftmost bytes) of the word.

2. Little- Endian Assignments:

When lower byte addresses are used for the less significant bytes (rightmost bytes) of the word.

Fixed point number representation:

Fixed point number represent in two forms:

1. unsigned integer: (It represent positive number)

2. signed integer: (It represent negative number)

signed magnitude representation:

The leftmost bit is represents sign of the number.

 B7
 B6
 B5
 B4
 B3
B2
 B1

	
	
	
	
	
	
	

 Sign
 Magnitude

Here,The MSB(most significant bit) represents sign of the number:

If MSB is 1, number is negative.

If MSB is 0, number is positive.

Remaining bits represent magnitude of the number.

Example:

10 = 0 000 1010

-6 = 1 000 0110

To represent negative numbers various techniques are used because computer does not have provision to represent negative sign.

Techniques to represent signed numbers are:

1’s complement

2’s complement

1’complement:

One’s complement: invert all bits

Example: consider 10011110, the one’s complement is 01100001
2’complement:

Two’s complement is one more than the one’s complement

Example: find the two’s complement of 1 0 0 1 1 1 1 0 .

1. Find the one’s complement 0 1 1 0 0 0 0 1

2. Add one to find the two’s complement + 1

 0 1 1 0 0 0 1 0
2. Explain briefly about Floating point Addition and Subtraction algorithm.

 (May/June 2016, April/May 2015)

We can relate addition and subtraction operations of numbers by the following relationship:

(± A) – (+ B) = (± A) + (- B) and

(± A) – (- B) = (± A) + (+ B)

Therefore we can change subtraction operation to an addition operation by changing the sign of the subtrahend.

Binary Addition:

Adding two single digit binary numbers

Rules for binary additions are as follows:

	 A
	B
	SUM(A+B)
	Carry

	0
	0
	0
	0

	0
	1
	1
	0

	1
	0
	1
	0

	1
	1
	0
	1

Example: 10+3

10 1010

3 0011

13 1101

The logical circuit which performance this operation is called a half adder.

The logical circuit which performance addition of 3 bits(2 significant bits and a previous carry) is called full adder.

Half adder:

Performs the most basic digital arithmetic operation, that is, the addition of two binary numbers.

The half-adder requires two outputs because the sum 1 + 1 is binary 10. The two inputs are called S (for sum) and C (for carry out).

Truth Table:

	A
	B
	SUM(A+B)
	Carry

	0
	0
	0
	0

	0
	1
	1
	0

	1
	0
	1
	0

	1
	1
	0
	1

Block diagram:

A

Sum = A+B

B

Carry =AB

K-map

SUM =A ⊕ B

 CARRY= x • y

Logical circuit:

[image: image50.png]A
Sum
_T__» > o
B

T

FULL ADDER:

When adding more than one bit, must consider the carry of the previous bit – full-adder has a “carry-in” input.

• Truth Table:

	A
	 B
	Cin
	SUM(A+B)
	Carry

	0
	0
	0
	0
	0

	0
	0
	1
	1
	0

	0
	1
	0
	1
	0

	1
	0
	0
	1
	0

	0
	1
	1
	0
	1

	1
	0
	1
	0
	1

	1
	1
	0
	0
	1

	1
	1
	1
	1
	1

Block diagram:

Cin

A
SUM

B

 Cout
 [image: image51.jpg]K-map simplification for carry and sum

For Carry (Cyy) For Sum

Sum = A BC,,+ABT,,+AB T,,+ABC,,

Sum = A B Cin + A B Cin + A B Cin + ABCin
Cout:

Logical circuit:

[image: image52.png];_\ A®BaC
XOR Sum

OR Carry

L
AB+A-C+B-C

Parallel Adder:

A n-bit parallel adder can be constructed using number of full adder circuits connected in parallel.

Block Diagram:

[image: image53.jpg]o ¢ ¢ c
Hom &, S N
Ss S St Sa

The block diagram of the n-bit parallel adder using n number of cull adder cicuits connected in cascade.

The carry output of each adder is connected to the carry input of the next higher-order adder.

Binary Subtracion:

Adding two single digit binary numbers

Rules for binary additions are as follows:

	 A
	B
	Diff
	Borrow

	0
	0
	0
	0

	0
	1
	1
	1

	1
	0
	1
	0

	1
	1
	0
	0

One’s complement subtractions:

Case1: both numbers positive

 28 0 1 1 1 0 0

 +15 0 0 1 1 1 1

 43 1 0 1 0 1 1

Case 2: Subtraction of smaller number from larger number

1. Determine the 1’s complement of the smaller number

2. Add the 1’s complement to the larger number

3. If end around carry is generated add it to the result

Example:

 28 0 1 1 1 0 0

 -15 1 1 0 0 0 0 (001111-> 1’s com(110000))

 1 0 0 1 1 0 0

 1

13 0 0 1 1 0 1

Case 3: Subtraction of larger number from smaller number

1. Determine the 1’s complement of the larger number.

2. Add the 1’s complement to the smaller number.

3. If end around carry is generated discard the carry.

4. The result will be in 1’scomplement form .to get the result in true form, take the

 1’s complement of the result.

Example:
 15 0 0 1 1 1 1

 -28 1 0 0 0 1 1 (011100-> 1’s com (100011))

 1 1 0 0 1 0 -> 1,s complement

-13 0 0 1 1 0 1

Case 4: Both negative

1. Determine the 1’s complement of the both numbers.

2. Add the 1’s complement to the both numbers.

3. If end around carry is generated add it to the result.

 4. The result will be in 1’scomplement form .to get the result in true form, take the

 1’s complement of the result.

 -28 1 0 0 0 1 1 (011100-> 1’s com (100011))

 -15 1 1 0 0 0 0 (001111-> 1’s com(110000))

 -43 1 0 1 0 0 1 1

 1

 0 1 0 1 0 0 1’s complement

 1 0 1 0 1 1

Two’s complement subtractions:

Case1: both numbers positive

 28 0 1 1 1 0 0

 +15 0 0 1 1 1 1

 43 1 0 1 0 1 1

Case 2: Subtraction of smaller number from larger number

1. Determine the 2’s complement of the smaller number

2. Add the 2’s complement to the larger number

3. If end around carry is generated discard the carry

Example:

 28 0 1 1 1 0 0

 -15 1 0 0 0 0 1 (001111-> 2’s com (100001))

 1 0 0 1 1 0 1

Case 3: Subtraction of larger number from smaller number

1. Determine the 2’s complement of the larger number.

2. Add the 2’s complement to the smaller number.

3. The result will be in 2’scomplement form .to get the result in true form, take the

 2’s complement of the result.

Example:
 15 0 0 1 1 1 1

 -28 1 1 1 1 0 0 (011100 -> 2’s com (111100))

 1 0 0 1 0 1 1 -> 2’s complement (001011 ->001101

-13 0 0 1 1 0 1

Case 4: Both negative

1. Determine the 2’s complement of the both numbers.

2. Add the 2’s complement to the both numbers.

3. If end around carry is generated discard the carry

4. The result will be in 2’scomplement form .to get the result in true form,

 -28 1 0 0 0 1 1 (011100-> 1’s com (100011))

 -15 1 1 0 0 0 0 (001111-> 1’s com(110000))

 -43 1 0 1 0 0 1 1 (take 2’s complement)

 1 0 1 0 1 1

Parallel Subtraction:

· The subtraction A -> B can be done by taking the 2’s complement of B and adding it to A.

· The 2’s complement can be obtained by taking the 1’scomplement and adding one to the least significant pair of bits.

· The 1’s complement can be implemented with inverters and a one can be added to the sum through the input carry to get 2’s complement .

[image: image54.jpg]B A B A& By Ao
Cout Full Full Full
4 Adder Adder Adder
S s S

Addition/Subtraction logical unit:

· Hardware implementation for integer addition and subtraction. IT consists of n-bit adder, 2’s complement circuit, overflow detector logic circuit and AVF(overflow flag).

· Number a and b are the inputs for the n-bit adder.

Addition operation:

· To add a and b, the add or subtract control line is set to Zero.

· Number b is given as one of the input to the n-bit adder along with the carry in signal C0 = 0 and added with number a.

Result: R = a + b + o
Subtraction operation:

· To subtract a and b, the add or subtract control line is said to one.

· Number b is converted into 2’complement form (i.e) all bits of number b are complemented and added with carry in signal C0 = 1.

Result : R = a + b + 1

Overflow in integer Arithmetic:

Overflow can occur only when adding two numbers with same sign.

The carry bit from the MSB position is not sufficient indicator of overflow when adding signed numbers.

When both operands a and b have the same sign, an overflow occurs when the sign of result does not agree with sign of a and b.

AVF : Add overflow flip flop holds the overflow bit when A & B are added.

The logical expression to detect overflow can be given as:

Overflow = an-1 bn-1 Rn-1 + an-1 bn-1 Rn-1
Where:

an-1 = MSB of number a

bn-1 = MSB of number b

Rn-1 = MSB of the result
Overflow detector logic circuit:

Example:

Both numbers positive:

+7
0 1 1 1

+3
0 0 1 1

1 0 1 0 (take 2’complement 1 0 1 0 = 0 1 1 0)

Result is -6, It is wrong due to overflow

Step 1: As & Bs are compared by a XOR gate.

Step 2 : if output =0 sign are identical, If Ouput =1 signs are different.

Step 3 : for addition operation same signs dictate addition of magnitudes.

Addition operation

Step 1: Magnitudes are added with a micro operation. EA
A+B [EA register combine A & E]

step 2: If E=1 overflow occurs and its transfer to AVF

Subtraction operation

Step1: Subtraction different sign dictate subtraction of magnitude.

Step 2: magnitudes are subtracted with a micro operation EA

A-B+1. No overflow occurs so AVF =0.

Step 3 : if overflow occurs E=1 indicates A>=B and the number in A is correct result E=0 indicates A<B. so we takes 2’s complement of A

Example : give any cases of addition and subtraction operation

3. Define Booth’s Multiplication algorithm with suitable examples.(May/June 2016)

Multiplication of unsigned (positive) Numbers

· Multiplication is a complex operation than addition and subtraction.

· It can perform in hardware and software.

· The multiplication processor involves generation of partial products, one for each digit in the multiplier.

· When multiplier bit is 0 , the partial product is 0.

· When multiplier bit is 1 , the partial product is the multiplicand.

· Final product is produced by adding the partial products.

Example:

 1011 Multiplicand (11 dec)
 x 1101 Multiplier (13 dec)

 1011 Partial products
 0000 Note: if multiplier bit is 1 copy
 1011
 multiplicand (place value)
 1011
 otherwise zero
 10001111 Product (143 dec)
 Note: need double length result
Hardware implementation of unsigned binary multiplication:

· The implementation of manual multiplication approach.

· It consists of n-bit binary adder, shift and add control logic and four register A, B, C and Q.

[image: image55.png]Add Shift and Add
Control Logic

n-Bit Adder

‘Shift Right

(A b—pQa] - - - T0]

Multplier

(@) Block Diagram

c A Q M
0 0000 1101 1011 Initial Values

0 1011 1101 1011 Add } First

0 0101 1110 1011 shift § Cycle
. Second
0 0010 1111 1011 Shift ¢ cycle

0 1101 1111 1011 Add }_Thifd
0 0110 1111 1011 shift J Cycle

1 0001 1111 1011 Add }_ Fourth
0 1000 1111 1011 Shift Cycle

(b) Example from Figure 8.7 (product in A,

Figure 8.8 Hardware Impleme;
Unsigned Binary Multiplication

Multiplier and multiplicand are loaded into Q and B register, respectively C are initially set to 0.

Flow chart: (Algorithm)

Step1: Load multiplicand and multiplier in B and Q register and set zero initially to A & C registers.

Step 2: check Q register

Step 3: If Q0 = 1, then add multiplicand and partial product and then shift all the bits of

 A, C, Q in right side of one bit. So, C bit goes to An-1 , A0 goes to Qn-1 and Q0 is

 lost.

If Q0 = 0, shift all the bits of A, C, Q register in right side of one bit (no need for addition)

Step 4: Repeat the step2 and step3 in n times to get the desired result in the A & Q

 register.

[image: image56.png]CA 0
M Multiplicand
Q Multiplier

Count n

CA A+M

Shift C, A, Q
Count Count

Figure 89 Flowchart for Unsigned Binary Multiplication

Example:

Multiplicand (13) = 1101 and multiplier (11) = 1011

B

C

 A3 A2 A1 A0
 Q3 Q2 Q1 Q0

Count= 4

Count =3
 add

shift

Count=2
 add

shift

Count =1

shift

Count=0
 add

Shift

Signed(negative) multiplication - Booth’s Algorithm :

· A powerful algorithm for sign multiplication is a booth algorithm.

· This algorithm used to reduce number of operations required for multiplication by representing multiplier as a difference between 2 numbers.

Three Schemes used in Booth’s Algorithm:

1. Booth algorithm recording schemes

2. Hardware implementation of booth’s algorithm

3. Bit pair recording schemes

Booth algorithm recording schemes:

· +1 times the shifted multiplicand is selected when moving from 0 to 1.

· -1 times the shifted multiplicand is selected when moving from 1 to 0.

· 0 times the shifted multiplicand is selected none of the above two cases.

· Implies 0 to right of the multiplier LSB.

Example:

 1 0 1 1 0 0
implied zero

-1 1 0 -1 0 0 (record multiplier using right shift)

Example: Multiply 0 1 1 1 0 (+14) and multiplier 1 1 0 1 1 (-5)

1 1 0 1 1 (find record multiplier, apply implied 0 and shift the bit)

0 -1 1 0 -1 // record multiplier

Perform multiplication:

0 1 1 1 0 (+14)

0 -1 1 0 -1 (record multiplier of (-5))

 1 1 1 1 1 0 0 1 0 ← 2’s complement (-1 means take 2’s complement of multiplicand)

 0 0 0 0 0 0 0 0 X

0 0 0 1 1 1 0 X X

 1 1 0 0 1 0 X X X ← 2’s complement

 0 0 0 0 0 X X X X

 1 1 0 1 1 1 0 1 0 (-70)

14 * -5 =-70

-70 take 2’s complement

256 128 64 32 16 8 4 2 1

 0 0 1 0 0 0 1 0 0 ← 70

 1 1 0 1 1 1 0 1 1 ← 1’s complement

+1 ← 2’s complement

 1 1 0 1 1 1 0 1 0
(-70)

Hardware implementation of booth’s algorithm:

The Booth’s algorithm can be implemented as shown.It consists of n-bit adder, shift, add subtract control logic and four registers A, B, Q, Q-1
Multiplier and multiplicand are loaded into register Q and register B, respectively.

Register A and Q-1 are initially set by 0.

Sequence counter (SC) is set to number n equal to number of bits in the multiplier.

The n-bit adder performs addition of two inputs. One is A register and other is multiplicand.

Addition operation:

Add/Sub line is set 0 ,therefore cin =0 and multiplicand is directly applied as a second input A register to the n-bit adder.

Subtraction operation:

Add/Sub line is set 1 ,therefore cin =1 and multiplicand is complemented and then to the n-bit adder. The complement of multiplicand is added in the A register.

The shift , add and subtract control logic scans bits Q0 and Q-1 one at a time and generates the control signals

Truth table for shift , add, and subtract control logic:

	Q0
	Q-1
	Add/Sub
	Add/Sub Enable
	Shift

	0
	0
	X
	0
	1

	0
	1
	0
	1
	1

	1
	0
	1
	1
	1

	1
	1
	X
	0
	1

Flow chart: (algorithm)

The sequence of events in booth’s algorithm can be explained with the help of flowchart and algorithm.

Step 1: Load multiplicand and multiplier B and Q register and initially set zero in A &

 Q-1 register

Step 2: check the status of Q0 , Q-1,

if Q0 Q-1 =10 perform A← A- B

if Q0 Q-1 =01 perform A← A + B

if Q0 Q-1 =00 or 11 perform shift operation

Step 3: Arithmetic shift right operation perform from A,Q,Q-1 registers. And decrement Sequence Count (SC) by 1.

Step 4: check count. If count is zero end the process. Else repeat steps 2 and 3

[image: image57.png]A 0Q, 0
M Multiplicand
Q Multiplier
Count n

A A+M

Arithmetic Shift
Right: A,Q, Q.
Count__ Count

Figure 8.12 Booth's Algorithm for Twos Complement Multiplication

Example:

Multiplicand (5) and multiplier (-4)

5 = 0 1 0 1

4 =
0 1 0 0 (Take 2’ complement) [0 1 0 0 = 1 0 1 1 +1 = 1100 (Answer)

B

 A3 A2 A1 A0
 Q3 Q2 Q1 Q0

 Q-1
Count= 4

Count =3
 Shift

Count=2
 Shift

 Sub(A-B)

 Shift

Count=1

Count = 0
Shift

Final product : 1 1 1 0 1 1 0 0 (-20)

4 * 5 = 20 0 0 0 1 0 1 0 0

 1’ s complement 1 1 1 0 1 0 1 1

2’s complement

 1

1
1
1 0 1 1 0 0

Bit pair recording schemes:

· To speed up the multiplication process in the Booth’s algorithm a technique called bit pair recording.

· It is also called modified Booth’s algorithm.

· Booth recorded multiplier bits are grouped in pairs.

Steps:

· implies zero in multiplier and perform right shift operation get the recoding multiplier

· if -1 perform 2 complement of multiplicand

· if +2 perform left shift operation

· if -2 perform left shift operation and take 2’compelment you get the rsult

Truth table:

[image: image58.png]+

RRRROOOO

RROORKROO

LOROROKRO

add

o*M
a*m
a1+ m
2*mM
—2*M
—a1*M
—1*M
O * N1

Example: 15 * -10 [15 = 01111 , -10 =10110]

0 1 1 1 1 (+15)

-1 +2 -2 (record multiplier of (-10))

 1 1 1 1 1 0 0 0 1 0 ←(-2 : left shift and take 2’s complement of multiplicand)

 0 0 0 1 1 1 1 0 X X ←(+2 : left shift of multiplicand)

 1 1 0 0 0 1 X X X X ←(-1 : 2’s complement)

 1 1 0 1 1 0 1 0 1 0
 (-150)

4. Discuss in detail about division algorithm in detail with diagram and example.

(Nov/Dec 2016, Nov/Dec 2015, Nov/Dec 2014)

· The reciprocal operation of multiply is divide.

· The division process for binary numbers is similar to the decimal numbers.

· Divide’s two operands called dividend and divisor and the results called quotient and remainder.

Formula:

Division processor:

· The bit of divided are examined from left to right, until the set of bits examined represents a number greater than or equal to the divisor.

· The condition occurs, 0’s are placed in the quotient from left to right.

· The condition is satisfied, 1 is placed in the quotient and the divisor is subtracted from partial dividend.

· The result is referred to as a partial remainder.

Example:

[image: image59.png]00001101
Divisor —= 1011 | 10010011
1011
Partial OOL110

| < 1011
Remainders

001111
1011

100

Quotient

Dividend

Remainder

Types of division Algorithm:

1. Restoring Division Algorithm.

2. Non Restoring Division Algorithm.

Restoring Division Algorithm:

· The hardware implementation for resorting division.

· It consists of n+1 bit binary adder, shift, add and subtract control logic and registers A, B & Q

[image: image60.png]

· Dividend and divisor are loaded into register B and Register Q.

· Register A is initially set to zero

· Division operation is carried out.

· After the division is completed, the n bit quotient is in register & the remainder is in register A.

Flow chart:

Step 1: Load dividend and divisor Q and B register and initially set zero in A register

Step 2: Shift A & Q left one binary position

Step 3: Subtract divisor (add 2’s complement of divisor (B)) from A & place answer back in A (A← A-B)

Step 4: In the sign bit of A is 1, set Q0 to 0 & add divisor back to A (that is , resorted); otherwise , set q0 to 1.

Step 5: Repeat steps 2 and 4 n times.

[image: image61.png]Ao
M ¢ Divisor
Q¢ Dividend|
Count n

\Mm/ Yes
Qp0
Qet AcAsM

Figure 9.16 Flowchart for Unsigned Binary Division

Example:

Dividend = 10 (1010)

Divisor = 3 (0011) (if it is negative value take Take two complements (0 0 1 1= 1 1 0 0 +1 = 1 1 0 1)

B

A4 A3 A2 A1 A0
 Q3 Q2 Q1 Q0

Count= 4

Left Shift

 Sub(A-B) set Q0

Set Q0=0

Count = 3 Add(A+B)

Shift

 Sub (A-B)

Set Q0=0

Count =2
 Add(A+B)

shift

Sub(A-B)

Set Q0=1

Count = 1

Shift

Sub

Set Q0=1

Count=0

Remainder (1)

Quotient (3)

Final product : (10/ 3) remainder =1 and quotient = 3

Non –Restoring Division Algorithm:

· The hardware implementation for resorting division.

· It consists of n+1 bit binary adder, shift, add and subtract control logic and registers A, B & Q.

Draw Restoring Division algorithm diagram:

· Dividend and divisor are loaded into register B and Register Q.

· Register A is initially set to zero

· Division operation is carried out.

· After the division is completed, the n bit quotient is in register & the remainder is in register A.

Flow Chart:

Step 1: Load dividend and divisor Q and B register and initially set zero in A register

Step 2: If the sign bit of A is 0, shift A and Q left one bit position and subtract division from

 A; otherwise, shift A and Q left and add divisor to A. If the sign bit of A is 0 set Q0 to 1

 ; otherwise set Q0 to 0Shift A & Q left one binary position

Step 3:Repeat steps 1 and 2 for n times.

Step 4: In the sign bit of A is 1, add divisor to A.

[image: image62.png]SHIfE 1eft A0
A< am

SRITE 1eft A0
A<amn

Example: dividend = 11 (1011) and divisor =5 (0101)

B

A4 A3 A2 A1 A0
 Q3 Q2 Q1 Q0

Count= 4

Left Shift

 Sub(A-B) set Q0

Set Q0=0

Count = 3

Shift

 Add (A+B)

Set Q0=0

Count =2

 Add(A+B)

shift

Add(A+B)

Set Q0=1

Count = 1

Shift

Sub(A – B)

Set Q0=0

Count=0
Add(A+B)

Remainder (1)

Quotient (3)

Final product : (11/ 5) remainder =1 and quotient = 3

5. Explain briefly about Floating Point Representation.

The binary point is said to float and the number s are called floating point number.

It has represented 3 fields:

· Computers use a form of scientific notation for floating-point representation

· Computer representation of a floating-point number consists of three fixed-size fields:

[image: image63.png]Sign

· Sign Field : The one-bit sign field is the sign of the stored value.
· Exponents Field: The size of the exponent field determines the range of values that can be represented.

· Significant Field : The size of the significant determines the precision of the representation

Example:

1.11101010110 X 24

In this the

Sign filed = 0

Mantissa field= 11101010110

Exponent field = 4

Scaling factor = 2

IEEE Standard for floating point numbers:

· The IEEE has established a standard for floating-point numbers.

· Institute of Electrical and Electronics Engineering

· IEEE format can be represent in two precisions.

Two precisions:

1. Single precision

2. Double precision

Single precision:

· The IEEE-754 single precision floating point standard occupies a single 32 bit words.

 31
30

 22

0

	 S
	 E’
	 M

S : sign of number. 0- signifies +ve, 1- signifies –ve

E’ : 8 bit signed exponent in excess-127 representation.

M : 23 bit mantissa fraction

Double precision:

· The IEEE-754 double precision occupies a two 32 bit words.

 63
62

 52 51

0

	 S
	 E’
	 M

S : sign of number. 0- signifies +ve, 1- signifies –ve

E’ : 11 bit signed exponent in excess-1023 representation.

M : 52 bit mantissa fraction

Example: Represent - 125.125 10 in single precision and double precision formats.

Step1: convert decimal number in binary format.

2 125

0. 125 * 2 = 0 . 250

LSD

2 62
- 1
LSD

0. 25 * 2 =
0. 50

2 31 - 0

0.50 * 2 = 1.00

MSD

2 15 - 1
(0 0 1)2
2 7 - 1

2 3 - 1

 1 - 1
MSD

(1 1 1 1 1 0 1)2

- 125.125 10 = (1 1 1 1 1 0 1 . 0 0 1) 2
Step 2 : Normalize the number

(1 1 1 1 1 0 1 . 0 0 1) 2 = 1. 1 1 1 1 0 1 0 0 1 * 2 6

Step 3 : single precision

 S =1 (-ve sign) , E = 6 ,M =1 1 1 1 0 1 0 0 1

Bias for single precision format is = 127

E’ = E +127 = 6 + 127 =133 10

Convert binary (133)= 10001001 2

 sign exponent

Mantissa

Step 4:

 S =1 (-ve sign) , E = 6 ,M =1 1 1 1 0 1 0 0 1

Bias for single precision format is = 1023

E’ = E +1023 = 6 + 1023 =1029 10

Convert binary (133)= 10000001001 2

 sign exponent

Mantissa

Exception:

IEEE standards, the processor sets flags if underflow and overflow

Overflow:

· A situation in which a positive exponent becomes too large to fit in the exponent field.

· In single precision , if the number requires an exponent greater than +127

· In double precision , if the number requires an exponent greater than +1023

underflow :

· A situation in which a negative exponent becomes too large to fi t in the exponent
 field.
· In single precision , if the number requires an exponent less than -126

· In double precision , if the number requires an exponent less than -1022
Floating point Addition:

Consider 2 floating point numbers

A = m1. Re 2

B = m2. R e2

Rules for addition and subtraction:

Step 1: select the number with smaller exponent & shift its mantissa right equal to the difference in exponent.

Step 2: set the exponent of the result equal to the larger exponent.

Step3: perform addition or subtraction on the mantissa and determine the sign of the result.

Step 4: Normalize the result if necessary.

Step 5: round the number (4 digits long)

Flow chart:
[image: image64.png]L 2

Shift the smaller number to the right until its
exponent would match the larger exponent

1. Compare the exponents of the two numbers.

]

2. Add the significands

—]
L]

3. Nomalize the sum, either shifting right and
incrementing the exponent or shifting left
and decrementing the exponent

No
L]

Exception

4. Round the significand to the appropriate
number of bits

FP Adder Hardware:
[image: image65.png]Sign | Exponent Fraction Sign | Exponent Fraction
Y A
Compare
Small ALU
exponents
!
Exponent
difference
Y v Y Vv \
(o1)=y »Co 1) I—»@ 1)
Y
Y
Shift smaller
Control Shift right number right
AA v
Big ALU Add
\ i Y
0 1 0 1
Increment or > . y
decrement Shift left or right Normalize
T
#-| Rounding hardware Round

A

-

Sign

Exponent

Fraction

The harware implementation for the addition and subtraction of 32 bit floating point operation.

1 bit sign, 8 bits for exponent and 23 bits for mantissa.

· The steps of flow chart correspond to each block, from top to bottom.

· First, the exponent of one operand is subtracted from the other using the small ALU to determine which is larger and by how much.

· This difference controls the three multiplexors; from left to right, they select the larger exponent, the significand of the smaller number, and the significand of the larger number. The smaller significand is shifted right, and then the significands are added together using the big ALU.

· The normalization step then shift s the sum left or right and increments or decrements the exponent.

· Rounding then creates the final result, which may require normalizing again to produce the actual final result.
Example: Add the number 1.75 X 10 2 and 6.8 X 10 4

step 1: 1.75 X 10 2 (select the smaller exponent)

 0.175 X 10 3 (shift the point right and increment the power by 1)

 0.0175 X 10 4 (shift the point right and increment the power by 1)

Step 2 : Addition of the significance (mantissa)

0.0 1 7 5

6.8 0 0 0

6.8 1 7 5

Step 3: Normalize the result

6.8 1 7 5 X 10 4
Step 4: round of the sum

6.8 1 8 X 10 4
Binary floating point addition

Example: Subtract the number 0.5 ten and -0.4375 ten

Convert decimal to binary first:

0.5 X 2 = 1.0

0.1 X 2 0 (shift the point left and decrement the power by 1)
1.0 X 2 -1 // normalization

0.4375 X 2 =
.8750

0.875 X 2 =
.750

0.75 X 2 =

.50

0.5 X 2 =

.0

 - 0. 0111 x 2 0 (shift the point left and decrement the power by 1)

- 1.11 X 2 -2 // normalization

step 1: - 1.110 X 2 -2 (select the smaller exponent)

 - 0.111 X 2 -1 (shift the point right and increment the power by 1)

Step 2 : Addition of the significant (mantissa)

 1.000 X 2 -1 // normalization

- 0.111 X 2 -1 // take 2’ complement answer // 1.001)

Add the number:

1.000 X 2 -1

1.001 X 2 -1
 1 0.001 X 2 -1 [discard the carry)
Step 3: Normalize the result
0.001 X 2 -1 (shift the point left and decrement the power by 1)

00.01 X 2 -2 (shift the point left and decrement the power by 1)

000.1 X 2 -3

 1.00 X 2 -4

Step 4: round of the sum: 1.00 X 2 -4

Floating point multiplication:

Rules for Multiplication:

Step 1: Adding the exponent without bias and with bias. And subtract new exponents with bias and bias(127)

Step 2 : multiplication of significant.

Step 3: normalize the result

Step 4: round the product.

Step 5: place the sign in the final product

Flow chart:

[image: image66.png]Start

i

Add Exponents
Multiply Fractions

Shift F Left
E<=E-l

Set Indicator

Done

Example: multiply the number 1.110 X 1010 and 9.200 X 10 -5

step 1: Add two exponents without bias

 10 + (-5) = 5

Add two exponents with bias (127)

 10 + 127 = 137

 -5 + 127 = 122

 Add 259

Subtract both new exponents with bias and bias(127):

 259 – 127 = 132

Step 2: Multiply the significance (1.110 * 9.200)

 1110

 9200

0000

 0000x

 2220xx

 9990xxx

 10212000

Product is 10.212000 x10 5 (place the point and add the exponent)
Step 3: normalize the result:

10.212000 x 10 5

1.0212000 x 10 6
Step 4: round the result:

1.0212 x 10 6
Step 5: place the sign in the product:

+ 1.0212 x 10 6
Binary floating point addition

Example: multiply the number 0.5 ten and -0.4375 ten

Convert decimal to binary first:

0.5 X 2 = 1.0

0.1 X 2 0 (shift the point left and decrement the power by 1)
1.0 X 2 -1 // normalization

0.4375 X 2 =
.8750

0.875 X 2 =
.750

0.75 X 2 =

.50

0.5 X 2 =

.0

 - 0. 0111 X 2 0 (shift the point left and decrement the power by 1)

- 1.11 X 2 -2 // normalization

step 1: Add two exponents without bias

-1 + (-2) = - 3

Add two exponents with bias (127)

 -1 + 127 = 126

 -2 + 127 = 125

 Add 251

Subtract both new exponents with bias and bias(127):

 251 – 127 = 124

Step 2: Multiply the significance (1.0 * 1.11)

1.11

 10

1.110

Product is 1.110 x10 -3 (place the point and add the exponent)
Step 3: normalize the result:

1.110 x10 -3
Step 4: round the result:

1.110 x10 -3
Step 5: place the sign in the product:

- 1.110 x10 -3
Floating point Division:

Step 1: Subtract the exponent without bias and with bias. And add new exponents with bias and bias (127)

Step 2 : Divide the significant.

Step 3: normalize the result

Step 4: round the product.

Step 5: place the sign in the final product

Flow chart

[image: image67.png]START

READOPERIDS

ST oNDE
CROGODE

24

"EXEBUTEGAOCDE

L] f

ATy il
0]

Wt
| S

L T

Example: multiply the number 1.110 X 107 and 9.200 X 10 -5

step 1: sub two exponents without bias

 7 - (-5) = -12

sub two exponents with bias (127)

 7 - 127 = -120

 -5 - 127 = -132

 Sub 12 (-120)-(-132)=(-120 + 132) = 12

Add both new exponents with bias and bias(127):

 12 + 127 = 139

Step 2: Divide the significance (1.110 / 9.200)

After normal division the answer is = 0.1206 x 10 -12
Product is 10.212000 x10 5 (place the point and add the exponent)
Step 3: normalize the result:

0.1206 x 10 -12

1.206 x 10-13
Step 4: round the result:

1.20 x 10-13
Step 5: place the sign in the product:

+1.20 x 10-13

6. What is the disadvantages of Ripple carry addition and how it is overcome in CARRY LOOK AHEAD ADDER (CLA). (Nov/Dec 2016)

· Carry look ahead adder or fast adder is a type of adder used in digital logic.

· It improves speed by reducing the amount of time required to determine carry bits

· The sum and carry output of any stage cannot be produced until the input carry occurs. This time delay is known as carry propagation delay.

Design Issues:
In the carry-look ahead circuit we need to generate the two signals carry propagator(P) and carry generator(G),

 Pi = Ai ⊕ Bi
 Gi = Ai · Bi
The output sum and carry can be expressed as

Sumi = Pi ⊕ Ci
Ci+1 = Gi + (Pi · Ci)
Carry vector: equation for

C1 = G0 + P0 · C0
C2 = G1 + P1 · C1 = G1 + P1 · G0 + P1 · P0 · C0
C3 = G2 + P2 · C2 = G2 P2 · G1 + P2 · P1 · G0 + P2 · P1 · P0 · C0
C4 = G3 + P3 · C3 = G3 P3 · G2 P3 · P2 · G1 + P3 · P2 · P1 · G0 + P3 · P2 · P1 · P0 · C0
Design of Carry Look ahead Adders:

To reduce the computation time, there are faster ways to add two binary numbers by using carry lookahead adders.

They work by creating two signals P and G known to be Carry Propagator andCarry Generator.

The carry propagator is propagated to the next level whereas the carry generator is used to generate the output carry, regardless of input carry.

The block diagram of a 4-bit Carry Lookahead Adder is shown here below

The number of gate levels for the carry propagation can be found from the circuit of full adder.

The signal from input carry Cin to output carry Cout requires an AND gate and an OR gate, which constitutes two gate levels.

So if there are four full adders in the parallel adder, the output carry C5would have 2 X 4 = 8 gate levels from C1 to C5. For an n-bit parallel adder, there are 2n gate levels to propagate through.

UNIT-III PROCESSOR AND CONTROL UNIT
1. What is meant by data path element?
A data path element is a unit used to operate on or hold data within a processor. In

the MIPS implementation, the data path elements include the instruction and data memories, the register file, the ALU, and adders.

2. What is the use of PC register?
Program Counter (PC) is the register containing the address of the instruction in

the program being executed.

3. What is meant by register file?
The processor’s 32 general-purpose registers are stored in a structure called a

register file. A register file is a collection of registers in which any register can be read or written by specifying the number of the register in the file. The register file contains the register state of the computer.

4. What are the two state elements needed to store and access an instruction?
[image: image68.png]Instruction
address

b. Program counter

. Adder

Two state elements are needed to store and access instructions, and an adder is needed to compute the next instruction address. The state elements are the instruction memory and the program counter.

5. Draw the diagram of portion of datapath used for fetching instruction.
[image: image69.png]Instructior
memory

Instruction

A portion of the data path is used for fetching instructions and incrementing the program counter. The fetched instruction is used by other parts of the data path.

6. Define – Sign Extend
Sign-extend is used to increase the size of a data item by replicating the high-

order sign bit of the original data item in the high order bits of the larger, destination data item.

7. What is meant by branch target address?
Branch target address is the address specified in a branch, which becomes the new

program counter (PC) if the branch is taken. In the MIPS architecture the branch target is given by the sum of the off set field of the instruction and the address of the instruction following the branch.

8. Differentiate branch taken from branch not taken.
Branch taken is a branch where the branch condition is satisfied and the program

counter (PC) becomes the branch target. All unconditional jumps are taken branches.

Branch not taken or (untaken branch) is a branch where the branch condition is false and the program counter (PC) becomes the address of the instruction that sequentially follows the branch.

9. What is meant by delayed branch?
Delayed branch is a type of branch where the instruction immediately following

the branch is always executed, independent of whether the branch condition is true or false.

10. What are the three instruction classes and their instruction formats?
The three instruction classes (R-type, load and store, and branch) use two different instruction formats.

11. Write the instruction format for the jump instruction.
The destination address for a jump instruction is formed by concatenating the

upper 4 bits of the current PC + 4 to the 26-bit address field in the jump instruction and adding 00 as the 2 low-order bits.

[image: image70.png]Field

Bit positions

000010

address

31:26

25:0

12. What is meant by pipelining?
Pipelining is an implementation technique in which multiple instructions are

overlapped in execution. Pipelining improves performance by increasing instruction throughput, as opposed to decreasing the execution time of an individual instruction.

13. What are the five steps in MIPS instruction execution?
1. Fetch instruction from memory.

2. Read registers while decoding the instruction. The regular format of MIPS

instructions allows reading and decoding to occur simultaneously.

3. Execute the operation or calculate an address.

4. Access an operand in data memory.

5. Write the result into a register.

14. Write the formula for calculating time between instructions in a pipelined processor.
[image: image71.png]Time between Instruction o, pivelined

Time between INStructions y;,ejined = -
Number of pipe stages

15. What are hazards? Write its types. (Nov/Dec 2015)
There are situations in pipelining when the next instruction cannot be executed in

the following clock cycle. These events are called hazards, and there are three different types.

1. Structural Hazards

2. Data Hazards

3. Control Hazards

16. What is meant by forwarding?
Forwarding, also called bypassing, is a method of resolving a data hazard by

retrieving the missing data element from internal buffers rather than waiting for it to arrive from programmer visible registers or memory.

17. What is pipeline stall?
Pipeline stall, also called bubble, is a stall initiated in order to resolve a hazard.

They can be seen elsewhere in the pipeline.

18. What is meant by branch prediction?(Nov/Dec 2015)
Branch prediction is a method of resolving a branch hazard that assumes a given outcome for the branch and proceeds from that assumption rather than waiting to ascertain the actual outcome.

19. What are the 5 pipeline stages?
The 5 stages of instruction execution in a pipelined processor are:

1. IF: Instruction fetch

2. ID: Instruction decode and register file read

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

20. What are exceptions and interrupts?(May/June 2016,Nov/Dec 2014)
Exception, also called interrupt, is an unscheduled event that disrupts program

execution used to detect overflow. Eg. Arithmetic overflow, using an undefined instruction.

Interrupt is an exception that comes from outside of the processor.

Eg. I/O device request

21. Define – Vectored Interrupts
Vectored interrupt is an interrupt in that the address to which the control is

transferred is determined by the cause of the exception.

22). Explain MDR and MAR.
The data and address lines of the external memory bus connected to the internal processor bus via the memory data register, MDR, and the memory address register, MAR, respectively. Register MDR has two inputs and two outputs. Data may be loaded into MDR either from the memory bus or from the internal processor bus. The data stored in MDR may be placed on either bus. The input of MAR is connected to the internal bus, and its output is connected to the external bus.

 23) Name two special purpose registers.

· Index register

· Stack pointer

24) Define data path. (Nov/Dec 2016)

The registers, the ALU, and the interconnecting bus are collectively referred to as the data path.

25) Describe the two control signals used for register transfer.

For each register, two control signals are used to place the contents of that register on the bus or to load data on the bus into the register. The input and output of register Ri are connected to the bus via switches controlled by the signals Riin and Riout, respectively. When Riin is set to 1, the data on the bus are loaded into Ri. Similarly, when Riout is set to 1, the contents of register Ri are placed on the bus. While Riout is equal to 0, the bus can be used for transferring data from other registers.

26) Define processor clock.

Processor clock is defined as the time periods in which all operations and data transfers with in the processor take place.

27) What is known as multiphase clocking?

When edge-triggered flip flops are not used, two or more clock

28) Define MFC.

To accommodate the variability in response time, the processor waits until it receives an indication that the requested read operation has been completed. The control signal used for this purpose is known as Memory-Function-Completed (MFC).

29) What is WMFC?

WMFC is the control signal that causes the processor’s control circuitry to wait for the arrival of the MFC signal.

30) What is mean by branch instruction? (Nov/Dec 2015)

A branch instruction is an instruction which replaces the contents of the PC with the branch target address. This address is usually obtained by adding an offset X, which is given in the branch instruction, to the updated value of the PC. The location following a branch instruction is called a branch delay slot.

31) Define register file.

All general purpose registers are combined into a single block called the register file.

32) What are the two approaches used for generating the control signals in proper sequence?

· Hardwired control

· Micro programmed control

33) What are the factors determine the control signals?

· 1.Contents of the control step counter

· 2.Contents of the instruction register

· 3.Contents of the condition code flags

· 4.External input signals, such as MFC and interrupt requests

34) Explain hardwired control.

The control hardwire can be viewed as a state machine that changes from one state to another in every clock cycle, depending on the contents of the instruction register, the condition codes, and the external inputs. The outputs of the state machine are the control signals. The sequence of operations carried out by this machine is determined by the wiring of the logic elements, hence the name “hardwired”

35) What are the features of the hardwired control?

A controller that uses this approach can operate at high speed. It has little flexibility and the complexity of the instruction set it can implement is limited.

36) What is control word?

A control word is a word whose individual bits represent the various control signals.

37) Define micro routine and microinstruction.

A sequence of control words corresponding to the control sequence of a machine instruction constitutes the micro routine for that instruction, and the individual control words in this micro routine are referred to as microinstructions.

38) What is control store?

The micro routines for all instructions in the instruction set of a computer are stored in a special memory called the control store.

39) What is the drawback of assigning one bit position to each control signal?

Assigning individual bits to each control signal results in long microinstructions because the number of required signals is usually large. Moreover, only a few bits are set to 1in any given microinstruction, which means the available bit space is poorly used.

40) Name some register output control signals.

Pcout, MDRout, Zout, Offsetout, R0out, R1out, R2out, R3out, and TEMPout

41) What is vertical organization and horizontal organization?

Highly encoded schemes that use compact codes to specify only a small number of control functions in each microinstruction are referred to as a vertical organization. On the other hand, the minimally encoded scheme in which many resources can be controlled with a single microinstruction is called a horizontal organization.

42) Explain bit-O-Ring technique.

The micro program shows that branches are not always made to a single branch address. This is a direct consequence of combining simple micro routines by sharing common parts. Consider a point in the micro program sequencing. At this point, it is necessary to choose between actions required by direct and indirect addressing modes. If the indirect mode is specified in the instruction, then the microinstruction in the location 170 is performed to fetch the operand from the memory. If the direct mode is specified, this fetch must be bypassed by branching immediately to location 171. The most efficient way to bypass microinstruction 170 is to have the preceding branch microinstructions specify the address 170 and then use an OR gate to change the least significant bit of this address to 1if the direct addressing mode is involved. This is known as the bit-Oring technique for modifying branch addresses.

43) What is the drawback of micro programmed control?

It leads to a slower operating speed because of the time it takes to fetch microinstructions from the control store.

44) Define emulation.

Given a computer with a certain instruction set, it is possible to define additional machine instructions and implement them with extra micro routines. Emulation allows us to replace obsolete equipment with more up to date machines. If the replacement computer fully emulates the original one, then no software changes have to be made to run existing programs. Thus, emulation facilitates transitions to new computer systems with minimal disruption.

45) Define pipelining.

Pipelining is an effective way of organizing concurrent activity in a computer system. The processor executes the program by fetching and executing instructions, one after the other.

46) Name the four steps in pipelining.

· Fetch: read the instruction from the memory.

· Decode: decode the instruction and fetch the source operand. Execute: perform the operation specified by the instruction. Write: store the result in the destination location.

47) What is the use of cache memory?

The use of cache memories solves the memory access problem. In particular, when a cache is included on the same chip as the processor, access time to the cache is usually the same as the time needed to perform other basic operations inside the processor. This makes it possible to stages, and the clock period is chosen to correspond to the longest one.

48) What is data hazard?

Any condition that causes the pipeline to stall is called a hazard. A data hazard is any condition in which either the source or the destination operands of an instruction are not available at the time expected in the pipeline. As a result some operation has to be delayed, and the pipeline stalls.

49) What are instruction hazards? (Nov/Dec 2015)

The pipeline may also be stalled because of a delay in the availability of an instruction. For example, this may be a result of a miss in the cache, requiring the instruction to e fetched from the main memory. Such hazards are often called control hazards or instruction hazards.

50) What are called stalls?

An alternative representation of the operation of a pipeline in the case of a cache miss gives the function performed by each pipeline stage in each clock cycle. The periods in which the decode unit, execute unit, and the write unit are idle are called stalls. They are also referred to as bubbles in the pipeline.

51) What is structural hazard?

Structural hazard is the situation when two instructions require the use of a given hardware resource at the same time. The most common case in which this hazard may arise is in access to memory.

52) What is said to be side effect?

When a location other than one explicitly named in an instruction as a destination operand is affected, the instruction is said to have a side effect.

53) What is dispatch unit?

A separate unit which we call the dispatch unit, takes instructions from the front of the queue and sends them to the execution unit. The dispatch unit also performs the decoding function.

54) What is branch folding?

The instruction fetch unit has executed the branch instruction concurrently with the execution of other instructions. This technique is referred to as branch folding.

55) What is delayed branching?

Instructions in the delay slots are always fetched. Therefore, we would like to arrange for them to be fully executed whether or not the branch is taken. The objective is to be able to place useful instructions in these slots. If no useful instructions can be placed in the delay slots, these slots must be filled with NOP instructions.

56) Define speculative execution. (Nov/Dec 2014)

Speculative execution means that instructions are executed before the processor is certain that they are in the correct execution sequence. Hence, care must be taken that no processor registers or memory locations are updated until it is confirmed that these instructions should indeed be executed. If the branch decision indicates otherwise, the instructions and all their associated data in the execution units must be purged, and the correct instructions fetched and executed.

57) What is called static and dynamic branch prediction?

The branch prediction decision is always the same every time a given instruction is executed. Any approach that has this characteristic is called static branch prediction. Another approach in which the prediction decision may change depending on execution history is called dynamic branch prediction.

58) What are condition codes?

In many processors, the condition code flags are stored in the processor status register. They are either set or cleared by many instructions, so that they can be tested by subsequent conditional branch instructions to change the flow of program execution.

59) What are superscalar processors?

Several instructions start execution in the same clock cycle, and the processor is said to use multiple issue. Such processors are capable of achieving an instruction execution throughput of more than one instruction per cycle. They are known as superscalar processors.

60) What is imprecise and precise exception?

Situation in which one or more of the succeeding instructions have been executed to completion is called imprecise exception. Situation in which all subsequent instructions that may have been partially executed are discarded. This is called a precise exception.

61) What is commitment unit?

When out-of-order execution is allowed, a special control unit is needed to guarantee in-order commitment. This is called the commitment unit.

62) What is a deadlock?

A deadlock is a situation that can arise when two units, A and B, use a shared resource. Suppose that unit B cannot complete its task until unit A completes its task. At the same time, unit B has been assigned a resource that unit A needs. If this happens, neither unit can complete its task. Unit A is waiting for the resource it needs, which is being held by unit b. at the same time, unit B is waiting for unit A to finish before it can release that resource.

63)What are the advantages of pipelining?(May/June 2016)

The cycle time of the processor is reduced; increasing the instruction throughput. ... The more pipeline stages a processor has, the more instructions it can process "at once" and the less of a delay there is between completed instructions.

64)What is meant by pipeline bubble?(Nov/Dec 2016)

A bubble or pipeline stall is a delay in execution of an instruction in an instruction pipeline in order to resolve a hazard. ... The values are preserved until the bubble has passed through the execution stage.

65)What is a branch prediction buffer?(April/May 2015)

Branch-Prediction Buffer

· General idea:

· Keep a buffer (cache) indexed by the lower portion of the address of the branch instruction.

· Along with some bit(s) to indicate whether or not the branch was recently taken or not.

[image: image72.png]Address modk T/NT

-

-

· If the prediction is incorrect , the prediction bit is inverted and stored back
66)What are R-type instructions? (April/May 2015)

R-type

R-type instructions refer to register type instructions. Of the three formats, the R-type is the most complex.

This is the format of the R-type instruction, when it is encoded in machine code.

	B31-26
	B25-21
	B20-16
	B15-11
	B10-6
	B5-0

	 opcode
	register s
	register t
	register d
	shift amount
	function

The prototypical R-type instruction is:

add $rd, $rs, $rt

where $rd refers to some register d (d is shown as a variable, however, to use the instruction, you must put a number between 0 and 31, inclusive for d). $rs, $rt are also registers.

The semantics of the instruction are;

R[d] = R[s] + R[t]

where the addition is signed addition.

PART-B

1)Explain the Basic MIPS implementation with necessary multiplexers and control lines. (Nov/Dec 2015)

The basic MIPs implementation includes a subset of the core MIPS instruction set.

Every instructions are divided into 3 instruction classes

Instruction classes:

1. Memory Reference Instruction. [load word and store word]

2. Arithmetic and logical instruction [Add, Sub, mul , Or, And ect]

3. Branch instruction. [jump and branch equal]

Overview of the MIPS implementation:

In every instruction, there are two steps which are identical

1. Fetch instruction: fetch the instruction from the memory

2. Fetch operand: select the registers to read
[image: image73.jpg]

Operation:

The program counter: It supply instruction address to the instruction memory.

Instruction memory: After the instruction is fetched, the register operands required by an instruction are specified by fields of that instruction

Register operand: Once the register operands have been fetched, they can be used to compute three classes of instruction.

1. Memory Reference Instruction:

· It uses the ALU for an address calculation.

· After using ALU, memory reference instruction to access the memory either to read data for a load or write data for a store.

2. Arithmetic and logical instruction:

· It uses ALU for the operation execution.

· After completing the execution the Arithmetic and logical instruction must write the data from ALU or memory back into a register.

3. Branch instruction:

· It uses ALU for comparison.

· After comparison, need to change the next instruction address based on the comparison, otherwise Pc should be incremented by 4 to get the address of next instruction.

Multiplexor: The data going to a particular unit comes from two different sources. These data lines cannot be wired together, we must add a device that combine the multiple sources and sent to the destination. Such device called multiplexor (many inputs single output)

Adder: Increment the PC to the address of the next instruction.

Basic implementation of MIPS with Control signals:

[image: image74.jpg]

The multiplexor selects from several inputs’ based on the setting of its control lines.

The control lines are set Based on information taken from the instruction being execute.

Control unit:

Control unit which has the instruction as an input is used to determine the control signals for the function unit and two of the multiplexors.

· The input to the control fields is the 6 bit opcode field from the instruction.

· The output of the control unit consist of three 1-bit signals are used to control multiplexors.

· 3 signals for controlling reads and writes in the register file and data memory.

· 1-bit control signal used in determining for branch

· 2-bit control signal for ALU.

Logic Design Conventions:

In MIPS implementation consists of two different types of logic elements (data path element).

1. Combinational Element

2. State Element

Combinational Element:

· The element that operates on data value such as AND gate or an ALU, which means the output depend only on the current inputs.

State Element:

· A memory element such as register or a memory is called as state element.

· An element contains state if it has internal storage.

· Logical component that contains state are called sequential, because their output depend on both their inputs and the contents of the internal state.

Clocking Methodology:

· It is used to determine when the data is valid and stable relative to the clock.

· It specifies the timing of read and writes.

· A clocking methodology is designed to ensure predictability.

Edge – triggered clocking Methodology:

· Any values stored in a sequential logic element are updated only on a clock edge.

BUILDING DATA PATH:

A data path element is used to operate on or hold data within a processor.

In MIPS implementation, the data path elements include the instruction and data memories, the register files, the ALU and adders.

[image: image75.jpg]

Instruction Memory: A memory unit to store the instruction of a program and supply instructions gives an address.

Program counter: PC is register containing the address of the next instruction in the program.

Adder: Increment the Pc to the address of the next instruction.

Data segments:

There are three data Segments:

1. Data segment for Arithmetic and logical instruction.

2. Data segment for load word and store word instruction.

3. Data segment for branch instruction.

1.Data segment for Arithmetic and logic instruction:

· Arithmetic and logical instruction read operands from 2 registers, perform an Arithmetic and logical operation and write the result to the register.

· These instruction are also called R-format instructions.

[image: image76.png]Instruction

RegVvrite

)

Read Register 1
Register Read

Read register ata 1
File
rite register oo

Data
rite Data

ALU control

l

ALU

= overflow
> zero

R- format instruction:

· R- format instruction have three register operands. 2 source operand and 1 destination operand.

· It include add, sub, AND, OR and slt.

· Example: OR $t1, $t2, $t3

The register files:

· In MIPS processor stores 32 general purpose register this structure called register file

· It is a collection of register.

· It contains the register state of computer.

Read registers:

· To read data words, we need to specify the register number to the register file.

Write Register: To write data words, we need two inputs.

1. To specify the register number to be written.

2. To supply the data to be written into the register.

Register write:

· It is a write control signal.

· It control write operation.

· If the signal is edge triggered, to perform write operation.

· If the signal is earlier clock cycle, to perform read operation.

2.Data Segment for load word and store word instruction:

The general form of load word and store word instruction in MIPS processor are

Lw $ t1, offset value($t2)

Sw $t1, offset value ($t2)

[image: image77.png]Instruction

RegWirite

l

File
rite reg Road
Data 21—
rite Data

[Readreg 1
Register 2&ad

ALU control

MemWrite

.

Readreg2 Data 1

Address

Data
Memory ReadData

Write Data

MemRead

These instruction compute memory address by adding the base register.

Memory address = base register + offsetvalue.

store value : read from the Register File , written to the Data Memory
load value : read from the Data Memory, written to the Register File
Sign extend :

· To convert 16 bits offset field in the instruction to a 32 bit signed value.

· It is used to increase the size of the data item by replacing the high order sign bit of the original data item in the higher order bit of the larger destination data item.

Data memory unit:

· It has read and write control signal, an address input and an input for the data to be written into memory

3.Data Segment for branch instruction:

· The branch instruction has three operands, 2 register & 1 offset.

· 2 register are compared for equality (zero ALU output).

· 16 bit offset used to compute branch target address.

· Branch target address is an address specified in a branch which becomes the new program counter if the branch is taken.

[image: image78.png]Branch

Add target
@ address

ALU control
Readreg 1 zero (to branch
Read controllogic)
Register
Readreg > Data 1
File
rite rea Read ALU
Data
rite Data
Sign

Example: beq $t1, $t2, offset

· If the condition is true ,the branch target address becomes new pc and the branch is taken.

· If the condition is false, incremented pc should replace the current pc and branch is not taken

The branch data path must perform two operations:

1. Compute the branch target address: the branch data path includes a sign extension unit, shifter and an adder
2. Compare the register content : used register file and the ALU.

Jump operation involves:

Replace the lower 28 bits of the PC with the lower 26 bits of the fetched instruction shifted left by 2 bits.

[image: image79.png]>Add

PCi

—
—4_.
Instruction
Memo
= i 28
ead :
Address Instructio

Creating a single data path:

· The data path component for individual instruction classes, combine them into a single data path and add the control to complete the implementation.

· The simplest data path will attempt to execute all instruction in one clock cycle (fetch, decode and execute each instructions in one clock cycle)

· No data path resource can be used more than once per instruction.

· Multiplexors needed at the input of shared elements with control lines to do the selection

· Write signals to control writing to the Register File and Data Memory

· Cycle time is determined by length of the longest path.

Problem:

How to build a data path for the operational portion of the memory reference and arithmetic logical instructions that use a single register file and a single ALU to handle both types of instructions assign any necessary multiplexors.

Answer: to create a data path with only a single register file and a single ALU, we use two multiplexors. One is placed at the ALU input and another at the data input to the register file.

Show how to built a datapath for arithmetic-logical ,memory reference and branch instructions.
[image: image80.jpg]

We can combine all the pieces to make a simple data path for the MIPS architecture by adding the datapath for instruction fetch, the data path from R- format and memory instruction and the data path for branches.

CONTROL IMPLEMENTATION SCHEME:

A control implementation scheme by adding simple control functions to the existing data path.

Different control implementation scheme:

1. The ALU control

2. Designing the main control unit

3. Operation of the datapath

The ALU control:

There are 6 possible combinations of 4 control inputs. ALU will need to perform one of these function

[image: image81.jpg]0000 AND
0001 OR

| o010 | © add

| om0 | ~ subtract
0111 T set on less than

o 1100 ~ NOR

Load word and store word instruction: use the ALU to compute the memory address by adding.

R-type instruction: uses ALU to perform one of the five actions.

Branch instruction: use ALU must perform a subtraction

ALUop control bits and different function codes:

4 bit control input using a small control inputs the function field of the instruction and 2 bit control field.

[image: image82.jpg]Instruction nstruct n Desired
upcode opera ALU action

load word XXXXXX

sw 00 | store word XXX | add

Branch equal 01) branch equal XXXXXX subtract

Rtype 10 | add 100000 add

R-type 10 subtract 100010 [subtract

Riype 10 | AND 100100 and

R-type 10 OR 100101 or |

| Rtype 10 | seton less than | 101010 | seton less than |

FIGURE 5.12 How the ALU control bits are set depends on the ALUOp control bits and
the different function codes for the R-type instruction. The opcode, listed in the first column,
determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the
ALUOPp code is 00 or 01, the desired ALU action does not depend on the function code field; in this case, we
say that we “don’t care” about the value of the function code, and the funct field is shown as XXXXXX.
When the ALUOp value is 10, then the function code is used to set the ALU control input.

[e T e
R 0 s BN

0010
0110 |
TR

>

INEIE
[</rlo

[rTw

[| >

[x| x| ||
rlo|lo|ojo|x
ok RO O|x
rlo|o|r|lo|x

Lot I
FIGURE 5.13 The truth table for the three ALU control bits (called Operation). The inputs
are the ALUOp and function code field. Only the entries for which the ALU control is asserted are shown.
Some don’t-care entries have been added. For example, the ALUOp does not use the encoding 11, so the
truth table can contain entries 1X and X1, rather than 10 and 01. Also, when the function field is used, the
first two bits (F5 and F4) of these instructions are always 10, so they are don’t-care terms and are replaced
with XX in the truth table.

[

Truth table: It is representation of a logical operation by listing all the values of the inputs.

[image: image83.png][T]|
ﬁ%ﬂﬂﬂﬂﬂﬂ

o o
X T X X [[[om0
p X X [x oo oo 0010
T X X [x [o o3 [o o110
T X X [x [o 1o o 000
i x X [x [o 1o o001
T X “x [1lol3lo o

FIGURE 5.13 The truth tabla for the thraa ALU control bits (called Operation). The inputs
arethe ALUO and untion code ield.Only th entie for which the ALU control i assited are shev,
Some don't-care entris have been addd. For exampla,the ALUOP dogs not use the encoding 11, the
ruth tble can conain ntries X and X1, rherthan 10 and01. Als, when th function el s used, the
it v bite (5 and F4)of thes instructions are abways 10,20 they ave doit-care tema and ar eplacd.
with XX i the truth bl

Truth table shows how the 4 bit ALU control is set depending on these 2 input fields.

Don’t care term (x) indicates that the output does not depend on the value of the input corresponding to that column.

Designing the main control unit :

· The input to the control fields is the 6 bit opcode field from the instruction.

· The output of the control unit consist of three 1-bit signals are used to control multiplexors.

· 3 signals for controlling reads and writes in the register file and data memory.

· 1-bit control signal used in determining for branch

· 2-bit control signal for ALU.

Simple data path with the control unit:

[image: image84.jpg]"'7

T

|\
iz

· And gate is used to combine the branch control signal and zero output from ALU.

· And gate output controls selection of the next PC.

· The multiplexor selects the 1 input, the control is asserted.

· The multiplexor selects the 0 input, the control is de-asserted.

Seven control signals:

[image: image85.jpg]Signal
Effect when deasserted Effect when asserted

[The register destination number for the Write ;

RegDst The register destination number for the
Write register comes from the rt field (bits | register comes from the rd field (bits 15:11). |
20:16)
| RegWrite None. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes fvom the The second ALU operand is the sign-extended,
second register file output (Read data 2). lower 16 bits of the instruction.
PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder |
adder that computes the value of PC + 4. | that computes the branch target.
MemRead | None. Data memory contents designated by the
address input are put on the Read data output.
MemWrite | None. Data memory contents designated by the
address input are replaced by the value on the
Write data input.
MemtoReg | The value fed to the register Write data The value fed to the register Write data input
input comes from the ALU. comes from the data memory.

FIGURE 5.16 The effect of each of the seven control signals. When the 1-bit control to a two-

way multiplexor is

sserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is

deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an
implicit input and that the clock is used in controlling writes. The clock is never gated externally to a state

clement, since this

an create timing problems. (See

Appendix B for further discussion of this problem.)

Opcode fields of the instruction:

[image: image86.jpg]Memto— Reg
RegDst Write Read

Rformat 0 0 1 0 0 1: 0
| Tw 0 1 T 1, o | o 0 I 0
{ swo X 1 X o 0 1 | o | o | ”?
[beq o X [9) 7§7L 0 0 0 ”7177" 0 | 717

FIGURE 5.18 The setting of the control lines is completely determined by the opcode fields of the instruction. The first row of
the table corresponds to the R-format instructions (add, sub, and, or,and s 1t). For all these instructions, the source register fields are rs and rt,
and the destination register field is rd; this defines how the signals ALUSrc and RegDst are set. Furthermore, an R-type instruction writes a register
(RegWrite = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally replaced with PC + 4; oth-
erwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The ALUOp field for R-type instructions is set to 10 to indi-
cate that the ALU control should be generated from the funct field. The second and third rows of this table give the control signal settings for Tw and
sw. These ALUSrc and ALUOp fields are set to perform the address calculation. The MemRead and MemWrite are set to perform the memory access.
Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt register. The branch instruction is similar to an R-format
operation, since it sends the rs and rt registers to the ALU. The ALUOPp field for branch is set for a subtract (ALU control = 01), which is used to test for
equality. Notice that the MemtoReg field is irrelevant when the RegWrite signal is 0: since the register is not being written, the value of the data on the
register data write port is not used. Thus, the entry MemtoReg in the last two rows of the table is replaced with X for don’t care. Don’t cares can also be
added to RegDst when RegWrite is 0. This type of don’t care must be added by the designer, since it depends on knowledge of how the datapath works.

Operation of the datapath:

3 instruction classes which help to understand how to connect the fields of an institution to the data path.

1. Instruction format for R- format instruction, which all have an opcode of 0.

2. Instruction format for load (opcode = 35 ten) and store =43 ten) instruction.

3. Instruction format for branch equal (opcode =4)

Important observation about this instruction format:

Bit 31:26 in the instruction is opcode (op) field

Bit 25:21 and 20:16 in the instruction format alway specify rs and rt .
Bit 25:21 always give the base register (rs) for load and store.

Bit 15:0 give the The 16- bit offset for branch equal,load and store

The destination register is in one or two place.

[image: image87.jpg]

This figure shows the additions plus the ALU control block, the write signal for state elements, the read signal for the data memory and the control signals for the multiplexor.

1.Data path for an operation in a R-type instruction:

Data path for an R-type instruction such as

add $t1, $t2,$t3

Four steps needed to execute the instruction:

1. The instruction is fetched and the Pc is incremented.

2. To registers, $t2 and $t3 are read from the register file and main control unit computes the setting of the control lines during this step.

3. The ALU operates on the data read from the register file, using the function code to generate the ALU function.

4. The result from the ALU is written into the register file using bits 15:11 of the instruction to select the destination register ($ t1)

2.Data path for an operation in a Load instruction:

Data path for an Load word instruction

LW $t2, offsetvalu ($t1)

Five steps needed to execute the instruction:

1. An instruction is fetched from the instruction memory, and the PC is incremented.

2. A register ($t2) value is read form the register file.

3. The ALU computes the sum of the value read from the register file and the sign extended lower 16 bits of the instruction(offset).

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory units is written into the register files; the Register destination is given by bits 20:16 of the instruction ($t1).

3.Data path for an operation in a branch –on –equal instruction:

Data path for beq instruction

Beq $t1,$t2,offset

Four steps needed to execute the instruction:

1. An instruction is fetched from the instruction memory and the Pc is incremented.

2. Two register $t1,$t2 are read from the register file.

3. The ALU performs a subtract on the data value read from the register file. The value PC+4 is added to the sign extended , lower 16 bits of the instruction shifted left by two, the result is the branch target address.

4. The Zero result from the ALU is used to decide which adder result to store into the PC.

Implementing Jumps:

· The low-order 2 bits of a jump address are always 00two.

· The next lower 26 bits of this 32 bit address come from the 26 bit immediate field in the instruction.

· The upper 4 bits of the address replace the Pc come from Pc of the jump plus 4.

Jump by storing into the PC the concatenation of:

1. The upper 4 bit of the current PC+4

2. The 26 bit immediate field of the jump instruction.

3. The bit 00two.

2.What is pipelining?Discuss about pipelined datapath and control.(OR)Explain how the instruction pipeline works?What are the various situations where an instruction pipeline can stall?Illustrate with an example

(Nov/Dec 2016,May/June 2016,Nov/Dec 2015,Nov/Dec 2014)

Pipelining is an implementation technique in which multiple instructions are overlapped in execution.

Five steps in a MIPS instruction:

1. IF: Instruction fetch from memory

 2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Example:

Assume time for stages is 100ps for register read or write(200ps for other stages. Compare pipelined datapath with single-cycle(datapath

Solution:

	Instruction class
	Instruction fetch
	Register read
	ALU operation
	Data Access
	Register write
	Total Time

	LW
	200ps
	100ps
	200ps
	200ps
	100ps
	800ps

	SW
	200ps
	100ps
	200ps
	200ps
	
	700ps

	R-format
	200ps
	100ps
	200ps
	
	100ps
	600ps

	Branch
	200ps
	100ps
	200ps
	
	
	500ps

Pipeline Speedup:

If all stages are balanced(i.e., all take the same time.

 [image: image89.png]il i jons pipeline = Lme between instructions non pipeline
Time between instructions pipeline Nmber of Pipe sromes

If not balanced, speedup is less. Speedup due to increased throughput(Latency (time for each instruction) does not(decrease

PIPELINED DATAPATH AND CONTROL:

The datapath and control unit share similarities with both the single-cycle and multicycle implementations that we already saw.

An example execution highlights important pipelining concepts.

PIPELINING DATAPATH:
The single cycle data path with the pipeline stages identified.The division of an instruction into 5 stages means a five stage pipeline and the five stage are as follows:

IF: Instruction fetch

ID: Instruction decode and register file read.

Execution or address calculation

MEM: Data memory access

WB: Write back

Five components correspond roughfly to the way thedatapath:

[image: image90.png]e

et deccl prrind temary wie
Inscton e et och —— it o
‘ o
=
& o 2o Pl o]
ot
renienl S iy Regetes —
)

Five stages as they complete exectuion. Returning to

The instructions and data move generally from left to right through the five stages .

Two exceptions to this left to right flow of instructions:

Pipeline version of datapath:

[image: image91.png]PCSIC
4 IFID ID/EX EXUMEM MEMMEB
P Add
c Shift
RegWite left2
| Read Read ||
register 1 data 1 Memrite
Read _Instruction |
Read Read
address - [31-0] 7 register2 data 2 [~ Address
Wite
Instruction register mz:':ry
memory i Registers
— Wite
data ALUSrc Wite Read [
data data
Instr 15 - 0] @ T
@ RegDst MemRead
Instr (20 - 16] o
Instr [15- 1]

I ——1—1n

Pipelined Datapath highlighting the pipeline registers:

The registers are named for separating the 2 stages.

The register between IF & ID stages to separate instruction fetch and decode.

The register between ID & EXE to separate decode and ALU execution.

The register between EXE and MEM to separate ALU execution and data Memeory

The register between MEM and WB to separate data memeory and write data to register

The register file is split into 2 local parts:

1. Register read during register fetch(ID)

2. Register written during write back(WB)

Instruction execution in a pipeline manner

IM represent the instruction memory and the PC in the instruction fetch stage(IF)

Reg stand for the register file in the instruction decode/register file read stage

Execution of Load /store instruction in a five stage pipeline:

Stage 1 : Instruction fetch:

· The instruction being read from instruction memory using the address in PC and then storing the instruction in the IF/ID pipeline register.

· PC address is incremented by 4 and then write back into PC to read for next clock cycle.

· Incremented address is also saved in the IF/ID pipeline register.

Stage 2 :Instruction decode & register file read:

· The instruction portion of the IF/ID pipeline register.

· It supply the 16 bit immediate field, which is sign extended to 32 bit and the register numbers to read the 2 registers.

· All three values are stored in the ID?EX pipeline register.

Stage 3: Execute and address calculation:

· The load instruction reads the contents of register 1 and the sign extended immediate from ID/EX pipeline register and add them using ALU.

· The sum is placed in EX/MEM pipeline register.

Stage 4: Memory access:

· The load instruction reading the data memory using the address from the EX/MEM pipeline register and loading the data into the MEM/WB pipeline registers.

Stage 5: Write Back:

· Reading the data from the MEM/WB pipeline register and writing into the register file .

PIPELINED CONTROL:

· In pipeline control just add the control to the pipelined datapath.

· Thus data path borrows the control logic for source, register destination number and ALU control.

[image: image92.png]IFID

Read _Instruction
address [31-0)

Instruction
memory

1D/EX
EXUMEM
Control B
\)—>E %]
Add —J
shit
RegWwiite lefe2

Read Read |

register 1 data 1 Memite

Read Read 1

register2 data 2] Address

Wiite

register Data MemToReg

Registers. memery
— Wite
data ALUSre Wite Read [| |
data data
s (15-0)_/sion 1
@ RegDst MemRead o

Instr 20 - 18] 0
Instr [15- 1] . —‘

· The control signals are generated in the same way as in the single-cycle processor—after an instruction is fetched, the processor decodes it and produces the appropriate control values.

· But just like before, some of the control signals will not be needed until some later stage and clock cycle.

· These signals must be propagated through the pipeline until they reach the appropriate stage. We can just pass them in the pipeline registers, along with the other data.

	Stage
	Control signals needed

	EX
	ALUSrc
	ALUOp
	RegDst

	MEM
	MemRead
	MemWrite
	PCSrc

	WB
	RegWrite
	MemToReg
	

Control signals can be categorized by the pipeline stage that uses them:

Stage 1: Instruction fetch

· The control signals to read instruction memory and to write PC are always asserted.

Stage 2 : Instruction decode/register file read:

· As in the previous stage the same thing happens at every clock cycle, so there are no optional control line to set.

Stage 3: Execution/address calculation:

· The signal to be set are RegDst,ALUOp and ALUSrc.

· The signals select the Result register, The ALU operation and either Read data 2 or a sign extended immediate for the ALU.

Write and draw ALU tabular column from (control implementation scheme_)

Stage 4: Memory access:

· The control lines set in this stage are Branch,MEMRead and MEMwrite.

· These signals are set by branch equal,load and store instructions.

· PCSrc selects the next sequential address unless control asserts Branch and the ALU result was 0.

Stage 5: Write Back:

· The two control lines are MemtoReg, which decides between sending the ALU result or the memory value to the register file and Reg-write,which writes the chosen value.

3.Briefly explain about various categories of hazards with example.(May/June 2016,April/May 2015,Nov/Dec 2014)

A pipeline hazard refers to situations that prevent an instruction from entering the next stage is called hazard.

3 different types of hazard:

1. Structural hazards

2. Data hazard
3. Control hazard
Structural hazards - Attempt to use the same resource by two or more instructions at the same time

Control hazards - attempt to make branching decisions before branch condition is evaluated
Data hazards – When wither the source or destination operands of an instruction are not available at time expected in the pipeline and as a result pipeline is stalled. This situation is a data hazard.

Let’s look at a sequence with many dependences,:

sub $2, $1,$3 # Register $2 written by sub

and $12,$2,$5 # 1st operand($2) depends on sub

or $13,$6,$2 # 2nd operand($2) depends on sub

add $14,$2,$2 # 1st($2) & 2nd($2) depend on sub

sw $15,100($2) # Base ($2) depends on sub

The last four instructions are all dependent on the result in register $2 of the first instruction. If register $2 had the value 10 before the subtract instruction and −20 afterwards, the programmer intends that −20 will be used in the following instructions that refer to register $2.

HANDLING DATA HAZARD: Forwarding versus Stalling

Data hazards occur when the pipeline changes the order of read/write accesses to operands that differs from the normal sequential order

Forwarding (bypassing) with two instructions:

· It is also known as bypassing.

· This is a method resolving a data hazard by retrieving the missing data element from the internal buffer rather than waiting for it to arrive from the memory.

Graphical Representation of Forwarding:

[image: image93.wmf]ID

0

2

4

6

8

10

12

IF

ID

EX

MEM

16

add

$s0

,$t0,$t1

18

sub $t2,

$s0

,$t3

IF

EX

MEM

W

s0

WB

R

s0

new value

of s0

It show the connection to forward the value in $s0 after the execution stage of the add instruction.

Forwarding paths are valid only if the destination stage is later in time than source stage.

Forwarding cannot prevent all pipeline stalls. They are also often referred to as bubbles in the pipeline.

Forwarding versus stalling:

Data hazard with a sequence of many dependencies

Sub $2, $1, $3 # register $2 written by sub
and
 $12, $2, $5 # 1st operand ($2) depends on sub
or $13, $6, $2 # 2nd operand ($2) depends on sub
add $14, $2, $2
 # 1st ($2) & 2nd ($2) depend on sub
sw
 $15, 100($2)

 base ($2) depends on sub

The last four instructions are all dependent on the result in register $2 of the first instruction.

If the register $2 had the value 10 before the subtraction instruction and -20 afterwards, the
programmer intends -20 will be used in the following instruction that refer to register $2.

Pipelined Dependences in a five instruction sequence:

[image: image94.wmf]I

M

R

e

g

I

M

R

e

g

C

C

1

C

C

2

C

C

3

C

C

4

C

C

5

C

C

6

T

i

m

e

(

i

n

c

l

o

c

k

c

y

c

l

e

s

)

s

u

b

$

2

,

$

1

,

$

3

P

r

o

g

r

a

m

e

x

e

c

u

t

i

o

n

o

r

d

e

r

(

i

n

i

n

s

t

r

u

c

t

i

o

n

s

)

a

n

d

$

1

2

,

$

2

,

$

5

I

M

R

e

g

D

M

R

e

g

I

M

D

M

R

e

g

I

M

D

M

R

e

g

C

C

7

C

C

8

C

C

9

1

0

1

0

1

0

1

0

1

0

/

–

2

0

–

2

0

–

2

0

–

2

0

–

2

0

o

r

$

1

3

,

$

6

,

$

2

a

d

d

$

1

4

,

$

2

,

$

2

s

w

$

1

5

,

1

0

0

(

$

2

)

V

a

l

u

e

o

f

r

e

g

i

s

t

e

r

$

2

:

D

M

R

e

g

R

e

g

R

e

g

R

e

g

D

M

This diagram illustrates the execution of these instructions using a multiple clock cycle pipeline representation.

Hazard condition: HAZARD DETECTION UNIT

The two pairs of hazard conditions are

1a: EX/MEM.RegisterRd = ID/EX.RegisterRs
1b: EX/MEM.RegisterRd = ID/EX.RegisterRt
2a: MEM/WB.RegisterRd = ID/EX.RegisterRs
2b: MEM/WB.RegisterRd = ID/EX.RegisterRt
The first hazard in the sequence is one register $2, between the result of sub $2 $1 $3 and the first read operand of and $12,$2,$5.This hazard can be detected when and instruction is the EX stage and the prior instruction is in the MEM stage

 EX/MEM.Register RD= ID?EX.RegisreRs=$2.

The sub-or is a type 2b hazard:

 MEM/WB.RegisterRd = ID/EX.RegisterRt = $2

■ The two dependences on sub-add are not hazards because the register file supplies the proper data during the ID stage of add.

■ There is no data hazard between sub and sw because sw reads $2 the clock cycle after sub writes $2.
[image: image95.png]e (in dock cycles)

cc1 cc2 cc3 cc4 ccs5 cC6 ccr ccs cco

Vahie of register $2: 10 10 10 10 10£-20 —20 -20 -20 -20

Value of EXMEM : X X X -20 X X X X x

Value of MEMWB : X x x x -20 x x X x

Program

execution order

(n mstructions)

sub $2, $1,33

and $12,52, 35

or$13,36, 32

add $14,52, 52

sw $15, 100(32)

Can forward only to the “or” and “add” instructions without stalling $2 still unavailable in EX/MEM for “and”. When sub was the “writing” instruction, we forwarded from EX/MEM to the ALU for “and”
The multiplexors have been expanded to add the forwarding paths, and we show the forwarding unit.

[image: image96.png]

The hardware necessary to support forwarding for operations that use results during the EX stage. Note that the EX/MEM.RegisterRd field is the register destination for either an ALU instruction (which comes from the Rd fi eld of the instruction) or a load (which comes from the Rt fi eld).
Forwarding can also help with hazards when store instructions are dependent on other instructions. Since they use just one data value during the MEM stage, forwarding is easy.

The control values for the forwarding multiplexors:

	Mux control
	Source
	Explaination

	ForwardA = 00
	ID/EX
	The first ALU operand comes from the register file.

	ForwardA = 10
	EX/MEM
	The first ALU operand is forwarded from the prior ALU result

	ForwardA = 01
	MEM/WB
	The first ALU operand is forwarded from data memory or an earlier ALU result

	ForwardB = 00
	ID/EX
	ID/EX The second ALU operand comes from the register file.

	ForwardB = 10
	EX/MEM
	The second ALU operand is forwarded from the prior ALU result

	ForwardB = 01
	MEM/WB
	The second ALU operand is forwarded from data memory or an earlier ALU result

Let’s now write both the conditions for detecting hazards and the control signals to resolve them: Example:

1.Ex Hazard:

if (EX/MEM.RegWrite)
and (EX/MEM.RegisterRd ≠ 0)
and(EX/MEM.RegisterRd=ID/EX.RegisterRs))
ForwardA = 10
if (EX/MEM.RegWrite)
and (EX/MEM.RegisterRd ≠ 0)
and(EX/MEM.RegisterRd=ID/EX.RegisterRt))
ForwardB = 10

MEM Hazard:

if (MEM/WB.RegWrite)
and (MEM/WB.RegisterRd ≠ 0)
and(MEM/WB.RegisterRd=ID/EX.RegisterRs))
ForwardA = 01
if (MEM/WB.RegWrite)
and (MEM/WB.RegisterRd ≠ 0)
and(MEM/WB.RegisterRd=ID/EX.RegisterRt))
ForwardB = 01
Data hazards and stalls:

· So far, we’ve only addressed “potential” data hazards, where the forwarding unit was able to detect and resolve them without affecting the performance of the pipeline.
· There are also “unavoidable” data hazards, which the forwarding unit cannot resolve, and whose resolution does affect pipeline performance.
· We thus add a (unavoidable) hazard detection unit, which detects them and introduces stalls to resolve them.
Forwarding technique is used to minimize data hazard:

[image: image97.wmf]l

w

$

2

,

2

0

(

$

1

)

P

r

o

g

r

a

m

e

x

e

c

u

t

i

o

n

o

r

d

e

r

(

i

n

i

n

s

t

r

u

c

t

i

o

n

s

)

a

n

d

$

4

,

$

2

,

$

5

o

r

$

8

,

$

2

,

$

6

a

d

d

$

9

,

$

4

,

$

2

s

l

t

$

1

,

$

6

,

$

7

R

e

g

I

M

R

e

g

R

e

g

I

M

D

M

C

C

1

C

C

2

C

C

3

C

C

4

C

C

5

C

C

6

T

i

m

e

(

i

n

c

l

o

c

k

c

y

c

l

e

s

)

I

M

R

e

g

D

M

R

e

g

I

M

I

M

D

M

R

e

g

I

M

D

M

R

e

g

C

C

7

C

C

8

C

C

9

C

C

1

0

D

M

R

e

g

R

e

g

R

e

g

R

e

g

b

u

b

b

l

e

In the load instruction the data is read from memory in clock cycle 4. While the Alu perform the operation for the following instruction. sometimes the stall the pipeline for the combination of load.

HANDLING CONTROL HAZARD:

Control hazard:

· It is also known has branch hazard.

· When the proper instruction cannot execute in the proper pipeline clock cycle is know has control branch.

· A control hazard is when we need to find the destination of a branch, and can’t fetch any new instructions until we know that destination.
Reducing the delay of branch:

 One way to improve branch performance is to reduce the cost of the taken branch.

There are two complicating factors: A branch is either

1. Taken: If a branch is changing the PC to its target address, than it is a taken branch.

PC <= PC + 4 + Immediate
2. Not Taken: If a branch doesn’t change the PC to its target address, than it is a not taken branch.

PC <= PC + 4
[image: image98.png]10:

14:

18:

22:

36:

beq r1,r3,36

and r2,r3,r5

or ré6,r1,r7

add r8,r1,r9

xor r10,r1,r11

The branch instruction decided where to branch in MEM stage the clock cycle 4 for the beq instruction.

3 sequential instructions that follow the branch will be fetch and being execution.

3 following instruction begin execution beq branch to location 36.

There is delay in the proper instruction to fetch

[image: image99.png]

fl ush To discard

instructions in a pipeline,

usually due to an

unexpected event.
Handling control branch:

Control hazard can be handle using branch prediction.

Prediction means: A statement of what will happen in the future

Branch predictor:

· Branch prediction technique is used to handle branches.

· A branch predictor is a digital circuit that tries to guess which way a branch (e.g. an if-then-else structure) will go before this is known for sure.

· If the prediction is correct, avoid delay of the branch hazard

· If the prediction is incorrect, flush the wrong-path instructions from the pipeline & fetch the right path

· The purpose of the branch predictor is to improve the flow in the instruction pipeline

Two types of branch prediction:

· The behavior of branch can be predicted both statically at compile time and dynamically by the hardware at execution time.

 1. Static branch prediction

2. Dynamic branch prediction

Static branch prediction:

Predicting a branch at compile time helps for scheduling data hazards.

Dynamic branch prediction:

· the prediction determined at runtime is known as dynamic branch prediction

· The simplest dynamic branch-prediction scheme is a branch-prediction buffer or branch history table.

Branch-prediction buffer :
· A branch-prediction buffer is a small memory (cache) indexed by the lower portion of the address of the branch instruction.

· The memory contains a bit that says whether the branch was recently taken or not.

Two branch prediction scheme:

1. one-bit prediction scheme

2. Two- bits prediction scheme

1-bit prediction scheme:

· If a branch is almost take, we can predict incorrectly twice otherwise it is not taken

2-bit prediction scheme:

· In a two bits prediction scheme must miss twice before it is changed

· In a two bits prediction scheme are used to encode the four states in the system.

· One bit that predicts the direction of the current branch if the previous branch was not taken (PNT).
· One bit that predicts the direction of the current branch if the previous branch was taken (PT).
[image: image100.jpg]-

Not laken
Predicttaken

Taken Nottaken

Mot baken

Nattaken

· It is general instance of a counter-based predictor.

· Counter-based predictor is incremented when the prediction is accurate and decremented otherwise.

· The counters saturate at 00 or 11

· It has an n-bit saturating counter for each entry in the prediction buffer.

· With an n-bit counter, the counter can take on values between 0 and 2^n– 1:

· When the counter is greater than or equal to one half of its maximum value (2^n–1), the branch is predicted as taken; otherwise, it is predicted untaken.

branch delay slot:

· The slot directly aft era delayed branch instruction, which in the MIPS architecture is filled by an instruction that does not affect the branch.

· Compilers and assemblers try to place an instruction that always executes after the branch in the branch delay slot.

· The job of the software is to make the successor instructions valid and useful.

Three ways in which the branch delay slot can be scheduled:
The top box in each pair shows the code before scheduling; the bottom box shows the scheduled code.

In (a), the delay slot is scheduled with an independent instruction from before the branch. This is the best choice. Strategies (b) and (c) are used when (a) is not possible.

In the code sequences for (b) and (c), the use of $s1 in the branch condition prevents the add instruction (whose destination is $s1) from being moved into the branch delay slot.

In (b) the branch delay slot is scheduled from the target of the branch; usually the target instruction will need to be copied because it can be reached by another path.

Strategy (b) is preferred when the branch is taken with high probability, such as a loop branch.

Finally, the branch may be scheduled from the not-taken fall-through as in (c).

To make this optimization legal for (b) or (c), it must be OK to execute the sub instruction when the branch goes in the unexpected direction.

By “OK” we mean that the work is wasted, but the program will still execute correctly.

[image: image101.jpg](a) From betore

(b) From target

(c) From tall-through

DADD R1, R2, R3

if R2 =0 then

Delay slot

becomes

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 =0 then

Delay slot

becomes

DADD R1, R2, R3

if R1 =0 then

Delay slot

OR R7, R8, R9

DSUB R4, R5, R6

becomes

if R2 =0 then

DADD R1, R2, R3

DSUB R4, R5, R6

-

DADD R1, R2, R3

if R1 =0 then

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 =0 then

OR R7, R8, R9

DSUB R4, R5, R6

© 2003 Elsevier Science (USA). All riahts reserved.

4.Explain in detail how exceptions are handled in MIPS Architecture.(May/June 2015)

EXCEPTION:

· One of the difficult parts of control is to implement exceptions and interrupts.

· Exceptions are generally generated unscheduled events that disrupt program execution and they have used to detect overflow.

· exception Also called interrupt.
· Interrupt comes from outside of the processor.

An interrupts is an exception that comes from outside of the processor:

	Type of event
	From where
	MIPS terminology

	I/O device request
	External
	Interrupt

	Invoke the operating syster from user
	Internal
	Exception

	Arithmetic overflow
	Internal
	Exception

	Hardware malfunction
	Either
	Exception or interrups

Handling Exception in the MIPS architecture:

Types of exception:

1. Execution of an undefined instruction.

2. Arithmetic overflow in the instruction add $1, $2, $1.

Reponses to an exception:

When an exception occurs the processor save the address of the offending instruction in the Exception Program Counter (EPC) and transfer control to the OS at some specified address.

The OS take the appropriate action, which involve providing some service to the user program, taking some predefined action in response to an exception or stopping the execution of the program and reporting an error.

Methods used to communicate the reason for an exception:

To handling the exception it is must for the OS to know the reason for the exception.

Two main methods used to communicate the reason for an exception:

1. Status register method

2. Vectored interrupts method

Status register method: the MIPS architecture uses a status register which holds a field that indicates the reason for the exception.

Vectored interrupts method: In a vectored interrupt the address to which control is transferred is determined by the cause of the exception.

Exception in a pipelined implementation:

A pipelined implementation treats exceptions as another form of control hazard.

In pipeline computers interrupt and exceptions are further classified as:

1. Imprecise interrupts or imprecise exceptions

2. Precise interrupts or precise exceptions

Imprecise interrupts or imprecise exceptions:

In pipelined computers that are not associated with the exact instruction that war the cause of the interrupt or exception is called imprecise interrupts or imprecise exceptions

Precise interrupts or precise exceptions:

An interrupt or exception that is always associated with the correct instruction in pipeline computer called precise interrupts or precise exceptions.

UNIT-IV

PARALLELISM
PART-A
1. What is meant by ILP? (Nov/Dec 2015), (Nov/Dec 2016)
Pipelining exploits the potential parallelism among instructions. This parallelism is called instruction-level parallelism (ILP). There are two primary methods for increasing the potential amount of instruction-level parallelism.

1. Increasing the depth of the pipeline to overlap more instructions.

2. Multiple issue.

2. What is multiple issue? Write any two approaches.
Multiple issue is a scheme whereby multiple instructions are launched in one

clock cycle. It is a method for increasing the potential amount of instruction-level parallelism. It is done by replicating the internal components of the computer so that it can launch multiple instructions in every pipeline stage. The two approaches are:

1. Static multiple issue (at compile time)

2. Dynamic multiple issue (at run time)

3. What is meant by speculation?
One of the most important methods for finding and exploiting more ILP is

speculation. It is an approach whereby the compiler or processor guesses the outcome of an instruction to remove it as dependence in executing other instructions.

For example, we might speculate on the outcome of a branch, so that instructions after the branch could be executed earlier.

4. Define – Static Multiple Issue
Static multiple issue is an approach to implement a multiple-issue processor

where many decisions are made by the compiler before execution.

5. Define – Issue Slots and Issue Packet
Issue slots are the positions from which instructions could be issued in a given

clock cycle. By analogy, these correspond to positions at the starting blocks for a sprint.

Issue packet is the set of instructions that issues together in one clock cycle; the packet may be determined statically by the compiler or dynamically by the processor.

6. Define – VLIW
Very Long Instruction Word (VLIW) is a style of instruction set architecture that

launches many operations that are defined to be independent in a single wide instruction, typically with many separate opcode fields.

7. Define – Superscalar Processor(Nov/Dec 2015)
Superscalar is an advanced pipelining technique that enables the processor to execute more than one instruction per clock cycle by selecting them during execution. Dynamic multiple-issue processors are also known as superscalar processors, or simply superscalars.

8. What is meant by loop unrolling?
An important compiler technique to get more performance from loops is loop

unrolling, where multiple copies of the loop body are made. After unrolling, there is more

ILP available by overlapping instructions from different iterations.

9. What is meant by anti-dependence? How is it removed?
Anti-dependence is an ordering forced by the reuse of a name, typically a register,

rather than by a true dependence that carries a value between two instructions. It is also called as name dependence.

Register renaming is the technique used to remove anti-dependence in which the registers are renamed by the compiler or hardware.

10. What is the use of reservation station and reorder buffer?
Reservation station is a buffer within a functional unit that holds the operands and

the operation.

Reorder buffer is the buffer that holds results in a dynamically scheduled processor until it is safe to store the results to memory or a register.

11. Differentiate in-order execution from out-of-order execution.
Out-of-order execution is a situation in pipelined execution when an instruction is

blocked from executing does not cause the following instructions to wait. It preserves the data flow order of the program.

In-order execution requires the instruction fetch and decode unit to issue instructions in order, which allows dependences to be tracked, and requires the commit unit to write results to registers and memory in program fetch order. This conservative mode is called in-order commit.

12. What is meant by hardware multithreading?
Hardware multithreading allows multiple threads to share the functional units of a single processor in an overlapping fashion to try to utilize the hardware resources efficiently. To permit this sharing, the processor must duplicate the independent state of each thread. It Increases the utilization of a processor.

13. What are the two main approaches to hardware multithreading?
There are two main approaches to hardware multithreading. Fine-grained

multithreading switches between threads on each instruction, resulting in interleaved execution of multiple threads. This interleaving is often done in a round-robin fashion, skipping any threads that are stalled at that clock cycle.

Coarse-grained multithreading is an alternative to fine-grained multithreading. It switches threads only on costly stalls, such as last-level cache misses.

 14. What is SMT?
Simultaneous Multithreading (SMT) is a variation on hardware multithreading

that uses the resources of a multiple-issue, dynamically scheduled pipelined processor to exploit thread-level parallelism. It also exploits instruction level parallelism.

15. Differentiate SMT from hardware multithreading.
Since SMT relies on the existing dynamic mechanisms, it does not switch

resources every cycle. Instead, SMT is always executing instructions from multiple threads, leaving it up to the hardware to associate instruction slots and renamed registers with their proper threads.

16. What are the three multithreading options?
The three multithreading options are:

1. A superscalar with coarse-grained multithreading

2. A superscalar with fine-grained multithreading

3. A superscalar with simultaneous multithreading

17. Define – SMP
Shared memory multiprocessor (SMP) is one that offers the programmer a single

physical address space across all processors - which is nearly always the case for multicore chips. Processors communicate through shared variables in memory, with all processors capable of accessing any memory location via loads and stores.

[image: image102.png]Processor Processor L. Processor

i ! i

Cache Cache L. Cache

i ! i

Interconnection Network

i i

Memory /0

18. Differentiate UMA from NUMA.(April/May 2015)

Uniform memory access (UMA) is a multiprocessor in which latency to any wordin main memory is about the same no matter which processor requests the access.Non uniform memory access (NUMA) is a type of single address space multiprocessor in which some memory accesses are much faster than others depending on which processor asks for which word.

19.State the need for instruction level parallelism.(May/June 2016)

Pipelining exploits the potential parallelism among instructions. This parallelism is called instruction-level parallelism (ILP). There are two primary methods for increasing the potential amount of instruction-level parallelism.

1. Increasing the depth of the pipeline to overlap more instructions.

2. Multiple issue.

20.What is multithreading.(Nov/Dec 2016), (Nov/Dec 2014)

In computer architecture, multithreading is the ability of a central processing unit (CPU) or a single core in a multi-core processor to execute multiple processes or threads concurrently, appropriately supported by the operating system. This approach differs from multiprocessing, as with multithreading the processes and threads share the resources of a single or multiple cores: the computing units, the CPU caches, and the translation lookaside buffer (TLB).

Where multiprocessing systems include multiple complete processing units, multithreading aims to increase utilization of a single core by using thread-level as well as instruction-level parallelism. As the two techniques are complementary, they are sometimes combined in systems with multiple multithreading CPUs and in CPUs with multiple multithreading cores.

21.Differentiate between strong scaling and weak scaling.(April/May 2015)

Strong scaling: compute a fixed-size problem N times faster

- Speedup S= T1 / TN ;linear speedup occurs when S= N

- Can’t achieve it due to Amdahl’s Law (no speedup for serial parts)

Weak scaling: compute a problem N times bigger in the same amount of time

- Speedup depends on the amount of serial work remaining constant or increasing slowly as the size of the problem grows.

- Assumes amount of communication among processors also remains constant or grows slowly

22.What is fine grained multithreading?(May/June 2016)

· Switches between threads on each instruction. causing the execution of multiple threads to be interleaved

as the processor switches from one thread to the next, a thread that is currently stalled is skipped over CPU must be able to switch between threads at every clock cycle so that it needs extra hardware support

23.What is Flynn’s Classification?(Nov/Dec 2014)

Flynn's taxonomy is a classification of computer architectures, proposed by Michael J. Flynn in 1966.[1]

HYPERLINK "https://en.wikipedia.org/wiki/Flynn%27s_taxonomy" \l "cite_note-2"[2] The classification system has stuck, and has been used as a tool in design of modern processors and their functionalities. Since the rise of multiprocessing central processing units (CPUs), a multiprogramming context has evolved as an extension of the classification system.

PART-B

1)Explain Instruction level parallel processing.State the challenges of parallel processing.(Nov/Dec 2014)

The potential overlap among instruction is called Instruction level parallelism(ILP).

This technique which is used to overlap the execution of instructions to improve performance.

Pipeline exploits the instruction level parallelism.

Two primary method for increasing the potential amount of ILP:

1. By increasing the depth of the pipeline to overlap more instructions.

2. By replicating the internal components of the computer so that it can launch

 multiple instructions in every pipeline stage.

Such multiple instructions are launched in one clock cycle is known as multiple issue.
Implementation a multiple-issue processor:

Two ways to implementation a multiple issue processor:

1. Static multiple issue: here the decisions of division of work are being made statically (at compile time)

2. Dynamic multiple issue: here the decisions of division of work are being made dynamically (at run time)

There are two primary and distinct responsibilities that must be dealt with in a multiple-issue pipeline:

1. Packaging instructions into issue slots the positions from which instructions could issue in a given clock cycle.

2. Dealing with data and control hazard.
SPECULATION:

is an approach that allows the compiler or processor to guess the properties of an instruction. So as to enable execution of other instructions that may depend on the speculation instruction.

Example: we might speculate the result of branch, so that the instruction after the branch could be executed earlier.

Need for speculation:

1. It is most important method for finding and exploiting more ILP.

2. Speculation may be wrong , It is necessary include a method to check if the guess was right or wrong and a method to undo the effects of the instruction that were executed speculatively this implementation of this undo capability add complexity.

Speculation may be done in the compiler or by the hardware.

1. Compiler can use speculation to reorder instruction.

2. The processor hardware can reorder instructions at runtime.

Recovery mechanism:

In case of compiler speculation: additional instructions are inserted to check the accuracy of the speculation and provide a recovery routine to use when the speculation is incorrect.

In case of hardware speculation: the processor usually use buffers to temporary store the speculative results.

(i) If speculation is correct, the instructions as executed by allowing the contents of the buffers to be written to the registers or memory.

(ii) If speculation is incorrect the special hardware is used to flush the buffers and execute the correct instruction sequence.

Static multiple issue:

Static multiple issue processors all use the compiler to assist with packaging instruction and handling hazards.

A static multiple issue processor usually launches many operations that are defined to be independent in a signal wide instruction, typically with many separate opcode fields. Such a style of instruction set architecture is known as very long instruction word(VLIW).
Loop Level Parallelism:
 The simplest and most common way to increase the amount of parallelism available among instructions is to exploit parallelism among iterations in a loop called LLP

Example:
Addition of two 1000-elements arrays that is completely parallel
 For(i=0;i<=1000;i=i+1)

 x[i]=x[i]+y[i];

 Every iteration of loop can overlap with any other iteration.
Example 2:

for (i=1; i<=100; i= i+1)

{
 a[i] = a[i] + b[i]; //s1
 b[i+1] = c[i] + d[i]; //s2
}

Statement s1 uses the value assigned in the previous iteration by statement s2, so there is a loop-carried dependency between s1 and s2.

Despite this dependency, this loop can be made parallel because the dependency is not circular:
 - neither statement depends on itself;
 - while s1 depends on s2, s2 does not depend on s1.

Dynamic multiple issue:

Dynamic multiple-issue processors are also known as superscalar processors, or simply superscalar’s.

Superscalar processor:

 An advanced pipelining technique that enables the processor to execute more than one instruction per clock cycle by selecting them during execution.

A simplest superscalar processor:

Instructions issue in order, and the processor decides whether zero, one, or more instructions can issue in a given clock cycle.

Dynamic pipeline scheduling:
· Many superscalar’s extend the basic framework of dynamic issue decisions to include dynamic pipeline scheduling.

· Dynamic pipeline scheduling chooses which instructions to execute in a given clock cycle while trying to avoid hazards and stalls.

Let’s start with a simple example of avoiding a data hazard.

 lw $t0, 20($s2)

 addu $t1, $t0, $t2

sub $s4, $s4, $t3

slti $t5, $s4, 20

Even though the sub instruction is ready to execute, it must wait for the lw and addu to complete first, which might take many clock cycles if memory is slow.

Dynamic pipeline scheduling allows such hazards to be avoided either fully or partially.

The three primary units of a dynamically scheduled pipeline.
1. Instruction fetch and decode unit

2. Functional units

3. Commit unit

 Instruction fetches and decode unit

The first unit fetches instructions, decodes them, and sends each instruction to a corresponding functional unit for execution.

Functional units

Each functional unit has buffers, called reservation stations.

Reservation stations: which hold the operands and the operation.

As soon as the buffer contains all its operands and the functional unit is ready to execute, the result is calculated.

 When the result is completed, it is sent to any reservation stations waiting for this particular result as well as to the commit unit, which buffers the result until it is safe to put the result into the register file or, for a store, into memory.

Commit unit:

The unit in a dynamic or out-of-order execution pipeline that decides when it is safe to release the result of an operation to programmer visible registers and memory.
The buffer in the commit unit, oft en called the reorder buffer.

Reorder buffer: is also used to supply operands, in much the same way as forwarding logic does in a statically scheduled pipeline
out-of-order execution:
The processor then executes the instructions in some order that preserves the data flow order of the program. This style of execution is called an out-of-order execution, since the instructions can be executed in a different order than they were fetched.
In-order commit:

A commit in which the results of pipelined execution are written to the programmer visible

state in the same order that instructions are fetched.

To make programs behave as if they were running on a simple in-order pipeline, the instruction fetch and decode unit is required to issue instructions in order, which allows dependences to be tracked, and the commit unit is required to write results to registers and memory in program fetch order.
Various types of Dependences in ILP:
1.Data dependences (also called true data dependences)

2.Name dependences

3.Control dependences

1.Data dependences

InstrJ is data dependent on InstrI
InstrJ tries to read operand before InstrI writes it
[image: image103.png]

[image: image104.png]I: add rl1l,x2,x3
J: sub r4,rl,x3

· or InstrJ is data dependent on InstrK which is dependent on InstrI

· Caused by a “True Dependence” (compiler term)

· If true dependence caused a hazard in the pipeline, called a Read After Write (RAW)

Name Dependency:

The name dependence occurs when two instructions use the same register or memory location, called a name, but there is no flow of data between the instructions associated with that name.

There are two types of name dependences:

1. An anti dependence between instruction i and instruction j occurs when instruction j writes a register or memory location that instruction i reads. The original ordering must be preserved to ensure that i reads the correct value.
2. An output dependence occurs when instruction i and instruction j write the same register or memory location. The ordering between the instructions must be preserved to ensure that the value finally written corresponds to instruction j.

Register Renaming:

· Renaming can be more easily done for register operands, where it is called register renaming.

· Register renaming can be done either statically by a compiler or dynamically by the hardware.

· Before describing dependences arising from branches, let’s examine the relationship between dependences and pipeline data hazards.

Hazards: circumstances that would cause incorrect execution if next instruction were launched
· Structural hazards: Attempting to use the same hardware to do two different things at the same time
· Data hazards: Instruction depends on result of prior instruction still in the pipeline
· Control hazards: Caused by delay between the fetching of instructions and decisions about changes in control flow (branches and jumps).
Data hazards: Instruction depends on result of prior instruction still in the pipeline.

· Ignoring potential data hazards can result in race conditions (sometimes known as race hazards).

There are three situations in which a data hazard can occur:
· read after write (RAW), a true dependency

· write after read (WAR), an anti-dependency

· write after write (WAW), an output dependency

Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it
[image: image105.png]

[image: image106.png]GH

"won

add x1 ,xr2 ,x3
sub x4 ,xr1 ,x3

Caused by a “Data Dependence” (in compiler nomenclature). This hazard results from an actual need for communication.

Write After Read (WAR)
InstrJ writes operand before InstrI reads it Called an “anti-dependence” by compiler writers.[image: image107.png]C I: sub r4,rl,x3
J: add rl,x2,x3

K: mul xr6,xr1,x7

This results from reuse of the name “r1”.
· Can’t happen in MIPS 5 stage pipeline because:
· All instructions take 5 stages, and
· Reads are always in stage 2, and
· Writes are always in stage 5
Write After Write (WAW)
InstrJ writes operand before InstrI writes it is Called an “output dependence” by compiler writers
[image: image108.png]I: sub xr1l,xr4,xr3
J: add xrl1l,xr2,x3
K: mul xr6,x1,x7

· This also results from the reuse of name “r1”.
· Can’t happen in MIPS 5 stage pipeline because:
· All instructions take 5 stages, and
· Writes are always in stage 5
· Will see WAR and WAW in later more complicated pipes
Control dependence:

· Every instruction is control dependent on some set of branches, and, in general, these control dependencies must be preserved to preserve program order
Example:
if p1 {

S1;
};
if p2 {

S2;
}
· S1 is control dependent on p1, and S2 is control dependent on p2 but not on p1.
In general, there are two constraints imposed by control dependences:
1. An instruction that is control dependent on a branch cannot be moved before the branch

 For example, we cannot move the ‘then’ portion of an if-statement before the if-

 statement.

2. An instruction that is not control dependent on a branch cannot be moved after the branch

 For example, we cannot take a statement before the if-statement and move it into the then-portion.
ILP Architecture:

Information embedded in the program pertaining to available parallelism between instructions and operations in the program.

ILP architectures classifications:

1. Sequential Architecture: The program is not executed to convey any explicit information regarding parallelism (superscalar processors)

2. Dependency Architecture: The program explicitly indicates the dependences that exist between operations (Dataflow processor)

3. Independent Architecture: The program provides information as to which operations are independent of one another.

	
	Sequential Architecture
	Dependence Architecture
	Independence Architecture

	Additional info required in the program
	None
	Specification of dependence between operations
	Minimally a partial list of independences .A complete specification of when and where each operation to be executed

	Typical kind of ILP processor
	Superscalar
	Dataflow
	VLIW

	Dependences analysis
	Performed by HW
	Performed by compiler
	Performed by compiler

	Independences analysis
	Performed by HW
	Performed by HW
	Performed by compiler

	Scheduling
	Performed by HW
	Performed by HW
	Performed by compiler

	Role of compiler
	Rearranges the code to make the analysis and scheduling HW more successful
	Replaces some analysis HW
	Replaces virtually all the analysis and scheduling HW

PARALLEL PROCESSING CHALLENGES

Parallel processing will execute efficiently in performance and energy as the number of core per chip scales (multiprocessor).

Parallel processing challenges including scheduling, partitioning the task into parallel pieces, balancing the load evenly between the processors.

Two major challenges:

1. Limited parallelism

2. Long latency to remote memory.

1.Limited parallelism:

· It is difficult to achieve good speedup in any parallel processing.

· Here using Amdahl’s Law.

Amdhal’s Law:

· It calculates the performance improvement of a computer.

· It states that the performance improvement to be gained using faster mode of execution.

1.Speed up (performance improvement):

It tells us how much faster a task can be executed using the machine with enhancement as compare to the original machine.

It defined as:

[image: image109.png]performance for entire task using improved machine
Speedup =

performance for entire task using old machine

or

[image: image110.png]execution time for entire task using old machine

Speeduy
PeeCUp = xecution time for entire task using improved machine

[image: image111.png]ETO
speedup = 27

where : [image: image113.png]

Equation:

[image: image114.png]1

Speedup = F E T Fe/se

Where:

Se: Speedup enhanced:

It tells how much faster the task would run if the enhancement mode was use for the entire program.

Fe: Fraction enhanced:

It is the fraction of the computation time in the original machine.

Problem:

What percentage of the original computation can be sequential to achieve a speedup of 80time faster with 100 processor.

Solution:

Speedup = 80 speedup enhanced = 100 fraction=?

[image: image115.png]1

speedup = s

[image: image116.png]80

Fe
[1—Fe] + 155

[image: image117.png]Fe
80 X (1—Fe —=1
(-Fe)+ oo

[image: image118.png](100 — 100Fe) + Fe
X =1
100

80

[image: image119.png]100 — 99Fe
o x (100~ 99Fe)
100

8

[image: image120.png]% (100 - 99Fe) = 1
100C &)=

0.8(100 -99 Fe)=1

0.8 X 100 – 0.8 X 99Fe =1

80 -79.2Fe=1

-79.2Fe= 1-80

-79.2Fe= -79

[image: image122.png]

2.Speedup challenges –increasing in problem size:

Getting good speedup on a multiprocessor while keeping the problem size fixed is harden than getting good speedup by increasing the size of the problem.

Problem: we have to perform two sums. One is a sum of 20 scalar variables. One is a matrix sum of a pair of two dimensional array with dimension 20 by 20.let us assume only the matrix sum is parallelizable. what speedup do we get with 10 versus 50 processors? Also calculate the speedups assuming the matrices grow to 40 by 40.

Solution:

Single addition can performed in time t

20t addition do not benefit from parallel processors.

20 by 20 = 400t addition that do parallel processors.

Time required for single processor to perform all addition is 420 [400 + 20 additions]

The execution time for processor 10:

[image: image123.png]execution time after improvement

execution time affected by improvement
=———————————— 4 execution time affected
‘Amount of improvement

[image: image124.png]400t
execution time after improvement == =+ 20t = 60

Speed up for processor 10:

[image: image125.png]420t

dup = 220t
Speedup = — o0

The execution time for processor 50:

[image: image126.png]400t
execution time after improvement =~ ~+ 20t = 281

Speed up for processor 50:

[image: image127.png]dup = 220¢
Speeaup = o

Problem size for 10 versus 50 processors:

[image: image128.png]7
1" 100 = 70% [potential speed with 10 processor

[image: image129.png]15
5 * 100 =30% [potential speed with 50 processor’

Increasing matrix (40 by 40):

40 by 40 = 1600t addition that do parallel processors.

Time required for single processor to perform all addition is 1620[1600 + 20 additions]

The execution time for processor10 versus 50:

[image: image130.png]1600t

execution time after improvement + 20t = 180

Speed up for processor 10:

[image: image131.png]1620t
180t

speedup =

[image: image132.png]420t

dup = 220t
Speedup = — o0

The execution time for processor 50:

[image: image133.png]1600t

execution time after improvement + 20t = 521

Speed up for processor 50:

[image: image134.png]speedup =

1620t
52t

3115

Problem size for 10 versus 50 processors:

[image: image135.png]9
[100 = 909% [potential speed with 10 processor

[image: image136.png]3115
50

* 100 = 62.3% [potential speed with 10 processor]

The above problem introduces two terms that describe ways to scale up.

1. Strong scaling: speedup achieved on a multiprocessor without increasing the size of the problem.

2. Weak scaling: speedup achieved on a multiprocessor while increasing the size of the problem proportionally to the increase In the number of processors.

3.Speedup challenge- Balancing Load

Problem: we have achieved the speedup of 31.15 on the previous bigger problem size with 50 processors. In that problem we assumed the load was perfectly balanced. That is, each of the 50 processor performs 2% of the work. In this problem we have to calculate the impact on speedup if one processor’s load is higher than all the rest. Calculate the impact on speedup if the hardest working processor’s load is 4% and 10%.Also calculate the utilization of the rest of the processors?

Solution: we are taking 50 processors [spilt 50 processors has 1 processor and 49 processors]

a. If one processor has 4 % of the parallel load, then it must do:

4% X 1600 = 64t addition

 The other 49 processor will share the remaining 1536t addition [1600-64 =1536]

 Calculate the execution time :

[image: image137.png]1536t 64t
;2= 1+720t = 841
49 1

execution time after improvement = max[-

[image: image138.png]

The speedup drops from 31.15 to 19.29
Utilization of remaining 49 processors = [image: image140.png]

Thus we can say that the remaining 49 processors are utilized less than half the time as compared to 64t for hardest working processor.

If one processor has 10 % of the parallel load, then it must do:

10% X 1600 = 160t addition

 The other 49 processor will share the remaining 1440t addition [1600-160 =1440]

 Calculate the execution time :

[image: image141.png]1440t 160t
,——1+ 20t =180+
49 1

execution time after improvement = max[-

[image: image142.png]1620t
180t

speedup =

The speedup drops from 31.15 to 9
Utilization of remaining 49 processors = [image: image144.png]1420

= 29.39t

Thus we can say that the remaining 49 processors are utilized less than 20% of the time as compared to 160t for hardest working processor.

2.Explain in detail about FLYNN’S CLASSIFICATION (OR) Discuss about SISD, MIMD, SIMD, SPMD and Vector systems.

(Nov/Dec 2016,May/June 2016, Nov/Dec 2015,April/May 2015)

· In 1966, Michael Flynn proposed a classification for computer architectures based on the number of instruction steams and data streams (Flynn’s Taxonomy).

· Flynn uses the stream concept for describing a machine's structure.

· A stream simply means a sequence of items (data or instructions).

· Processor unit operates by fetching instructions and operands from the main memory. Executing the instruction and placing the result in the main memory.

· The steps associated with the processing of instructions from an instruction cycle.

· The instruction can be stream flowing from main memory to processor.

Flynn’s Taxonomy:

· The classification of computer architectures based on the number of instruction steams and data streams (Flynn’s Taxonomy).

Flynn looked art parallelism in the instruction and data stream called for by the instruction at the most constrained component of the multiprocessor and placed all computers into one of four categories.

1. SISD: Single instruction single data

2. SIMD: Single instruction multiple data

3. MISD: Multiple instructions single data

4. MIMD: Multiple instructions multiple data

Flynn’s classification of computers
· Flynn identifies four architectural classifications when considering the implementation of parallelism:
· SISD: Single Instruction Single data
· SIMD: Single Instruction Multiple data
· MISD: Multiple Instruction Single data
· MIMD: Multiple Instruction Multiple data
· The definitions consider two fundamental streams, the instruction stream and the data stream. You can think of an instruction stream as a control unit that processes branch instructions, and a data stream as an ALU with storage (e.g. registers).
· All of the above parallel architectures can be simulated by a PRAM.
· The PRAM acts like a synchronous MIMD.
· These architectures do not tell us how memory and processors are organized.
· There are no machines widely accepted to be MISD.
SISD machine:
SISD, refers to conventional computers, even those employing pipelining and similar techniques.
[image: image145.png]nstruction stream

|

Control
unit

instruction

[stottiogy
stream | PE

data
stream

M

/o

conventional RAM processor

SISD Machine

SIMD machine:
· For applications with lots of data parallelism, the most cost-effective platforms are SIMD machines.
· In these machines, a single control unit broadcasts (micro-) instructions to many processing elements (PE's, each of which is a set of functional units with local storage) in parallel.
· The best known SIMD computer is the Connection Machine from Thinking Machines.
The CM-2 model has 64k PE’s, and even though each PE is only four bits wide, the machine could outperform many big Crays on some specially programmed problems.
[image: image146.png]nstruction stream

|

e ~|PE | |= -
data stream 1
il/o
[N 5P) P —
‘ ‘ T—
instruction cincim 2

1
stream !
1

L—=PEn|fa——=|

data stream n

SIMD machine

· If you imagine a pipeline in which fetching operands is separate from and follows instruction decoding, then a PE is the part of a CPU that implements all the stages after instruction decoding, while a control unit is the part of a CPU that implements all the stages up to instruction decoding.
· An SIMD computer connects each control unit not to one PE, but to many PE’s. An application is data parallel if it wants to do the same computation on lots of pieces of data, which typically come from different squares in a grid.
· Examples include image processing, weather forecasting, and computational fluid dynamics (e.g. simulating airflow around a car or inside a jet engine).
· SIMD machines cannot use commodity microprocessors, one reason being that it would be very difficult to modify these to broadcast their control signals to a multitude of processing elements.
· The companies that design SIMD machines have all designed their own processing elements and control units.
· The processing elements are usually slower than ordinary microprocessors, but they are also much smaller, which makes it possible to put several on a single chip. Since the CPU's are nonstandard, SIMD machines need their own compilers and other system software.
· The costs of designing the CPU and this system software add significantly to the up-front investment required for the machine.
· Due to the multi-million dollar price tags of SIMD machines, this investment has to be recovered from a relatively small number of customers, so each customer's share of the development cost is quite high.
MIMD machine:
· Most multiprocessors today on the market are (shared memory) MIMD machines.
· They are built out of standard processors and standard memory chips, interconnected by a fast bus (memory is interleaved).
· If the processor's control unit can send different instructions to each ALU in parallel then the architecture is MIMD.
· A superscalar architecture is also called as MIMD.
· In this case there are multiple execution units so that multiple instructions can be issued in parallel.
[image: image147.png]nstructi

lon stream |

data

10 Control |instruction [| | stream 1, |
unit | [stream [
instruction stream 2

Control instruction [> | stream

wnit2 [stream2 ~| -2
instructi

Control |instructio

unitn [streamn |

MIMD machine

· The use of standard components is important because it keeps down the costs of the company designing the multiprocessor. The development cost of the standard components is spread out over a much larger number of customers.
· However, for cache coherence, you need an interconnection network in which each processor sees the traffic between every other processor and memory, and all such interconnection networks are either buses or have components which are equivalent to buses.
Low-end and midrange multiprocessors use buses. Some high-end multiprocessors use multiple bus systems, or crossbars with broadcast as well as point-to-point capability.

3.Write short notes on hardware multithreading.

(May/June 2016,April/May 2015, Nov/Dec 2015,Nov/Dec 2014)

It allows multiple threads to share the functional units of a single processor in an overlapping fashion.

Increasing utilization of a processor by switching to another thread when one thread is stalled

Hardware Multithread done in 2 ways:
1. Fine-grained multi-threading :
· Switches between threads on each instruction. causing the execution of multiple threads to be interleaved

as the processor switches from one thread to the next, a thread that is currently stalled is skipped over

CPU must be able to switch between threads at every clock cycle so that it needs extra hardware support

Advantages
· less susceptible to stalling situations

· throughput costs can be hidden because stalls are often unnoticed

Disadvantages:
· slows down execution of each thread

· requires a switching process that does not cost any cycles

· this can be done at the expense of more hardware (we will require at a minimum a PC for every thread)

2. Coarse-grained multi-threading:
· switches between threads only when current thread is likely to stall for some time (e.g., level 2 cache miss)

· the switching process can be more time consuming since we are not switching nearly as often and therefore does not need extra hardware support

Advantages
· more natural flow for any given thread

· easier to implement switching process

· can take advantage of current processors to implement coarse-grained, but not fine-grained

Disadv: limited in its ability to overcome throughput losses because of short stalling situations because the cost of starting the pipeline on a new thread is expensive (in comparison to fine-grained)

Illustration:

The following diagram illustration the differences in a processor’s ability to exploit the resources of a superscalar for the following processor configuration

Issue Slots [image: image148.jpg]

 Superscalar Coarse MT Fine MT SMT
[image: image149.jpg]:

S | —mm

FIGURE 6.44 This illustration shows how these four different approaches use the issue slots of a superscalar pro-
cessor. The horizontal dimension represents the instruction issue capability in each clock cycle. The vertical dimension rep-
resents a sequence of clock cycles. An empty (white) box indicates that the corresponding issue slot is unused in that clock
cycle. The shades of grey and black correspond to four different threads in the multithreading processors. Black is also used
to indicate the occupied issue slots in the case of the superscalar without multithreading support.

· Horizontal dimension represents the instruction issue capability in each clock cycles.

· Vertical dimension represents a sequence of clock cycles.

· Empty slots indicate that the corresponding issue slots are unused in that clock cycles.

Four Approaches:

1.Superscalar on a single thread (or) superscalar with no multithreading support
· The use of issue slots is limited by a lack of ILP.

· In addition a major stall, such as an instruction cache miss can leave the entire processor idle.

2.Superscalar with coarse-grained MT (c)
· the long stalls are partially hidden by switching to another that uses the resources of the processor.

· This reduces the number of completely idle clock cycle

· When there is a stall and the new thread has a start up period.

3. Superscalar with fine-grained MT (b)
· The interleaving of threads eliminates fully empty slots.

· Because only one thread issues instructions in a given clock cycle.

· However ILP limitations still lead to significant number of idle slots within individual clock cycles

4. Superscalar with Simultaneous multithreading (d)
· It case, thread level parallelism and ILP are exploit simultaneously with multiple threads using the issue slots in a single clock cycle

4.Write short notes on MULTICORE PROCESSORS(May/June 2016)

Multicore:

· A multi-core design in which a single physical processor contains the core logic of more than one processor.

· Multiprocessor systems allow true parallel execution; multiple threads or processes run simultaneously on multiple processors.

· An IC that has more than one core.

· All the core has their own functional unit.

· All the cores have their own L1 cache memory where L2 cache memory is shared among all the processor

Multicore architecture are classified according to

1. Number of processor

2. Approaches to processor-to –processor communication

3. Cache and memory implementations

4. Implementation of I/O bus and the Front Side Bus (FSB)

Multicore configuration:

· CPU manufacturers set about to develop multi-core configuration that allow multiple core to run in parallel on a single chip.

Configuration that support multiprocessing are:

1. Hyper threading processing

2. Multiprocessor

3. Multi core

Hyper threading processing:

With HT technology, parts of the one processor are shared between threads, while other parts are duplicated between them.

Ht technology literally interleaves the instructions in the execution pipeline.

· Two or more logical processors.

· Allows the scheduling logic maximum flexibility to fill execution slots.

Shared logical

FSB

 processor on same chip

Hyper-threaded system uses a fraction of the resources and has a fraction of the waste of the SMP system.

· Provides more satisfactory solution

· Single physical processor is shared as two logical processors

· Each logical processor has its own architecture state

· Single set of execution units are shared between logical processors

Multiprocessor:

A computer system in which two or more CPUs share full access to a common RAM

Processor1

processor 2

FSB
Multiple processor on

 Separate chip

Continuous need for faster computers – shared memory model – message passing multiprocessor – wide area distributed system

Multicore :

· Chip-level multiprocessing(CMP or multicore): integrates two or more independent cores(normally a CPU) into a single package composed of a single integrated Circuit(IC), called a die, or more dies packaged, each executing threads independently.
· Every functional units of a processor is duplicated.
· Multiple processors, each with a full set of architectural resources, reside on the same die
· Processors may share an on-chip cache or each can have its own cache
Examples: HP Mako, IBM Power4
Challenges: Power, Die area (cost)

Multicore(CMP)

FSB Multiple processors in a package chip

5.Discuss Shared Memory Multiprocessor with a neat diagram.(Nov/Dec 2016)

· A shared-memory multiprocessor (or just multiprocessor henceforth) is a computer system in which two or more CPUs share full access to a common RAM.

· A program running on any of the CPUs sees a normal (usually paged) virtual address space.
[image: image150.png]Meﬁ Me%

Interconnection network

Multiprocessor hardware:

Single physical address space multiprocessors are classified as

1. Uniform Memory Access (UMA)

2. Non-uniform Memory Access (NUMA)
Uniform Memory Access (UMA)

· All memory addresses are reachable as fast as any other address.

· Time to access each memory word is the same

· Bus-based UMA

· CPUs connected to memory modules through switches

[image: image151.png]Processor 2

Communications Shared

mechanism Memory

Processorn

· The UMA is a type of symmetric multiprocessor, or SMP, that has two or more processors that perform symmetric functions.

· UMA gives all CPUs equal (uniform) access to all memory locations in shared memory.

· They interact with shared memory by some communications mechanism like a simple bus or a complex multistage interconnection network.

· Non-uniform Memory Access (NUMA)

· Some memory addresses are slower than others

· Memory distributed (partitioned among processors)

· Different access times for local and remote accesses

[image: image152.png]Processor 2 Processor n

Memory 2

Communications mechanism

· NUMA architectures, unlike UMA architectures do not allow uniform access to all shared memory locations.

· This architecture still allows all processors to access all shared memory locations but in a non uniform way, each processor can access its local shared memory more quickly than the other memory modules not next to it.

UNIT V

MEMORY AND I/O SYSTEMS

PART A

1.What is the memory mapped?

The I/O devices share the same address space, the arrangement is called memory mapped I/O.

2.What is program controlled I/O?

In program controlled I/O, the processor repeatedly checks a status flag to achieve the required synchronization between the processor and an input and output device

3.What are the various mechanisms for implementing I/O operations? (Nov/Dec2014)

((Program controlled I/O

((Interrupts

((DMA

4.What are vectored interrupts?

To reduce the time involved in the polling process, a device requesting an interrupt may identify itself directly to the processor. Then the, processor can immediately start executing the corresponding ISR.The schemes based on this approach is called vectored interrupts.

5.When the privilege exception arises?

An attempt to execute a privileged instruction while in the user mode leads to a special type of interrupt called a privilege exception.

6.What are the 2 independent mechanisms for controlling interrupt request?

At the device end, an interrupt enable bit in a control register determines whether the device is allowed to generate an interrupt request.

At the processor end, either an interrupt enable bit in the PS or a priority structure determines whether a given interrupt request will be accepted.

7.What is time slicing?

With this technique each program runs for a short period called a time slice, then another

8.What is DMA?Point out how DMA can improve I/O speed. (Nov/Dec 2014, April/May 2015)
Transfer of a block of data directly between an external device and main memory, without continuous intervention by the processor is called DMA.

It should seem obvious that there is a quicker way to put the data in memory. After all, these are lecture notes on "Direct Memory Access", so the idea is to access memory directly, and avoid the CPU as the middle man.

After all, how can memory who is sending signals to it? How does it know that the CPU sends signals, instead of the device itself.

If the I/O device generates all the signals that the CPU does, then the I/O device can bypass the step where the data transfers to the CPU, thus, potentially doubling the speed.

9.What is DMA controller?

DMA transfers are performed by a control circuit that is part of the I/O device interface. This circuit is known as DMA controller.

10.What is cycle stealing?

The processor originates most memory access cycles and the DMA controller can be said to steal memory cycles from the processor. This technique is known as cycle stealing.

11.What is bus arbitration?

It is the process by which the next device becomes the bus master is selected and bus master ship is transferred to it.

12. what are the three types of buses?

Address bus

Data bus

Control bus

13.What are the objectives of USB?

Simple Low cost Easy to use

Supports wide range of data transfer characteristics.

Plug and play mode of operation

14.What is synchronous bus?

In this, all devices derive timing information from a common clock line.

15.What are the multimedia applications which use caches?
Some Multimedia application areas where cache is extensively used are

*Multimedia Entertainment

*Education

*Office Systems

*Audio and video Mail

*Computer Architecture

16.Explain virtual memory technique.
Techniques that automatically move program and data blocks into the physical memory when they are required for execution are called virtual memory technique.

17.What are virtual and logical addresses?
The binary addresses that the processor issues for either instruction or data are called virtual or logical addresses.

18.Define translation buffer.
Most commercial virtual memory systems incorporate a mechanism that can avoid the bulk of the main memory access called for by the virtual to physical addresses translation buffer. This may be done with a cache memory called a translation buffer.

19.What is branch delay slot?
The location containing an instruction that may be fetched and then discarded because of the branch is called branch delay slot.

 20.What are static and dynamic memories?

Static memory are memories which require periodic no refreshing. Dynamic memories are memories, which require periodic refreshing.

21.What is optical memory?

Optical or light based techniques for data storage, such memories usually employ optical disk which resemble magnetic disk in that they store binary information in concentric tracks on an electromechanically rotated disks. The information is read as or written optically, however with a laser replacing the read write arm of a magnetic disk drive. Optical memory offer high storage capacities but their access rate is are generally less than those of magnetic disk.

22.What are the components of memory management unit?

A facility for dynamic storage relocation that maps logical memory references into physical memory addresses. A provision for sharing common programs stored in memory by different users.

23.What is the role of MAR and MDR?

The MAR (memory address register) is used to hold the address of the location to or from which data are to be transferred and the MDR (memory data register) contains the data to be written into or read out of the addressed location.

24.Distinguish Between Static RAM and Dynamic RAM?

Static RAM are fast, but they come at high cost because their cells require several transistors. Less expensive RAM can be implemented if simpler cells are used. However such cells do not retain their state indefinitely; hence they are called Dynamic RAM.

25.Distinguish between asynchronous DRAM and synchronous RAM.
The specialized memory controller circuit provides the necessary control signals, RAS andCAS that govern the timing. The processor must take into account the delay in the response of the memory. Such memories are referred to as asynchronous DRAMS. TheDRAM whoseoperations is directly synchronized with a clock signal. Such Memories are known as synchronous DRAM.

26.What do you mean associative mapping technique?

The tag of an address received from the CPU is compared to the tag bits of each block of the cache to see if the desired block is present. This is called associative mapping technique.

27.What is SCSI?

Small computer system interface can be used for all kinds of devices including RAID storage subsystems and optical disks for large- volume storage applications.

28.What are the two types of latencies associated with storage?

The latency associated with storage is divided into 2 categories

Seek Latencies which can be classified into Overlapped seek, Mid transfer seek and Elevator seek.

Rotational Latencies which can be reduced either by Zero latency read or Write and Interleave factor.

29.What do you mean by Disk Spanning?

Disk spanning is a method of attaching drives to a single host adapter. All drives appear as a single contiguous logical unit. Data is written to the first drive first and when the drive is full, the controller switches to the second drive, then the second drive writes until it’s full.

30.What is SCSI?

Small computer system interface can be used for all kinds of devices including RAID storage subsystems and optical disks for large- volume storage applications.

31.Define the term RELIABILITY

“Means feature that help to avoid and detect such faults. A reliable system does not silently continue and delivery result that include interacted and corrupted data, instead it corrects the corruption when possible or else stops.

32.Define the term AVAILABLITY

“Means features that follow the systerm to stay operational even offen faults do occur. A highly available systerm could dis able do the main functioning portion and continue operating at the reduced capacity”.

33.How the interrupt is handled during exception?

cpu identifies source of interrupt

cpu obtains memory address of interrupt handles

pc and other cpu status information are saved

Pc is loaded with address of interrupt handler and handling program to handle it.

34. What is I/O mapped input output? (Nov/Dec2014)
A memory reference instruction activated the READ M (or) WRITE M control line and does not affect the IO device. Separate IO instruction are required to activate the READ IO and WRITE IO lines ,which cause a word to be transferred between the address io port and the CPU. The memory and IO address space are kept separate.

35.Specify the three types of the DMA transfer techniques?

--Single transfer mode (cycle stealing mode)

--Block Transfer Mode (Brust Mode) --Demand Transfer Mode
--Cascade Mode
36.What is an interrupt? (Nov/Dec 2014)

An interrupt is an event that causes the execution of one program to be suspended and another program to be executed.

37.Define vectored interrupts.

In order to reduce the overhead involved in the polling process, a device requesting an interrupt may identify itself directly to the CPU. Then, the CPU can immediately start executing the corresponding interrupt-service routine. The term vectored interrupts refers to all interrupt handling schemes base on this approach.

38.What is an I/O channel?
An I/O channel is actually a special purpose processor; also called peripheral processor. The main processor initiates a transfer by passing the required information in the input output channel. The channel then takes over and controls the actual transfer of data.

39.What is a bus?
A collection of wires that connects several devices is called a bus.

40.Define word length?
Each group of n bits is referred to as a word of information and n is called the word length.

41.Why program controlled I/O is unsuitable for high-speed data transfer?
In program controlled i/o considerable overhead is incurred. Because several program instruction have to be executed for each data word transferred between the external devices and MM. Many high speed peripheral; devices have a synchronous modes of operation. That is data transfers are controlled by a clock of fixed frequency, independent of the CPU.

42.What is the function of I/O interface?
The function is to coordinate the transfer of data between the CPU and external devices.

43.What is NUBUS?
A NUBUS is a processor independent, synchronous bus standard intended for use in 32 bit microprocessor system. It defines a backplane into which up to 16 devices may be plugged each in the form of circuit board of standard dimensions.

44.What are the steps taken when an interrupt occurs?

Source of the interrupt
The memory address of the required ISP
The program counter &CPU information saved in subroutine

45. Define interface.

The word interface refers to the boundary between two circuits or devices

46.What is programmed I/O?(Nov/Dec 2014)

Data transfer to and from peripherals may be handled using this mode. Programmed I/O operations are the result of I/O instructions written in the computer program.

47. Define Asynchronous bus.
Asynchronous buses can mistake noise pulses at any time for valid handshake signal.

Asynchronous bus designer must deal with events that like synchronously.

It must contend with Meta stability when events that drive bus transaction.

When flip flop experiences effects can occur in downstream circuitry unless proper design technique.

48. What are the temporal and spatial localities of references?
Temporal locality (locality in time): if an item is referenced, it will tend to be

referenced again soon.

Spatial locality (locality in space): if an item is referenced, items whose addresses are close by will tend to be referenced soon.

49. Write the structure of memory hierarchy.
[image: image153.png]Current
Speed Size Cost ($/bit) technology
Fastest - Smallest Highest SRAM
Slowest - Biggest Lowest Magnetic disk

The basic structure of a memory hierarchy.

50. What are the various memory technologies? (Nov/Dec 2015)
The various memory technologies are:

1. SRAM semiconductor memory

2. DRAM semiconductor memory

3. Flash semiconductor memory

4. Magnetic disk

51. What is flash memory?
Flash memory is a type of electrically erasable programmable read-only memory

(EEPROM). Unlike disks and DRAM, EEPROM technologies can wear out flash memory bits. To cope with such limits, most flash products include a controller to spread the writes by remapping blocks that have been written many times to less trodden blocks. This technique is called wear levelling.

52. Define − Rotational Latency
Rotational latency, also called rotational delay, is the time required for the desired

sector of a disk to rotate under the read/write head, usually assumed to be half the rotation time.

53. What is direct-mapped cache?
Direct-mapped cache is a cache structure in which each memory location is

mapped to exactly one location in the cache. For example, almost all direct-mapped caches use this mapping to find a block,

(Block address) modulo (Number of blocks in the cache)

54. Consider a cache with 64 blocks and a block size of 16 bytes. To what block number does byte address 1200 map?
The block is given by,

[image: image154.png](Block address) modulo (Number of blocks in the cache)
where the address of the block is

Byte address
Bytes per block

Notice that this block address is the block containing all addresses between

Byte address

X Bytes per block
Bytes per block

[image: image155.png]and

Byte address

Bytes per block X Bytes per block + (Bytes per block — 1)

Thus, with 16 bytes per block, byte address 1200 is block address

1200
‘— =75

which maps to cache block number (75 modulo 64) = 11. In fact, this block
maps all addresses between 1200 and 1215.

55. How many total bits are required for a direct-mapped cache with 16 KiB of data and 4-word blocks, assuming a 32-bit address?
[image: image156.png]We know that 16 KiB is 4096 (2'?) words. With a block size of 4 words (22),
there are 1024 (2'°) blocks. Each block has 4 X 32 or 128 bits of data plus a
tag, which is 32 — 10 — 2 — 2 bits, plus a valid bit. Thus, the total cache size is

210X (4 X 32+ (32— 10 — 2 —2) + 1) = 2 X 147 = 147 Kibibits

or 18.4 KiB for a 16 KiB cache. For this cache, the total number of bits in the
cache is about 1.15 times as many as needed just for the storage of the data.

56. What are the writing strategies in cache memory?
Write-through is a scheme in which writes always update both the cache and the

next lower level of the memory hierarchy, ensuring that data is always consistent between the two.

Write-back is a scheme that handles writes by updating values only to the block in the cache, then writing the modified block to the lower level of the hierarchy when the block is replaced.

57. What are the steps to be taken in an instruction cache miss?
The steps to be taken on an instruction cache miss are

1. Send the original PC value (current PC – 4) to the memory.

2. Instruct main memory to perform a read and wait for the memory to complete its access.

3. Write the cache entry, putting the data from memory in the data portion of the entry, writing the upper bits of the address (from the ALU) into the tag field, and turning the valid bit on.

4. Restart the instruction execution at the first step, which will refetch the instruction, this time finding it in the cache.

58. Define – AMAT
Average memory access time is the average time to access memory considering

both hits and misses and the frequency of different accesses.It is equal to the following:

[image: image157.png]AMAT = Time for a hit + Miss rate X Miss penalty

59. What are the various block placement schemes in cache memory?
Direct-mapped cache is a cache structure in which each memory location is

mapped to exactly one location in the cache.

Fully associative cache is a cache structure in which a block can be placed in any location in the cache.

Set-associative cache is a cache that has a fixed number of locations (at least two)

where each block can be placed.

60. Define – MTTF and AFR
Reliability is a measure of the continuous service accomplishment or,

equivalently, of the time to failure from a reference point. Hence, mean time to failure (MTTF) is a reliability measure. A related term is annual failure rate (AFR), which is just the percentage of devices that would be expected to fail in a year for a given MTTF.

61. Define – Availability
Availability is then a measure of service accomplishment with respect to the

alternation between the two states of accomplishment and interruption. Availability is statistically quantified as

[image: image158.png]MTTF

Availability = (MTTF + MTTR)

62. What are the three ways to improve MTTF?
The three ways to improve MTTF are:

1. Fault avoidance: Preventing fault occurrence by construction.

2. Fault tolerance: Using redundancy to allow the service to comply with the service specification despite faults occurring.

3. Fault forecasting: Predicting the presence and creation of faults, allowing the component to be replaced before it fails.

63. Define – TLB
Translation-Lookaside Buffer (TLB) is a cache that keeps track of recently used

address mappings to try to avoid an access to the page table.

64. What is meant by virtual memory?
Virtual memory is a technique that uses main memory as a “cache” for secondary

storage. Two major motivations for virtual memory: to allow efficient and safe sharing of memory among multiple programs, and to remove the programming burdens of a small, limited amount of main memory.

65. Differentiate physical address from logical address.
Physical address is an address in main memory.

Logical address (or) virtual address is the CPU generated addresses that corresponds to a location in virtual space and is translated by address mapping to a physical address when memory is accessed.

66. Define – Page Fault
Page fault is an event that occurs when an accessed page is not present in main

memory.

67. What is meant by address mapping?(Nov/Dec 2016)
Address translation also called address mapping is the process by which a virtual

address is mapped to an address used to access memory.

[image: image159.png]Virtual addresses Physical addresses
Address translation

Disk addresses

68.Differentiate programmed I/O and Interupt I/O(Nov/Dec 2014)

Programmed-driven I/O means the program is polling or checking some hardware item e.g. mouse within a loop. For Interrupt driven I/O, the same mouse will trigger a signal to the program to process the mouse event. ... Usually done by the hardware manufacturer or the OS maker e.g. Microsoft.

69.What is the purpose of Dirty/Modified bit in cache memory? (Nov/Dec 2014)

A dirty bit or modified bit is a bit that is associated with a block of computer memory and indicates whether or not the corresponding block of memory has been modified. ... Dirty bits are used by the CPU cache and in the page replacement algorithms of an operating system

70. What is cache memory? (Nov/Dec 2016)

The small and fast RAM units are called as caches when the execution of an instruction calls for data located in the main memory, the data are fetched and a copy is placed in the cache. Later if the same data is required it is read directly from the cache.

71.What is the need to implement memory as a hierarchy?(April/May 2015)

In computer architecture the memory hierarchy is a concept used to discuss performance issues in computer architectural design, algorithm predictions, and lower level programming constructs involving locality of reference. The memory hierarchy in computer storage separates each of its levels based on response time.

72. Define Hit Ratio. (Nov/Dec 2015)

The performance of memory is frequently measured in terms
of quantity is called hit ratio.When the CPU needs to find
the word in the cache, if the word is found in the cache
then its proudes a hit. If the word is not found in the
cache, it is in main memory as counted miss. the ratio of
number of hits is divided by the total CPU reference of
memory is called hit ratio.

73.Define memory hierarchy.(May/June 2016)

In computer architecture the memory hierarchy is a concept used to discuss performance issues in computer architectural design, algorithm predictions, and lower level programming constructs involving locality of reference. The memory hierarchy in computer storage separates each of its levels based on response time.

74.State the advantages of virtual memory. (May/June 2016)

· Allocating memory is easy and cheap

· Any free page is ok, OS can take first one out of list it keeps

· Eliminates external fragmentation

· Data (page frames) can be scattered all over PM

· Pages are mapped appropriately anyway

· Allows demand paging and prepaging

· More efficient swapping

· No need for considerations about fragmentation

· Just swap out page least likely to be use

PART B

1.Discuss about the speed, size and cost in memory hierarchy

An ideal memory should be fast, large and inexpensive. A fast memory can be implemented if SRAM chips are used. But these chips are expensive.

The alternative is to use Dynamic RAM chips that are much less expensive but are significantly slower.

Although dynamic memory units in the range of hundreds of megabytes can be implemented at a reasonable cost, the affordable size is still small compared to large programs with volumes of data.

A solution is provided by using secondary storage to implement large memory spaces.

They are available at a reasonable price and are extensively used in computer systems but they are much slower than the semiconductor memory units.

Hence, the huge amount of cost effective storage can be provided by magnetic disks. A large yet affordable main memory can be built with dynamic RAM technology.

This leaves SRAMs to be used in smaller units where speed is the need, such as in cache memory. These different types of memory units are employed effectively in a computer. The entire computer memory can be viewed as the hierarchy.

Memory hierarchy
[image: image160.jpg]D

Memory hierarchy

The fastest access is to data held in the processor registers.

At the next level of the hierarchy is a relatively small amount of memory that can be implemented directly on the processor chip called a processor cache, which holds copies of instructions and data stored in a much larger memory.

There are two levels of caches.

A primary cache is always located on the processor chip. This cache is small. The primary cache is referred to as level 1 (L1) cache.

A larger secondary is placed between the primary cache and the rest of the memory. It is referred to as level 2 (L2) cache. It is usually implemented using SRAM chips.

The next level in the hierarchy is called the main memory.

The main memory is implemented using dynamic memory components. The main memory is much larger but significantly slower than the cache memory.

Disk devices provide a huge amount of inexpensive storage.

They are very slow compared to the semiconductor devices used to implement the main memory.

Working principle of RAM, ROM and cache memories.
RAM:
All the RAM (SRAM, DRAM) chips are volatile that is they lose the stored information if power is turned off.

There are many applications that need memory devices which retain the stored information if power is turned off.

For example: A computer hard disk is used to store large amount of information including operating system software. When a computer is powered on, the OS has to be loaded from disk into memory, this requires execution of program that “boots” the OS.

Since the boot programming quite large, most of it are stored on disk.

ROM:
[image: image161.jpg]Rou

oo

Consransonat

Circuit diagram for ROM

A logic value 0 is stored in the cell if the transistor is connected to ground at point P. Otherwise 1 is stored.

The bit line is connected through a resistor to the power supply. To read the state of the cell the word line is activated.

The transistor switch is closed and the voltage on the bit line drops to zero, if there is connection between the transistor and ground. If there is no connection to ground, the bit-line remains at high voltage indicating 1.

A sense circuit of the end of the bit-line generates the proper output value. Data are written into ROM when it is manufactured.

Cache Memories
The speed of main memory is very low in comparison with speed of modern processor.

For good performance the processor cannot spent much of its time waiting to access instructions and data in main memory.

An efficient solution is to use cache memory which makes the main memory appear to the processor to be faster, than it really is.

Speed, Size and Cost:
SRAM
*A very fast memory can be implemented if SRAM chips are used. But these chips are expensive because their basic cells has 6 transistors, with very large number of cells.

DRAM
*It has simpler basic cells and thus less expensive. But significantly slower. But it is expensive for higher capacity (hundreds of megabytes).

Magnetic Disks
*Large memory space.

*Very large disks are available at reasonable price.

*Slower than semiconductor memory units.

Conclusion
*A huge amount of cost-effective storage can be provided by magnetic disks.

*Main memory can be built with dynamic RAM technology.

*This leaves SRAM to be used in smaller units where speed is essence, such as an cache memory.

Memory Hierarchy
*All these different types of memory unit are employed effectively in a computer.

*The fastest access is to data held in processor registers. Therefore, if we consider registers to be part of memory hierarchy, the processor registers are at the top in terms of speed of access.

*At the next level of hierarchy is relatively small amount of memory that can be implemented directly on the processor chip called a processor cache.

It holds copies of instructions and data stored in larger memory.

*There are two levels of cache.

#Primary cache

#Secondary cache

*Primary cache is always located on the processor chip. It is referred to as Level 1 (L1) cache.

[image: image162.jpg]

Memory hierarchy

*A larger secondary cache is placed between primary cache and rest of the memory. It is referred to as Level 2 (L2) cache. It is usually implemented using SRAM chips.

*It is possible not to have cache out the processor chip. Also, it is possible to have both LI and L2 caches on the processor chip.

*The next level in the hierarchy is called main memory. This is implemented using dynamic memory components. Main memory is much larger but significantly slower than cache memory. The access time for main memory is 10 times longer than L1 cache.

*Disk drives provide a huge amount of inexpensive storage. They are very slow compared to semiconductor devices used to implement the main memory.

organization in magnetic disk.
The storage medium in a magnetic disk system consists of one or more disks stacked one on top of another.

A thin magnetic film is deposited on each disk, usually on both sides.

The disks are mounted on a rotary drive so that the magnetized surfaces move in a close proximity to Read/Write heads. This disk rotate at a uniform speed.

Each head consists of a magnetic yoke and a magnetizing coil. Digital information can be stored on the magnetic film by overlapping current pulses of suitable polarity to the magnetizing coil.

This causes the magnetization of the film in the area immediately underneath the head to switch to the direction parallel to the applied field.

The same head can be used for reading the stored information.

[image: image163.jpg]Rotary drive shaft

Mechanical structure

[image: image164.jpg]Qy I

Bit representation by phone encoding

The phase encoding or Manchester encoding scheme is nothing but the changes in magnetization occur for each data bit.

The change in magnetization is guaranteed by midpoint of each bit period, thus providing the clocking information

[image: image165.jpg]Timing track

sector 0, track 1

sector 3, rack 0 Sector 0, rack

Organization of one surface of a disk

[image: image166.jpg]

Format of a disk address word

3.Elaborate on the various memory technologies and its relevance.(April/May 2015)
ROM Technologies
Both SRAM and DRAM chips are volatile, which means that they lose the stored information if power is turned off. There are many applications that need memory devices which retain the stored information even when the power is turned off. A practical solution is to provide a non-volatile memory.

The contents of non-volatile memory can be read as if they were SRAM or DRAM memories. But a special writing process is needed to place the information into this memory.

Since its normal operation involves only reading of stored data, this type of memory is called Read Only Memory (ROM).

ROM
A logic value 0 is stored in the cell if the transistor is connected to ground at point P; otherwise a 1 is stored.

The bit line is connected through a resistor to the power supply.

To read the state of the cell, the word line is activated.

Thus, the transistor switch is closed and the voltage on the bit line drops to near zero if there is a connection between the transistor and ground.

If there is no connection to ground, the bit line remains at the high voltage, indicating a 1. A sense circuit at the end of the bit line generates the proper out value.

Data are written into a ROM when it is manufactured.

[image: image167.jpg]‘Corfiguraon of 2 ROM cell
Biine

Vorttne

Comected tostorea

Not comected tosiore 2 |

Configuration of a ROM Cell

Static memories.
Memories those consist of circuits capable of retaining their state as long as power is applied are known as static memories. The implementation of static RAM (SRAM) is as follows:

[image: image168.jpg]

SRAM

Two inverters are cross connected to form a latch.

The latch is connected to two bit lines by transistors T1 and T2. These transistors T1 and T2 act as switches that can be opened or closed under control of the word line.

When the word line is at ground level, the transistors are turned off and the latch retains its state.

Read Operation
In order to read the state of the SRAM Cell, the word line is activated to close switches T1 and T2 If the cell is in state 1, the signal on bit line b is high and the signal on bit b' is low.

The opposite is true if the cell is in state 0.

Thus, b and b' are complements of each other.

Sense/write circuits at the end of the bit lines monitor the state of b andb' and the set the output accordingly.

Write Operation
The state of the cell is set by placing the appropriate value on bit line b and its complement on b', and then activating the word line.

The required signals on the bit are generated by sense/write circuit.

Static RAMs can be accessed very quickly.

Access times of just a few nano seconds are found in commercially available chips.

SRAMs are used in applications where speed is of critical concern.

Overview of functional characteristics that are common to the devices used to build main and secondary computer memories.
Ideally the main memory should be fast and large so that a large program can be stored and executed.

There are different memory technologies such as semiconductor memory, magnetic hard disk, magnetic tape, optical disk etc.

In most modern computers, the physical main memory is not as large as the address space spanned by an address issued by the processor.

Here the virtual memory technique is used to extend the apparent size of the physical memory.

It uses secondary storage such as disk, to extend the apparent size of the physical memory.

There are four important parameters that are significant in choosing a computer memory (a) Capacity (b) Speed (c) Latency (d) Bandwidth

Capacity: Memory can be viewed as a storage unit containing l number of locations each of which stores w number of bits. In other words, the memory has l addresses and its word length is w bits.

The total capacity is l × w bits.

Speed: An important parameter of the memory is its speed of operation. This is measured in terms of two parameter: access time, tA and cycle time tC. Access time is the time taken by the memory to complete a read operation from the instant of receiving the ‘read’ control signal as shown in figure.

Latency: In some types of memory such as hard disk the internal organization is such that the first access to any location has longer access time whereas the successive location have shorter access time.

Bandwidth: The bandwidth is the data transfer rate by the memory. It can be expressed as number of bytes per second.

Memory read and write operations.
Both program instructions and data operands are stored in the memory.

To execute an instruction, the processor control circuits must cause the word containing the instruction to be transferred from the memory to the processor.

Operands and result must also be moved between the memory and the processor.

Thus, two basic operations involving the memory are needed namely Load (or Read or fetch) and store (or write).

The Load operation transfer a copy of the contents of a specific memory location of the processor. The store operation transfers an item of information from the processor to a specific memory location, destroying the former contents of that location.

[image: image169.jpg]5 MANNENORY
o O AR VR Pt
I
== | b ouans
R ~10,
o
Regster o
e [! T

I

CPU memory interface

Main memory can be pictured as being composed of flag collection of register, these are all the same word size S-bits.

CPU word size, ω, may be different than the main memory word size S.

In general, S-bit words are the smallest units that can be accessed in memory.

The CPU makes a memory access request by asserting REQUEST which indicates a read or write on the Read/write line.

The memory system indicates that its process is complete by asserting complete.

Working principle of a typical magnetic disk.
A magnetic disk is a thin, circular metal plate. It is coated with a thin magnetic film, usually on both sides.

Digital information is stored on the-magnetic disk by magnetizing the magnetic surface in a particular direction.

The disks are mounted on a rotary drive so that the magnetized surface moves in close proximity to magnetizing coil or head as shown in the below figure.

[image: image170.jpg]e

Direction of magnetizing coil

The head consists of a magnetic yoke and the magnetizing coil as shown in the below figure.

[image: image171.jpg]Sector Spindie

Ay

Cos[Tpas

‘Roating shaft

Reat wite

bead

—* Directionof
«— Ammation

Magnetic yoke

Digital information can be stored on the magnetic film by applying current pulses of suitable polarity to the magnetizing coil.

This causes the magnetization of the film in the area immediately below the head. The same head is used for reading the stored information.

In this case, when the surface of the disk passes under the head, it generates a current and induces voltage in the coil of the same polarity as the one already recorded.

The polarity of this voltage is monitored by the control circuitry to determine the state of magnetization of the film.

[image: image172.jpg]Surface 7

Surface 6
Surface 5
Serface 4
Surfuce 3
Surface 2
Surface 1
Surface 0

(Read/Write Head
(1 persurface)

Magnetizing coil.

Data Organization and Formatting
The data on the disks is organized in the concentric set of rings as shown in the below figure. These concentric set of rings are called tracks.

Each track has a same width as head and adjacent tracks are separated by gaps.

The gap between two adjacent tracks prevents or at least minimizes, errors due to misalignment of the head (or) simply interference of magnetic fields.

[image: image173.jpg]&

F Vagoec i fim

Data Organization

Data disks are stored serially on each track. The same numbers of bits are stored on each track.

Thus, the density, in bits per linear inch, increases as we move from the outermost track to the innermost track.

Each sector stores a block of data which can be transferred to or from the disk.

To avoid magnetic interference between two adjacent sectors, the gap is introduced between two adjacent sectors.

Data on disk is addressed by specifying the disk number (or) head number, track number and the sector number.

The start and end of each sector is determined by the control data stored on each sector.

4.Define Cache memory.Explain the various mapping techniques associated with cache memories.(May/June 2016, Nov/Dec 2014)
The speed of the main memory is very low in comparison with the speed of modern processors. For good performance, a processor cannot spend much of its time waiting to access instructions and data in main memory.

Hence, it is important to device a scheme that reduces the time needed to access the necessary information. An efficient solution is to use a fast cache memory which essentially makes the main memory appear to the processor to be faster than it really is.

The effectiveness of the cache mechanism is based on a property of computer programs called locality of reference.

Analysis of a large number of programs has shown that the references to memory at any given interval of time tend to be confined within a few localized areas in memory. This phenomenon is known as the property of locality of reference.

If the active portions of the program and data are placed in a faster smaller cache memory, the average memory access time can be reduced, thus reducing the total execution time of the program. Cache memory is placed between the CPU and the main memory.

Use of a cache memory
The fundamental idea of cache organization is that by keeping the most frequently accessed instructions and data in the fast cache memory. The basic operation of the cache is as follows:

When the CPU needs to access memory, the cache is examined.

If the word is found in the cache, it is read from the fast memory.

If the word addressed by the CPU is not found in the cache, the main memory is accessed to read the word.

A block of words containing, just accessed is then transferred from main memory into cache memory.

In this manner, some data are transferred to cache so that future references to memory find the required words in a cache.

[image: image174.jpg]Processor

Main
Memory

Cache memory

When the cache is full and the memory word that is not in the cache is referenced, the cache control hardware must decide which block should be removed to create space for the new block that contains the referenced word.

The collection of rules for making this decision constitutes the replacement algorithm.

The performance of cache memory is measured in terms of a quantity called hit ratio.

When the CPU refers to memory and finds the word in cache it is said a hit. If the word is not found in cache it is said as a miss.

The ratio of the number of hits divided by the total CPU references to memory is the hit ratio.

In a read operation, the main memory is not involved. For a write operation, the system can proceed in two ways.

In the first technique called the write through protocol, where the cache location and the main memory location are updated simultaneously.

The second technique is to update only the cache location and to mark it as updated with an associated flat bit often called dirty or modified bit. The main memory is updated later.

This technique is known as the write back or copy back protocol.

Various mechanisms of mapping main memory address into cache memory address.
Direct mapping
In direct mapping, a given block of main memory is mapped to a specific line in cache memory. To implement such cache system, the address is divided into three fields.

The lower 4 bits select one of the 16 words in a block. This field is known as word field. The second field known as block field is used to distinguish a block from other blocks. Its length is 7 bits since 27 = 128.

When a new block enters the cache, the 7-bit cache block field determine the cache position in which this block must be stored.

The third field is a tag field. It is used to store the high-order 5 bits of memory address of the block main memory.

[image: image175.jpg]Cache.
355 memory

bl - Bioak0
g | Block0 + Block 1
9 | Block | i Pan0.
i Tigo
i Block 127
B [plock 27 4o Block 128 Page 1
| Block 129 gl
Tag Block word. :
s[7]a : Block 255
[P——— i
=t {Block 3963
Block 3969
Page31
g 31
Block 400

Direct mapped cache

When memory is accessed, the 7 bit cache block field of each address generated by CPU points to a particular block location in the cache.

The high order 5 bits of the address are compared with the tag bits associated with that cache location.

If there is no match, then the block containing the required word must first read from the main memory and loaded into the cache.

Association mapping
The below Figure shows the associative mapping technique.

[image: image176.jpg]Cache

12588 pemnory
(@ [Biocko

Blockj

Block 409

Association mapping

In this technique, a main memory block can be placed into any cache block position.

As there is no fix block, the memory address has only two fields: Word and Tag.

This technique is also referred to as fully-associative cache.

The 12-tag bits are required to identify a memory block when it is resident in the cache.

The high-order 12 bits of an address received from the CPU are compared to the tag bits of each block of the cache to see if the desired block is present.

Once the desired block is present, the 4 bit word is used to identify the necessary word from the cache.

This technique gives complete freedom in choosing the cache location in which to place on the memory block.

Thus, the memory space in the cache can be used more efficiently. A new block that has to be loaded into the cache has to replace an existing block only if the cache is full.

Set-Associative mapping
The set-associative mapping is a combination of both direct and associative mapping.

It contains several groups of direct mapped blocks that operate as several direct mapped caches in parallel.

A block of data from any page in the main memory can go into a particular block location of any direct mapped cache.

Hence, the contention problem of the direct mapped technique is eased by having a few choices for block placement.

[image: image177.jpg])
swo (R TEREs Block
Set] [Tag |Block |
Bk &)
ok 68
Mo ‘Block 65
463 [oo
Block 177
ok 403
Block 415
o

Main memory address

Set association mapping

The required address comparisons depends on the number of direct mapped caches in the cache system. Figure shows two way, set associative cache.

Each page in the main memory is organized in such a way that the size of each page is same as the size of one directly mapped cache.

It is called two-way set associative cache because each block from main memory has two choices for block placement.

In this technique, block 0, 64, 128... 4032, of main memory can map into any of the two blocks of set 0, block, 1, 65, 129... 4033 of main memory can map into any of the two blocks of set 1 and so on.

4 .Measuring and improving cache performance

If the main memory of a computer is structured as a collection of physically separate modules each of which has its own address buffer register (ABR) and data buffer register (DBR), memory access operations that may proceed in more than one module at the same time. Thus, the aggregate rate of transmission of words to and from the main memory system can be increased.

How individual addresses are distributed over the modules is critical in determining the average number of modules that can be kept busy as the computations proceed.

Two methods of address layout are followed:

In the first case, the address generated by the processor is decoded.

The high order k bits name one of n modules and the low order m bits name a particular used in that module.

When consecutive locations are accessed as happens when a block of data is transferred to a cache only one module is involved.

At the same time, however devices with Direct Memory Access (DMA) ability may be accessing information in other memory modules.

Consecutive words in a module
[image: image178.jpg]kb mbis

Vode | Addessinmodde | MM addoss
[= H
son] oee] | [aee | oo or] oo
odde Modie Hodse
1"y L iy ST

Memory interleaving

The second and more effective way to address the modules is called memory interleaving.

The low order k bits of the memory address select a module and the high order m bits name a location within that module.

In this way, consecutive addresses are located in successive modules.

This results in both access to a block of data and higher average utilization of the memory system and a whole.

5.What is virtual memory.Explain the steps involved in virtual memory address translation. (Nov/Dec 2016,Nov/Dec 2015, April/May 2015)

In virtual memory, the address is broken into a virtual page number and a page offset.

The below Figure shows that the translation of the virtual page number to a physical page number.

The physical page number constitutes the upper portion of the physical address, while the page offset, which is not changed, constitutes the lower portion.

The number of bits in the page offset field decides the page size.

The page table is used to keep the information about the main memory location of each page. This information includes the main memory address where the page is stored and the current status of the page.

To obtain the address of the corresponding entry in the page table, the virtual page number is added with the contents of page table gives the physical page number, in which offset is added to get the physical address of the main memory.

[image: image179.jpg]Virtual address.

Page wble s [Viral poge no | Offer

Translation of the virtual page number

If the page required by the processor, is not in the main memory, the page fault occurs and the required page is loaded into the main memory from the secondary storage memory by special routine called page fault routine.

This technique of getting the desired page in the main memory is called demand paging.
To support demand paging and virtual memory processor has to access page table which is kept in the main memory.

To avoid the access time and degradation of performance, a small portion of the page table is accommodated in the memory management-unit.

This portion is called translation look aside buffer (TLB) and it is used to hold the page table entries that corresponds to the most recently accessed pages.

When processor finds the page table entries in the TLB, it does not have to access page table and saves substantial access time.

Virtual Memories
*The operating system moves programs and data automatically between main memory and secondary storage. Techniques that automatically move program and data blocks into the physical main memory when they are required for execution are virtual-memory technique.

*The binary addresses that the processor issues for either instruction or data are called virtual or logical addresses. These addresses are translated into physical addresses by combination of hardware and software components.

*If virtual address refers to a part of the program that is currently physical memory, then the contents are accessed immediately. If the referenced address is not in main memory, its content must be brought into a suitable location in memory before they can be used.

*A special hardware unit called Memory Management Unit (MMU) translate virtual address into physical address.

[image: image180.jpg]Processor

Virtual address

Data Physical address

DMA transfer

Disk Storage

Virtual memory organization

*If the data are not in main memory, the MMU causes the operating system to bring the data into the memory from the disk. Transfer of data between the disk and main memory is performed using DMA.

6.How the logical address is translated into physical address in the virtual memory system with a neat diagram.(April/May 2015)
The physical main memory is not as large as the address space spanned by an address issued by the processor.

When a program does not completely fit into the main memory, the parts of it not currently being executed are stored on secondary storage devices.

All parts of a program that are executed are first brought into the main memory.

When a new segment of a program is to be moved into a full memory, it must replace another segment already in the memory.

The operating system moves programs and data automatically between the main memory and secondary storage.

Techniques that automatically move program and data blocks into the physical main memory when they are required for execution are called virtual memory techniques.

The binary addresses that the processor issues either for data or instructions are called virtual or logical addresses.

These addresses are translated into physical addresses by a combination of hardware and software components called the Memory Management Unit (MMU).

When the desired data or instructions are in the main memory, the MMU causes the operating system to bring the data into the main memory from the disk.

[image: image181.jpg]Prcesor

lmm

g
H

Prysa aasess

by atess

[g

Maa oy

I S

D Strage

Virtual Memory Organization

Address Translation
A simple method is used for translating the virtual address into physical addresses is to assume that all programs and data are composed of fixed length units called pages, each of which consists of a block of words that occupy contiguous locations in the main memory.

Pages constitute the basic unit of information that is moved between the main memory and the disk, when translation mechanism is involved.

Pages should not be too small because the access time is longer and on the other hand if the pages are too large then memory space will be wasted.

The virtual memory mechanism bridges the size and speed gaps between the main memory and secondary storage and is usually implemented in part by software techniques.

[image: image182.jpg]Virtual address from processor

page table base register

il pagember s pagosomber|one
—
pogoTato

>
— B!

—

ot pogetame.

Ba Poetane | o

I_¢_|

e e s e

Virtual memory address translation

A virtual memory address translation method based on the concept of fixed length pages is shown in above figure. Each virtual address generated by the processor is interpreted as a virtual page number (high order bits) followed by an offset (low order bits) that specifies the location of a particular byte within a page.

Information about the main memory location of each page is kept in a page table.

An area in the main memory that can hold one page is called a page frame.

The starting address of the page table is kept in a page table is called page register.

By adding the virtual page number to the contents of this register, the address of the corresponding entry in the page table is obtained.

The contents of this location give the starting address of the page if that page currently resides in the main memory.

Each entry in the page table also includes some control bits that describe the status of the page, while it is in main memory.

One bit indicates the validity of the page that is whether the page is actually loaded into the main memory. Another bit indicates whether the page has been modified during its residency in the memory, other control bits indicate various restrictions that may be imposed on accessing the page.

The page table information is used by the MMU for every read and write access so ideally the page table should be situated within the MMU.

Unfortunately, the page table is large and since the MMU is implemented as part of the processor chip, so it is impossible to include a complete page table on this chip. Therefore, the page table is kept in the main memory.

However, a copy of a small portion of the page table can be accommodated within the MMU. This portion consists of the page table entries that correspond to the most recently accessed pages. A small cache called the Translation Look aside Buffer (TLB) is incorporated into the MMU for this purpose. In addition to the information that constitutes a page table entry in the TLB must also include the virtual address of the entry.

[image: image183.jpg]Vit adess fom pocessa

r—‘—|

[Vt pge] ot

’J paetane | ofit

Physca tres n e memry

Use of an associative mapped TLB

An essential requirement is that the contents of the TLB be coherent with the contents of page tables in the memory. Address translation proceeds as follows; given a virtual address, the MMU looks in the TLB for the referenced page.

If the page table entry for this page is found in the TLB, the physical address is obtained immediately.

If there is a miss in the TLB, then the required entry is obtained from the page table in the main memory and the TLB is updated.

When a program generates an access request to a page that is not in the main memory, a page fault is occurred.

The whole page must be brought from the disk into the memory before access can proceed. When it detects a page fault, the MMU asks the operating system to raise an interrupt.

Processing of the active task is interrupted and the control is transferred to the operating system. The operating system then transfers the requested page from the disk into main memory and returns the control to the interrupted task.

Because a long delay occurs during page transfer, the operating system may suspend the execution of the task that caused the page fault and begin execution of another task whose pages are in the main memory.

It is essential to ensure that the interrupted task can continue correctly when it resumes execution.

When the task resumes either the execution of the interrupted instruction must continue from the point of interruption or the instruction must be restarted.

If a new page is brought from the disk when the main memory is full, it must replace one of the resident pages.

LRU replacement algorithm can be applied to the page replacement and the control bits in the page table entries can indicate usage.

One simple scheme is based on a control bit that is set to 1 whenever the corresponding page is referenced.

The operating system occasionally clears this bit in all page table entries, thus providing a simple way of determining which pages have not been used recently.

A modified page has to be written back to the disk before it is removed from the main memory. The write through protocol is not suitable for virtual memory.

The access time of the disk is so long that it does not make sent to access it frequently to write small amounts of data.

The address translation process in the MMU requires some time to perform, mostly dependent on the time needed to look up entries in the TLB.

Because of locality of reference, it is likely that many successive translations involve addresses on the same page.

We can reduce the average translation time by including one or more special registers than retain the virtual page number and the physical page frame of the most recently performed translations.

The information in these registers can be accessed more quickly than the TLB.

7.Explain in detail about Translation Look aside Buffers.
Translation Look aside Buffers
The virtual to physical address translation operation sits on the critical path between the CPU and the cache. If every request for a memory location emanating from the processor required one or more accesses to main memory (to read page table entries) in addition to the access to fetch the requested datum, then our processor would be extremely slow. So, high performance processors include a translation look-aside buffer - commonly abbreviated to TLB (occasionally TLAB).

The Translation Look aside Buffer (TLB) is a cache for page table entries. It works the same way as the data cache works. It stores recently accessed page table entries. It also relies on locality of reference.

Since, each TLB entry covers a whole page of physical memory (512-8Kbytes, commonly 4Kbytes), a relatively small number of TLB entries will cover a large amount of program memory. Some TLB sizes found in commercial processors are:

	Processor
	Date
	Number
of
TLB entries
	Organization

	MIPS R4000
	1992
	48
	

	MIPS R10000
	1996
	64
	Fully associative

	
	
	
	

	Power PC 601
	1993
	Data: 256
	2-way set-associative

	
	
	Inst: 4
	Fully associative

	HP PA7100
	1993
	120
	

As with caches, separate TLBs for the instruction and data streams have been provided on many modern processors. Early TLBs had just a handful of entries and it was common to find fully-associative TLBs. The overhead in comparators and additional tag bits was relatively small and easily accommodated. For example, the PowerPC601 provides only 4 fully-associative entries in its instruction TLB.

As the number of transistors available to a designer has increased, larger TLBs with more entries have become feasible, but the benefit of fully-associative organizations has not justified the additional transistors and set-associative organizations have become common. For example, the PowerPC601 UTLB's 256 entries are arranged as a two-way set-associative cache.

Performance
The large coverage of main memory by each TLB entry means that TLB hit rates of 98% or more are readily achieved even with small TLBs. Spatial locality within the small number of words in a cache line already contributes significantly to high performance, so it is not surprising that locality within a page of 4Kbytes is high. On the other hand, a TLB miss has a large potential cost (several memory accesses and the execution of the page fault handler) so hit rates of this order are essential for good performance.

Processing Memory References
[image: image184.png]e cPu Retry

e
Vimml{\ddms l

| Search Cache Search :age table
Search TLB { b
l Y. @ Page fault
— Get page from
s ey Wss sec nlemory
W Update cache Update
| from main Generate PA] | main memory,
s memory T cache and

F) | (Cmiie) (proniemeenty
Update TLB

l— Return value e

from cache

Data

Operations of TLB

The diagram below summarizes the operations that are performed on an address emitted from a CPU as it passes through the various system caches.

Address Translation

A simple method for translating virtual address into physical addresses is to assume that all programs and data are composed of fixed length units called pages, each of which consists of a block of words that occupy contiguous locations in the main memory.

Pages constitute the basic unit of information that is moved between the main memory and the disk, when translation mechanism is involved.

Pages should not be too small because the access time is longer and on the other hand if the pages are too large then memory space will be wasted.

The virtual memory mechanism bridges the size and speed gaps between the main memory and secondary storage and is usually implemented in part by software techniques.

[image: image185.jpg]Virtual address from processor

page table base register

il pagember s pagosomber|one
—
pogoTato

>
— B!

—

ot pogetame.

Ba Poetane | o

I_¢_|

e e s e

Virtual memory address translation

A virtual memory address translation method based on the concept of fixed length pages is shown in above figure.

Each virtual address generated by the processor is interpreted as a virtual page number (high order bits) followed by an offset (low order bits) that specifies the location of a particular byte within a page.

Information about the main memory location of each page is kept in a page table. An area in the main memory that can hold one page is called a page frame.

The starting address of the page table is kept in a page table page register.

By adding the virtual page number to the contents of this register, the address of the corresponding entry in the page table is obtained.

The contents of this location give the starting address of the page if that page currently resides in the main memory.

Each entry in the page table also includes some control bits that describe the status of the page, while it is in the main memory.

One bit indicates the validity of the page as to whether the page is actually loaded into the main memory.

Another bit indicates whether the page has been modified during its residency in the memory, other control bits indicates various restrictions that may be imposed on accessing the page.

The page table information is used by the MMU for every read and write access, so ideally the page table should be situated within the MMU.

Unfortunately, the page table is large and since the MMU is implemented as part of the processor chip, so it is impossible to include a complete page table on this chip.

Therefore, the page table is kept in the main memory.

However, a copy of a small portion of the page table can be accommodated within the MMU. This portion consists of the page table entries that corresponds to the most recently accessed pages.

A small cache called the Translation Lookaside Buffer (TLB) is incorporated into the MMU for this purpose.

In addition to the information that constitutes a page table entry, the TLB must also include the virtual address of the entry.

[image: image186.jpg]Vit adess fom pocessa

r—‘—|

[Vt pge] ot

’J paetane | ofit

Physca tres n e memry

Associative mapped TLB

An essential requirement is that the contents of the TLB be coherent with the contents of page tables in the memory. Address translation proceeds as normally. Given a virtual address, the MMU looks in the TLB for the referenced page.

If the page table entry for this page is found in the TLB, the physical address is obtained immediately. If there is a miss in the TLB then the required entry is obtained from the page table in the main memory and the TLB is updated.

When a program generates an access request to a page that is not in the main memory, a fault page occurs. The whole page must be brought from the disk into the memory before access can proceed. When it detects a page fault, the MMU asks the operating system to raise an interrupt.

Processing of the active task is interrupted and the control is transferred to the operating system. The operating system then transfers the requested page from the disk into main memory and returns the control to the interrupted task.

As there’s a long delay occurs during the page transfer, the operating system may suspend the execution of the task that caused the page fault and begin execution of another task whose pages are in the main memory.

It is essential to ensure that the interrupted task can continue correctly when it resumes execution. When the task resumes, either the execution of the interrupted instruction must continue from the point of interruption or the instruction must be restarted.

If a new page is brought from the disk when the main memory is full, it must replace one of the resident pages.

LRU replacement algorithm can be applied to the page replacement and the control bits in the page table entries can indicate usage. One simple scheme is based on a control bit that is set to 1 whenever the corresponding page is referenced.

The operating system occasionally clears this bit in all page table entries, thus providing a simple way of determining which pages have not been used recently.

A modified page has to be written back to the disk before it is removed from the main memory. The write through protocol is not suitable for virtual memory.

The access time of the disk is so long that it does not make sent to access it frequently to write small amounts of data.

The address translation process in the MMU requires some time to perform, mostly dependent on the time needed to look up entries in the TLB.

Because of locality of reference, it is likely that many successive translations involve addresses on the same page.

We can reduce the average translation time by including one or more special registers than retain the virtual page number and the physical page frame of the most recently performed translations.

The information in these registers can be accessed more quickly than the TLB.

8.What are the advantages of USB over Input/output bus architecture.(Nov/Dec 2014)
USB is playing a key role in fast growing consumer areas like digital imaging, PC telephony, multimedia games etc. Its plug-n-play capability means that PC’s and peripherals will automatically configure and work together, with high degree of reliability, in exciting new application areas. The main advantages of USB over input/output bus architecture are:

(i)Simple connectivity

(ii)Simple cables

(iii)One interface for many devices

(iv)Automatic configuration

(v)No user setting

(vi)Free hardware resources for other devices

(vii)Hot pluggable

(viii)Speed

(ix)Reliability

(x)Row cost

(xi)Flexibility

(xii)How power consumption

(xiii)Flexibility

(xiv)OS support

(xv)Peripheral support

Memory Interleaving and Advantages
Interleaving:
If the main memory of a computer is structured as a collection of physically separate modules each with its own Address Buffer Register (ABR) and Data Buffer Register (DBR), memory access operations may proceed in more than one module at the same time. Thus, the aggregate rate of transmission of words to and from the main memory system can be increased.

How individual addresses are distributed over the modules is critical in determining the average number of modules that can be kept busy as the computations proceed.

Two methods of address layout are followed.

In the first case, the address generated by the processor is decoded.

The high order k bits name one of n modules and the low order m bits name a particular used in that module.

When consecutive locations are accessed as happens when a block of data is transferred to a cache only one module is involved.

At the same time however, devices with Direct Memory Access (DMA) ability may be accessing information in other memory modules.

Consecutive words in a module
[image: image187.jpg]

Modules

The second and more effective way to address the modules is called memory interleaving. The low order k bits of the memory address selects a module and the high order m bits names a location within that module.

In this way, consecutive addresses are located in successive modules. This results in both access to a block of data and higher average utilization of the memory system and a whole.

Consecutive words in consecutive modules
[image: image188.jpg]

Consecutive module

Programmed I/O let us discuss about the six I/O operation with an example.
[image: image189.jpg]BROCER0R oA oA ot
s sour
REYBOMRD DispY

I/O operation

Input/output (I/o) operation are essential and the way they are performed can have a significant effect on the performance of the computer.

To move a character code from the keyboard to the processor, striking key stores the character code in a 8-bit buffer register called DATAIN associated with keyboard. The status control flag SIN is set to 1 to inform the processor that a valid character is in DATAIN.

A buffer register DATAOUT, and a status control flag SOUT are used to transfer the character from the processor to the display.

A simple way to connect I/O devices to a computer is to use a single bus. The bus enables all the devices connected to it to exchange information.

It consists of three sets of lines used to carry address, data and control signals. Each I/O devices is assigned a unique set of addresses.

When the processor places a particular address on the address line, the I/O device with this address responds to the commands issued on the control lines.

The processor requests either a read or write operation and the requested data are transferred over the data lines.

When the I/O devices and the memory share the same address space, this way of arrangement is called memory mapped I/O.

[image: image190.jpg]Bus

Processor

Memory

110 device 1

l/O device n

A single bus structure

In memory mapped I/O, the I/O devices and the memory share the same address space and a single bus is used for both I/O and memory.

A range of memory addresses is reserved for I/O registers and these registers are read and written using standard load and store instructions.

Memory mapped I/O is common in modem processors. It has two primary motivations.

*Data transfer to and from the processor is standardized

*The number of connections to the processor chip is reduced.

[image: image191.jpg]Memory Bus

CPU

1/0 control

—o—Memo? control
Address —¢— Memory
Data T
1/0 system

Memory mapped I/O

In practice three sets of lines are used for connecting an I/O device to the bus.

The three lines used are address, data and control lines.

The address decoder enables the I/O device to find its address, when its address appears on the address lines.

The data register holds the data being transferred to or from the processor.

The status register contains information relevant to the operations of the I/O devices.

Both the data and status registers are connected to the data bus and assigned unique addresses. The address decoder, the data and status registers and the control circuitry required to coordinate I/O transfers constitute the devices interface circuit.

[image: image192.jpg]

I/O interface for an input device

Programmed I/O:
I/O operation is a data transfer between an I/O device and memory or between an I/O device and the processor. If in any computer system I/O operations are completely controlled by the processor then that system is said to be using programmed I/O. When such a technique is used, the processor executes programs that initiate, direct and terminate the I/O operations, including sensing device status, sending a read or write command and transferring the data. It is the responsibility of the processor to periodically check the status of the I/O system until it finds that the operation is complete.

Programmed I/O
•CPU has direct control over I/O

–Sensing status

–Read/write commands

–Transferring data

•CPU waits for I/O module to complete operation

•Wastes CPU time

9.Explain about DMA controller with the help of a block diagram. (OR)

Discuss DMA controller with block diagram.

(Nov/Dec 2016,May/June 2016,Nov/Dec 2015, Nov/Dec 2014)
In DMA technique, the external device is used to control data transfer. External device generates address and control signals required to control data transfer and allows peripheral device to directly access the memory.

Hence, this technique is referred to as Direct Memory Access (DMA) and external device which controls the data transfer is referred to as DMA controller.

[image: image193.jpg]Control Bus

DMA Controller

When the DMA controller gets control of the buses, it sends the memory address where the first byte of data from the disk is to be written.

It also sends a DMA acknowledge, DACK signal to the disk controller, the device telling it to get ready for the output byte.

Finally, it asserts both the [image: image194.jpg]0R

 and [image: image195.jpg]MEMW

 signals on the control bus. Asserting the [image: image196.jpg]IOR

 signals enables the disk controller to output byte of the data from the disk on the data bus, and asserting the [image: image197.jpg]MEMW

 signal enables the addressed memory to accept data, is transferred directly from the disk controller to the memory location without passing through the processor or the DMA controller.

Thus, the CPU is involved only at the beginning and end of the transfer.

The data transfer is monitored by DMA controller, which is also called DMA channel. When the CPU wishes to read or write a block of data, it issues a command to the DMA module or DMA channel by sending the following information to the DMA channel controller.

A read or write operation.

The address of I/O device involved.

The starting address in memory to read from or write to.

The number of words to be read or written.

DMA channels
For performing the above function, the basic blocks required in a DMA channel/controller is shown in figure.

It consists of data count, data register, address register and control logic. Data counter register stores the number which gives the number of data transfer to be done in one DMA cycle. It is automatically decremented after each word transfer.

Data register acts as buffer whereas address register initially holds the starting address of the device. Actually, it stores the address of the next word to be transferred. It is automatically incremented, (or) decremented after each word transfer.

When the data count reaches zero, the DMA transfer halts. The DMA controller is normally provided with an interrupt capability, in which case, it sends an interrupt to processor to signal the end of the I/O data transfer.

Data transfer modes
DMA controller transfer data is one of the following three modes.

•Single transfer mode (cycle stealing)

•Block transfer mode

•Demand or burst transfer mode

Single transfer mode
In this mode, a device can make only one transfer. After each transfer, DMAC gives the control of all buses to the processor. Due to this, the processor can have access to the buses on a regular basis.

The operation of the DMA in a single transfer mode is given below.

I/O device asserts DRQ line when it is ready to transfer data.

The DMAC asserts HLDA line to request use of the buses from the processor.

The processor asserts HLDA, granting the control of buses to the DMAC.

The DMAC asserts [image: image198.jpg]DACK

 to the requesting I/O device and executes DMA bus cycle, resulting data transfer.

I/O device de asserts its DRQ after data transfer of one byte or word.

DMA de asserts [image: image199.jpg]DACK

 line.

The word/byte transfer count is decremented and the memory address is incremented.

The HOLD line de asserted to give control of all buses back to the processor.

HOLD signal is reasserted to request the use of buses when I/O device is ready to transfer another byte or word. The same process is then repeated until the last transfer.

When the transfer count is exhausted, terminal count is generated to indicate the end of the transfer.

DMA Transfer
An example of a computer system is given in the figure showing how DMA controllers may be used. A DMA controller connects a high speed network to the computer bus. The disk controller which controls two disks, also has DMA capability and provides two DMA channels. It can perform two independent DMA operations.

[image: image200.jpg]Processor

Main Memory

Printer

Keyboard

Disk

Disk

Network
Interface

Use of DMA controllers in a computer system

To start a DMA transfer of a block of data from the main memory to one of the disks, a program writes the address and word count information into the registers of the corresponding channel of the disk controller.

When the DMA operation is completed, this is recorded in the control and status register of the DMA channel.

Memory accesses by the DMA controller is given higher priority than the processors requests for memory access.

The processor begins most memory access cycles, the DMA controller can be said to ‘steal’ memory cycles from the processor, this technique is called cycle stealing.

The DMA controller may be given exclusive access to the main memory to transfer a block of data without interruption. This is known as block or brust mode.

A conflict may arise if both the processor and a DMA controller or two DMA controllers try to use the bus at the same time to access the main memory.

To resolve these conflicts an arbitration procedure is implemented on the bus.

Different input and output signals of DMA controller
DMA controller
The DMA controller needs the usual circuits of an interface to communicate with the CPU and I/O device.

In addition, it needs an address register, a word count register and a set of address lines. The address register and address lines are used for direct communication with the memory.

The data transfer may be done directly between the device and memory under the control of the DMA.

The DMA controller communicates with the CPU through the data bus and control lines.

The registers in the DMA are selected by the CPU through the address bus by enabling the DS and RS inputs. The RD and WR inputs are bi-directional.

When BG input is 0, the CPU can communicate with the DMA registers through the data bus to read from or write to the DMA registers.

When BG = 1, the CPU has relinquished the buses and the DMA can communicate directly with the memory by specifying an address in the address bus and activating the RD or WR control.

[image: image201.jpg]s s
WO [e
o ._<‘Mm
i g

okt —55 | Ll
g st —{ 5

food +— oo Coonf 3 o

e o B[B kel
sseat o H

amgan e

et +——! gt -

Block diagram of DMA controller

The DMA controller has three registers namely:

*Address register: It contains an address to specify the desired location in memory. The address register is incremented after each word that is transferred to memory.

*Word count register: It holds the number of words to be transferred. This register is decremented by one after each word transfer and internally tested for zero.

*Control register: The control register specifies the mode of transfer.

The DMA is first initialized by the CPU. Then the DMA starts and combines to transfer data between memory and peripheral unit until an entire block is transferred. The CPU initializes the DMA by sending the following information through the data bus.

The starting address of the memory block where data are available (for read) or where data are to be stored (for write).

The word count, which is the number of words in the memory block.

Control to specify the mode of transfer such as read or write.

A control to start the DMA transfer.

DMA Transfer
An example of a computer system is given in the figure showing how DMA controllers may be used. A DMA controller connects a high speed network to the computer bus. The disk controller which controls two disks, also has DMA capability and provides two DMA channels. It can perform two independent DMA operations.

[image: image202.jpg]Processor

Main Memory

Printer

Keyboard

Disk

Disk

Network
Interface

To start a DMA transfer of a block of data from the main memory to one of the disks, a program writes the address and word count information into the registers of the corresponding channel of the disk controller.

When the DMA operation is completed, this is recorded in the control and status register of the DMA channel.

Memory accesses by the DMA controller is given higher priority than the processors requests for memory access.

The processor begins most memory access cycles, the DMA controller can be said to ‘steal’ memory cycles from the processor, this technique is called cycle stealing.

The DMA controller may be given exclusive access to the main memory to transfer a block of data without interruption. This is known as block or brust mode.

A conflict may arise if both the processor and a DMA controller or two DMA controllers try to use the bus at the same time to access the main memory.

To resolve these conflicts, an arbitration procedure is implemented on the bus. A DMA controller takes over the bus to manage the transfer directly between the I/O device and memory.

I/O operations are always performed by the operating system (OS) of the computer in response to the request from an application program.

The I/O operation involving DMA, the OS put the program that requested and transfer in the Blocked state, initiates the DMA operation and starts the execution of another program.

Vectored Interrupts
A device requesting an interrupt may identify itself directly to the processor.

Then the processor can immediately start executing the corresponding interrupt service routine, such an interrupt handling scheme is called vectored interrupts.

A device requesting an interrupt can identify itself by sending a special code to the processor over the bus. This enables the processor to identify the individual devices.

The code supplied by the device may represent the starting address of the interrupt service routing for that device.

This arrangement needs that the interrupt service routine for a given device must always start at the same location.

The programmer can have the flexibility of storing in this location, an instruction that caused a branch to the appropriate routine.

The starting address of the interrupt service routine is called the interrupt vector, the processor reads this address and loads it into the PC (Program counter).

When a device sends an interrupt request, the interrupt vector code is sent over the data bus and if the processor is not ready to accept the interrupt vector code immediately.

Then the interrupting device must wait to put data on the bus only when the processor is ready to receive it.

When the processor is ready, it activates the interrupt acknowledge line, INTA. The I/O device responds by sending its interrupt vector code.

Interrupt Nesting
For some devices, a long delay in responding to an interrupt request may cause error in the operation of computer.

Such interrupts are acknowledged and serviced even though processor is executing an interrupt service routine for another device.

A system of interrupts that allows an interrupt service routine to be interrupted is known as nested interrupts. Consider for example, a computer that keeps track of the time of day using a real time clock.

This real time clock requests to the processor at regular intervals and processor accordingly updates the counts for seconds, minutes and hours of the day.

For a proper operation such an interrupt request from real time clock must be processed even though computer is executing an interrupt service for another device.

Interrupt Priority
When interrupt arrives from two or more devices simultaneously the processor has to decide which request should be serviced first and which should be delayed.

The processor takes the decision with the help of interrupt priorities.

An interrupt request from a high priority device should be accepted while the processor is servicing another request from a lower priority device.

The priority of the processor can be changed by program instructions that write into the PS. These instructions are called privileged instructions which can be executed only when the processor is running in the supervisor mode.

A multiple priority scheme can be implemented easily by using a separate interrupt request and interrupt acknowledge lines for each device as shown in the Figure.

[image: image203.jpg]Procssr

] e
1

Devee | Devee2 Dewces
Tonas o

Py atiason
it

Implementation of interrupt priority using individual interrupt and acknowledge lines

Each of the interrupt request lines is assigned a different priority level. Interrupt requests received over these lines are sent to a priority arbitration circuit in the processor.

A request is accepted only if it has a higher priority level than that currently assigned to the processor.

Simultaneous Requests
Using priority scheme to service the interrupt request is a straight forward solution but if several devices share one interrupt request line some mechanism is needed.

Polling the status registers of the I/O devices is the simplest mechanism, priority is determined by the order in which the devices are polled. The widely used schemes to solve this problem are:

[image: image204.jpg]* daisy chain * pricrity groups
R

3

Daisy Chain

The interrupt request line INTR is common to all devices. The INTA is connected in a daisy chain form so that the signal propagates serially through the device.

When several devices raise an interrupt requests, the processor responds by setting INTA line to 1. The signal is received by device 1. Device 1 passes the signal on to device 2 only, if it does not require any service.

If device 1 has a pending request for interrupt, it blocks the INTA signal and proceeds to put its identifying code on the data lines. In the daisy chain arrangement, the device that is closest to the processor has the highest priority.

Priority groups
In this scheme, the devices are organized in groups and each group is connected with a different priority level. Within a group, the devices are connected in a daisy chain.

[image: image205.jpg]

Priority Groups

Controlling Device Requests
I/O devices generates an interrupt request when it is ready for data transfer. While handling interrupt request it is required to ensure that interrupts requests are generated only by those I/O devices that are being used by a given program.

Other devices should not be allowed to generate interrupt requests even though they are ready to transfer data. Hence, we need a mechanism in the interface circuits of individual devices to control whether a device is allowed to generate an interrupt request.

There are two mechanism used to control device request, one is at the device end and the other at processor end.

At the device end, there is an interrupt enable bit in the control and status register. The programmer is allowed to set or reset this interrupt enable bit.

At the processor end, either an interrupt enable in the program status register (PS) or a priority structure determines whether the given request will be accepted.

Exceptions
An interrupt is an event that causes the execution of one program to be suspended and the execution of another program to begin. Exception is the term used to refer to any event that caused an interruption. I/O interrupts are example of an exception.

INPUT UNIT

CPU PROCESSOR

OUTPUT UNIT

STORAGE UNIT

 Network communication

ALU

ALU

ALU

PC

ALU

OPCODE Memory address

PC

ALU

PC

�

 HALF

 ADDER

 FULL

 ADDER

1 1 0 1

0

1 0 1 1

 0 0 0 0

0

1 0 1 1

 1 1 0 1

 0 1 1 0

0

1 1 0 1

 0 0 1 1

1 1 0 1

1

0

1 1 1 0

 1 0 0 1

1 1 1 1

 0 0 0 1

1

1 1 1 1

 0 1 0 0

0�

 1 0 0 0

0

1 1 1 1

0

0

0 1 0 1

 0

1 1 0 0

 0 0 0 0

 0

 0 1 1 0

 0 0 0 0

 0

0 0 1 1

 0 0 0 0

 0

0 0 1 1

 1 0 1 1

 1

1 0 0 1

 1 1 0 1

1�

1 1 0 0

 1 1 1 0

Dividend = Quotient * divisor + Remainder

0 0 0 1 1

1	0	1 0 	

0 0 0 0 0

 0 1 0

0 0 0 0 1

1 1 1 1 0

1 0 0 0

0 1 0

0 0 0 0 1

0 1 0 0

1 0 0

0 0 0 1 0

 1 1 1 1 1

1 0 0

1 0 0 0

0 0 0 1 0

0 0 0

0 0 1 0 1

0 0 0 1 1

0 0 0

0 0 0 1 0

0 0 0 1

0 0 1

0 0 1 0 0

0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 1

0 0 1 0 1

1	0	1 1 	

0 0 0 0 0

 0 1 1

0 0 0 0 1

1 1 1 0 0

1 1 0 0

0 1 1

1 1 1 0 0

0 1 1 0

1 1 0

1 1 0 0 0

 1 1 1 0 1

1 1 0

1 1 0 0

1 1 1 0 1

1 0 0

1 1 0 1 1

0 0 0 0 0

1 0 0

0 0 0 0 0

1 0 0 1

0 0 1

0 0 0 0 1

0 0 1

1 1 1 0 0

0 0 0 0 1

0 0 1 0

1	1 0 0 0 1 0 0 1		0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1

1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1

0

1

1

1

0

1

1

1

� EMBED Unknown ���

�

� EMBED Unknown ���

� EMBED Unknown ���

� EMBED Unknown ���

� EMBED Unknown ���

Computer Architecture

SISD

SIMD

MISD

MIMD

Logical processor 1

Logical processor 2

Shared CPU components

 ALU

Registers

L1 - Cache

Fetch/ decode unit

L2- Cache

 ALU

Registers

L1 - Cache

Fetch/ decode unit

L2- Cache

 ALU

Registers

L1 - Cache

Fetch/ decode unit

L2- Cache

 ALU

Registers

L1 - Cache

Fetch/ decode unit

L2- Cache

_1555500183.vsd
rs

rt

rd

shamt

0

funct

31:26

25:21

20-16

15:11

10:6

5:0

rs

rt

35 or 43

31:26

25:21

20-16

address

15:0

rs

rt

4

31:26

25:21

20-16

address

15:0

s2

s3

+

+

add $s1, $s2, $s3

s1

lw $s1, 100($s2)

sw $s1, 100($s2)

base

load

store

beq $s1, $s2, L

s1

s2

+

subtract

_1555500185.vsd

_1555500186.vsd

_1555500184.vsd
000010

address

31:26

25:0

_1555500181.bin

